
OS/390 IBM Communications Server

IP Diagnosis Guide
Version 2 Release 10

SC31-8521-04

���

OS/390 IBM Communications Server

IP Diagnosis Guide
Version 2 Release 10

SC31-8521-04

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Appendix G.
Notices” on page 553.

Fifth Edition (September 2000)

This edition applies to OS/390 V2R10 (Program Number 5647-A01).

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-227-5088

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/s390/os390/

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/s390/os390/

Contents

Figures . xiii

Tables . xv

About This Book . xvii
Who Should Use This Book . xvii
How to Use This Book . xvii

How This Book Is Organized xvii
What Is Not in This Book . xix

Where to Find More Information xix
Where to Find Related Information on the Internet xix
How to Contact IBM Service xx

Summary of Changes . xxi

Part 1. General Diagnosis Information . 1

Chapter 1. Overview of the Diagnosis Procedure. 3

Chapter 2. Selecting Tools and Service Aids 7
How Do I Know Which Tool or Service Aid to Select? 7
What Tools and Service Aids Are Available? 11

Dumps . 11
Traces . 13
First Failure Support Technology (FFST) 14
Display Commands . 16
System Service Aids . 16

Guidelines for Machine-Readable Documentation 17
Submitting Documentation Electronically 18
Necessary Documentation. 18

Chapter 3. Diagnosing Abends, Loops, and Hangs 21
Analyzing Abends . 21
Analyzing Loops . 22
Analyzing Hangs . 23

Chapter 4. Diagnosing Network Connectivity Problems 25
Communicating through the Correct Stack 25
Problems Connecting to the Server 26

Using PING and oping . 29
Using NETSTAT and onetstat 31
Using TSO TRACERTE and otracert 37
Using SNMP Remote PING 38
Diagnosing Sysplex Distributor Problems 39

Documentation for the IBM Support Center 43

Part 2. Traces and Control Blocks . 45

Chapter 5. TCP/IP Services Traces and IPCS Support 47
Component Trace . 47

Component Trace for TCP/IP Stacks 47
Filter TCPIP CTRACE by IP Address 55

© Copyright IBM Corp. 1994, 2000 iii

||

||

Formatting Trace Records for TCP/IP Stacks 56
Component Trace for OMPROUTE 59

Packet Trace . 59
The Trace Process . 59
Supported Devices . 60
Packet Trace Format. 60
Starting Packet Trace . 63
Modifying Options with Vary 64
Socket Data Trace . 64
Formatting Packet Traces Using IPCS 66
Configuration Profile Trace 68

Socket API Traces . 69
Recommended Options for the Application Trace 70
How to Collect the SOCKAPI Trace Option 71
How to Format the SOCKAPI Trace Option 76
How to Read and Interpret the SOCKAPI Trace Option 77
How to Correlate the Data Trace and Packet Trace with the SOCKAPI Trace 84

Chapter 6. IPCS Subcommands for TCP/IP 87
TCPIPCS . 89

Command Syntax . 89
Parameters . 89
Symbols Defined . 91

TCPIPCS Subcommands . 91
TCPIPCS API . 91
TCPIPCS CONFIG . 93
TCPIPCS CONNECTION . 95
TCPIPCS DUAF . 96
TCPIPCS DUCB . 99
TCPIPCS FIREWALL . 101
TCPIPCS FRCA . 104
TCPIPCS HASH . 106
TCPIPCS HEADER. 108
TCPIPCS HELP . 109
TCPIPCS LOCK . 110
TCPIPCS MAP . 112
TCPIPCS MTABLE . 113
TCPIPCS POLICY . 115
TCPIPCS PROFILE. 116
TCPIPCS PROTOCOL . 119
TCPIPCS RAW . 122
TCPIPCS ROUTE . 124
TCPIPCS SOCKET. 126
TCPIPCS STATE . 128
TCPIPCS STORAGE . 130
TCPIPCS STREAM. 131
TCPIPCS TCB . 133
TCPIPCS TELNET . 135
TCPIPCS TIMER . 137
TCPIPCS TRACE . 138
TCPIPCS TREE . 140
TCPIPCS TSDB . 142
TCPIPCS TSDX . 143
TCPIPCS TSEB . 144
TCPIPCS UDP . 146
TCPIPCS VMCF . 148

iv OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

TCPIPCS XCF . 150
ERRNO . 152

Syntax . 152
Parameters . 152
Sample Output . 153

ICMPHDR . 154
Syntax . 154
Parameters . 154
Sample Output . 154

IPHDR . 154
Syntax . 155
Parameters . 155
Sample Output . 155

SETPRINT . 156
Syntax . 156
Parameters . 156
Sample Output . 156

SKMSG . 157
Syntax . 157
Parameters . 157
Sample Output . 157

TCPHDR . 158
Syntax . 158
Parameters . 158
Sample Output . 158

TOD . 159
Syntax . 159
Parameters . 159
Sample Output . 160

UDPHDR . 160
Syntax . 160
Parameters . 160
Sample Output . 160

Installing TCP/IP IPCS Subcommands 161
Entering TCP/IP IPCS Subcommands 162

Part 3. Diagnosing CS for OS/390 Components 165

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD)
Problems . 167

Diagnosing LPR Client and LPD Server Problems 167
Abends . 167
Timeouts, Hangs, and Waits 168
Incorrect Output . 168

LPR Client Traces . 170
Activating LPR Client Traces 170
Client Trace Output . 170

LPD Server Traces . 176
Activating Server Traces . 176
Server Trace Output . 177

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 191
FTP Server . 191

Structural Overview. 191
Definitions and Setup . 191
Error Exit Codes . 192

Contents v

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Name Considerations for OS/390 UNIX FTP 192
Common OS/390 UNIX FTP Problems. 193
Diagnosing FTP Server Problems with Traces 205
Documenting Server Problems 213

FTP Client . 213
Execution Environments . 214
Setup . 214
Naming Considerations . 214
Common Problems . 214
DB2 Query Support. 216
Diagnosing FTP Client Problems with Tracing 218
Documenting FTP Client Problems 218

Chapter 9. Diagnosing OS/390 UNIX Telnet Problems 219
Common Problems . 219
Debug Traces . 219

Debug Trace Flows (netdata and ptydata) 220
Debug Trace Examples (-t -D all). 220
Cleaning Up the utmp Entries Left from Dead Processes 224

Chapter 10. Diagnosing Telnet Problems 225
General Telnet Server Information 225
Telnet Server Definitions . 225
Diagnosing Telnet Server Problems 225

Abends (Server) . 226
Logon Problems (Server). 226
Session Hangs (Server) . 227
Incorrect Output (Server) . 229
Session Outages (Server) 230
Special Considerations When Using SSL Encryption Support 231
Telnet Component Trace Data 232

General Telnet Client Information 232
Telnet Client Definitions . 232
Diagnosing Telnet Client Problems 232

Abends (Client) . 232
Session Hangs (Client) . 233
Incorrect Output (Client) . 234

Telnet Client Traces. 235
Starting Telnet Client Traces 235
Trace Example (Client) . 236

Telnet Commands and Options 240

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems 243
Sender SMTP . 243
Receiver SMTP . 243
SMTP Environment . 243
SMTP Definitions . 243
Diagnosing SMTP Problems 244

Abends . 244
Spooling Problems . 244
SMTP Does Not Deliver Mail 244
SMTP Loop . 246
Mail Item Has Incorrect Output 246
Forcing Re-Resolution of Queued Mail. 247

ADDRBLOK Data Set . 247
RESOLVER Trace . 250

vi OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper Problems 253
Diagnostic Aids for sendmail 253
Debugging Switches . 253
Additional Diagnostic Aids . 258
Diagnostic Aids for Popper . 259

Chapter 13. Diagnosing SNALINK LU0 Problems 261
Definitions . 261
Problem Diagnosis . 261

Abends . 261
Session Hangs . 262
Session Outages. 263

Traces . 264
Using IP Packet Trace. 264
SNALINK LU0 DEBUG Trace 270

Chapter 14. Diagnosing SNALINK LU6.2 Problems 273
Setting Up a SNALINK LU6.2 Network. 273
Common Configuration Mistakes 275
Diagnosing Problems . 275

Quick Checklist for Common Problems 275
Problems Starting the SNALINK LU6.2 Address Space. 276
DLC Connection Problems 278
Network Connection Establishment Problems 280
Network Connection Loss Problems. 281
Data Loss Problems . 282
Data Corruption Problems 284

Documentation References for Problem Diagnosis 284
Using NETSTAT . 285
Using the SNALINK LU6.2 Subcommand. 285
Useful VTAM Operations . 286

Traces . 288
Using SNALINK LU6.2 Internal Traces 289
Using IP Packet Trace. 291
TCP/IP Internal Traces . 292
VTAM Buffer Traces . 292

Finding Abend and Sense Code Documentation 293
Finding Error Message Documentation. 293

Chapter 15. Diagnosing Dynamic Domain Name Server (DDNS) Problems 295
Diagnosing Name Server Problems 295

Checking Messages Sent to the Operators Console 295
Checking the Syslog Messages 295
Using the onslookup and NSLOOKUP Commands 296
Using the Debug Option with the Name Server 296
Debugging with a Resolver Directive 297
Using Name Server Signals. 297
Using the NSUPDATE Command 298
Using Component Trace . 298
Return Codes . 298

Diagnosing Problems with Connection Optimization 299
Addresses Not Being Returned 299
Connection Problems . 300

Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems 301
General Information about REXEC and RSH 301

Contents vii

Documentation for REXEC Problem Diagnosis 301
TSO Console Log . 301
Activating the REXEC Debug Trace 302
REXEC Trace Example and Explanation 302
RSH Trace Example and Explanation 304

General Information about REXECD 305
Documentation for REXECD Problem Diagnosis 305
MVS System Console Log 305
Starting REXECD Server Traces 305
Example of an REXECD Trace of a Client Using the SEND Command 305
Example Trace of an RSH Client Using the SEND Command 306

Chapter 17. Diagnosing OS/390 UNIX REXEC, REXECD, and RSHD
Problems . 309

Setting Up the inetd Configuration File 309
Diagnosing OS/390 UNIX REXEC 310

Activating the OS/390 UNIX REXEC Debug Trace 310
OS/390 UNIX REXEC Trace Example and Explanation. 310

Diagnosing OS/390 UNIX REXECD 310
Activating the OS/390 UNIX REXECD Debug Trace 311
OS/390 UNIX REXECD Trace Example and Explanation 311

Diagnosing OS/390 UNIX RSHD 311
Activating the OS/390 UNIX RSHD Debug Trace 311
OS/390 UNIX RSHD Trace Example and Explanation 311

Chapter 18. Diagnosing Network Database System (NDB) Problems . . . 313
Documentation for NDB Problem Diagnosis 314
Definitions . 314
Diagnosing NDB Problems . 315
NDB Trace Examples and Explanations 316

Chapter 19. Diagnosing X Window System and OSF/Motif Problems . . . 329
Trace Output When XWTRACE=2 329
Trace Output When XWTRACELC=2 330

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP)
Problems . 333

Overview . 333
Management Information Base (MIB) 333
PDUs . 333
Functional Components . 334

Definitions . 335
osnmp . 335
SNMP Agent . 335
TCP/IP Subagent . 336
OMPROUTE Subagent . 336
SLA Subagent. 336
SNMP Socket Call Settings 337
Trap Forwarder Daemon . 337

Diagnosing SNMP Problems 337
Abends . 338
SNMP Connection Problems 338
Incorrect Output . 344
No Response from the SNMP Agent 349
Report Received from SNMP Agent 350
I/O Error for SNMP PING 351

viii OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

||

Traps Not Forwarded by Trap Forwarder Daemon 351
Incorrect Address in Forwarded Trap 352

SNMP Traces . 353
Starting Manager Traces . 353
Starting SNMP Agent Traces 353
Starting TCP/IP Subagent Traces 354
Starting OMPROUTE Subagent Traces 355
Starting SLA Subagent Traces 355
Starting TRAPFWD Traces 355
Trace Examples and Explanations 356

Chapter 21. Diagnosing Policy Agent Problems 377
Overview . 377
Service Policy Scopes. 377
Gathering Diagnostic Information 378
Diagnosing Policy Agent Problems 379

Initialization Problems . 379
Policy Definition Problems 380
LDAP Problems . 382
Example Log File . 383

Chapter 22. Diagnosing RSVP Agent Problems 395
Overview . 395
Reservation Types, Styles and Objects 395
Service Policies and RSVP Processing 397
Gathering Diagnostic Information 398
Diagnosing RSVP Agent Problems 398

Initialization Problems . 398
Application Problems . 399
Service Policy Problems . 399
Example Log File . 399

Chapter 23. Diagnosing Traffic Regulator Management Daemon (TRMD)
Problems . 409

Gathering Diagnostic Information 409
Diagnosing TRMD Problems 409
Documentation for the IBM Software Support Center 410
Example Log File . 410

Chapter 24. Diagnosing OROUTED Problems 417
Definitions . 418
Diagnosing OROUTED Problems. 418

Abends . 419
OROUTED Connection Problems 419
OS/390 UNIX oping Failures 420
Incorrect Output . 421
Session Outages. 421

OROUTED Traces and Debug Information 422
Starting OROUTED Traces from the OS/390 UNIX Shell 423
Starting OROUTED Traces from an MVS Catalogued Procedure 424
Where to Send OROUTED Trace Output 425
Stopping OROUTED . 425
Changing Trace and Debug Levels with MODIFY 426
OROUTED Trace Example and Explanation. 426
Documentation for the IBM Software Support Center 434

Contents ix

||
||

||

|
||
||
||
||
||

Chapter 25. Diagnosing OMPROUTE Problems 435
Diagnosing OMPROUTE Problems 436

Abends . 437
OMPROUTE Connection Problems 437
Routing Failures . 437

OMPROUTE Traces and Debug Information 438
Starting OMPROUTE Tracing and Debugging from the OS/390 Shell . . . 438
Starting OMPROUTE Tracing and Debugging from an MVS Cataloged

Procedure or AUTOLOG 439
Starting OMPROUTE Tracing and Debugging Using the MODIFY Command 439
Destination of OMPROUTE Trace and Debug Output 439

Sample OMPROUTE Trace Output 440
TCP/IP Services Component Trace for OMPROUTE 447

Specifying Trace Options. 448
Formatting OMPROUTE Trace Records 450

Chapter 26. Diagnosing NCPROUTE Problems. 451
Definitions . 453
Diagnosing NCPROUTE Problems 454

Abends . 454
Connection Problems . 454
PING Failures . 457
Incorrect Output . 458
Session Outages. 460

NCPROUTE Traces . 461
Activating NCPROUTE Global Traces 461
Activating NCPROUTE Selective Traces 461
NCPROUTE Trace Example and Explanation 462

Chapter 27. Diagnosing X.25 NPSI Problems 475
Operation . 476
Configuration Requirements. 477

VTAM Considerations . 477
NPSI Considerations . 477

Sources of Diagnostic Information 478
X.25 Trace Examples . 478

Normal Incoming Call, TRACE OFF. 478
Normal Incoming Call, TRACE DATA 479
Normal Outgoing Call, TRACE CONTROL 480
Results of LIST Command 480
Termination by TCPIP STOP Device 481

Logon Problems . 481
Session Hangs . 482

Helpful Hints . 482
Documentation Requirements 483

Chapter 28. Diagnosing IMS Problems 485
Setting Up the IMS TCP/IP Services Socket Interface System 486
Common Configuration Mistakes 488
Quick Checklist for Common Problems 488

Component Problems . 489
Connection Problems . 490
Error Message and Return Code Problems 493
Socket Data Protocol Problems 493
IMS Transaction Build Problems 495
IMS Database Problems . 496

x OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation References for Problem Diagnosis 498
Traces . 498
Using NETSTAT . 499
Where to Find Return Code Documentation 500
Where to Find Error Message Documentation 501

Chapter 29. Diagnosing Restartable VMCF/TNF Problems 503
VMCF or TNF Fail to Initialize 503
Abends 0D5 and 0D6 . 503
No Response to Commands 503
VMCF or TNF Will Not Stop 503

Chapter 30. Diagnosing Problems with CICS 505
Diagnostic Data . 505
Initialization Problems . 505

CICS Sockets Interface Not Initialized 506
CICS Listener Not Initialized 506
No CICS Sockets Messages Issued. 506
TCP/IP Clients Unable to Connect 506
Child Server Transactions Not Starting. 507

CICS Sockets Application Problems. 507
Hung CICS Tasks . 507
Hung CICS Region . 507
Errors on Socket Calls . 507
CICS Shutdown Hangs . 508

CICS Sockets Control Blocks 508
Task Interface Element . 508
Global Work Area . 508

CICS Trace. 508

Part 4. Appendixes . 511

Appendix A. Collecting Component Trace Data 513
Modifying Options with the TRACE CT Command 513

With PARMLIB Member . 513
Without PARMLIB Member 514

Displaying Component Trace Status 515
Stopping a Component Trace 515
Obtaining Component Trace Data with a Dump 515

TCP/IP Stack . 515
OMPROUTE . 516

Obtaining Component Trace Data with an External Writer 516
Formatting Component Traces. 518

IPCS Panels . 518
CTRACE Command . 518

Tips for Using Component Trace 519

Appendix B. Search Paths 521

Appendix C. First Failure Support Technology (FFST) 523
FFST Probe Index . 523
FFST Probe Information . 523
FFST Probe Naming Conventions 524
FFST Probe Descriptions . 524

Appendix D. Overview of Internetworking 533

Contents xi

Maximum Transmission Unit (MTU) 534
Fiber Distributed Data Interface (FDDI) 535
Token-Ring IEEE 802.5 . 536
IEEE 802.3 . 537
Ethernet — DIX V2 . 537
Subnetwork Access Protocol (SNAP) 538
IP Routing . 539
Internet Addressing . 539
Direct Routing. 541
Indirect Routing . 542
Simplified IP Datagram Routing Algorithm 542
Subnetting . 543
Simplified IP Datagram Routing Algorithm with Subnets 544
Static Routing . 545
Dynamic Routing. 545

Appendix E. How to Read a Syntax Diagram 547
Symbols and Punctuation . 547
Parameters . 547
Syntax Examples . 547

Appendix F. Information Apars 551
IP Information Apars . 551

Appendix G. Notices . 553
Trademarks. 556

Bibliography . 559
IBM Communications Server for OS/390 Publications 559

Related Publications . 559
Softcopy Information . 559
Planning . 559
Resource Definition, Configuration, and Tuning 559
Operation . 560
Customization . 560
Writing Application Programs 560
Diagnosis . 561
Messages and Codes . 561
APPC Application Suite . 562

Multiprotocol Transport Networking (MPTN) Architecture Publications 562
Redbooks . 562

Index . 565

xii OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||
||
||
||
||
||
||
||
||
||
||
||
||
||

Figures

1. Overview of the Diagnosis Procedure. 4
2. Example of Output from the IPCS SYSTRACE Command. 23
3. Procedure for Diagnosing Server Connection Problems 27
4. SYS1.PARMLIB Member CTIEZB00. 49
5. Start of Component Trace Full Format . 58
6. Component Trace Full Format Showing Character Interpretation of Fields 59
7. Control and Data Flow in the IP Packet Tracing Facility. 60
8. Data Trace: Single Entry . 66
9. Data Trace: Multiple Entries . 66

10. TCP/IP Networking API Relationship on OS/390 70
11. Data trace record. 85
12. SOCKAPI trace record. 85
13. IPCS Primary Option Menu . 162
14. IPCS Subcommand Entry panel with a TCP/IP IPCS subcommand entered. 163
15. Main menu for TCP/IP IPCS Subcommands. 163
16. Example of LPR Trace Output . 171
17. Example of LPR Trace with Filter x Option . 173
18. Example of LPR Output with Unknown Printer 174
19. Example of LPR Trace with JNUM, LANDSCAPE, and TRACE Options 175
20. Example of LPR Trace with XLATE option . 176
21. Example of LPD Trace Specified with the DEBUG Option 177
22. Example of a LPD Server Trace of a Failing Job. 183
23. Example of a LPD Server Trace for a Remote Print Request 186
24. Example of a Trace of an OS/390 UNIX FTP Server 209
25. Trace between the Telnet Client, Parent and Child 220
26. OS/390 UNIX Telnet Trace Using -t -D all . 221
27. Telnet Client Trace. 236
28. SMTP Environment . 243
29. Example of RESOLVER Trace Output . 251
30. Invoking TRCFMT from TSO . 268
31. IP Packet Trace Output for SNALINK LU6.2 . 269
32. Invoking TRCFMT in a Batch Job . 270
33. Example of a SNALINK LU0 DEBUG Trace . 271
34. Components of an SNALINK LU6.2 Connection on MVS. 273
35. Sample MVS System Console Messages on SNALINK LU6.2 Address Space Startup 274
36. NETSTAT DEVLINKS Output Example . 285
37. LIST MODIFY Subcommand Output Example . 286
38. DISPLAY Subcommand Output Example for Connectable LU 288
39. DISPLAY Subcommand Output Example for Active LU 288
40. SNALINK LU6.2 Internal Trace Output . 290
41. A CTRACE Formatted Packet Trace Record . 292
42. Remote Execution Protocol Principle . 301
43. Example of an REXEC Trace . 303
44. Example of an RSH Trace . 304
45. Example of an REXECD Trace of a Client Using a SEND Command 306
46. Example of a Trace of an RSH Client Using a SEND Command 307
47. Adding Applications to /etc/inetd.conf . 309
48. Setting Traces in /etc/inetd.conf . 309
49. Components of the network database system . 313
50. NDB Port Manager Trace with Two NDB Servers Started and One Client Invoked 317
51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked 319
52. Example of X Application Trace Output When XWTRACE=2 329
53. Example of X Application Trace Output When XWTRACELC=2 330

© Copyright IBM Corp. 1994, 2000 xiii

||
||

||
||
||
||
||
||

54. SNMP Agent Response Trace . 357
55. SNMP Agent Trace of Unsuccessful Initialization. 357
56. SNMP Messages and Agent Trace for Nonmatching Key. 357
57. SNMP Messages and Agent Trace When Data Not in Defined View 358
58. SNMP Subagent Trace . 358
59. SNMP Query Engine Traces . 360
60. SNMP IUCV Communication Traces . 372
61. TRAPFWD Trace . 376
62. Policy Agent . 386
63. RSVP Agent Processing Log . 400
64. Example of TRMD Processing Log . 411
65. OROUTED Environment . 418
66. Sample OROUTED Environment . 423
67. Example of an OROUTED Trace . 427
68. Sample OMPROUTE Trace Output. 441
69. SYS1.PARMLIB Member CTIORA00 . 449
70. NCPROUTE Environment . 451
71. NCPROUTE Trace. 463
72. X.25 NPSI Environment . 476
73. Components of the IMS TCP/IP Services Socket Interface System 485
74. IPCS CTRACE . 518
75. Routers and Bridges within an Internet . 534
76. Relationship of MTU to Frame Size . 535
77. Format of an IEEE 802.5 Token-Ring Frame . 536
78. Format of an IEEE 802.3 Frame. 537
79. Format of an Ethernet V2 Frame . 538
80. SNAP Header . 538
81. Classes of IP Addresses . 539
82. Determining the Class of an IP Address . 540
83. Routing and Bridging . 541
84. General IP Routing Algorithm . 542
85. Subnetting Scheme . 543
86. Routing Algorithm with Subnets . 544
87. Example of Resolving a Subnet Route . 545

xiv OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

||
||

||

Tables

1. Selecting a Dump . 7
2. Selecting a Trace . 8
3. Selecting a Service Aid . 11
4. Description of Dumps . 12
5. Description of Traces . 13
6. Description of Service Aids . 16
7. TCP/IP Component Name and Release Level . 19
8. Types of Abends . 21
9. Diagnostic Commands . 25

10. OS/390 UNIX oping Options Compared with TSO PING Options 29
11. Diagnosis of a Timeout . 30
12. Trace Options . 51
13. IP Address/Port Filtering Effect on Different Types of Socket API Calls 73
14. TCP/IP IPCS Commands - showing the TCPIPCS commands first, followed by the general

commands. 87
15. Target Data Sets for TCP/IP IPCS Subcommands 161
16. SQL Problems Generating 55x Replies . 202
17. Other SQL Problems . 204
18. SQL Problems Generating 55x Replies . 216
19. Other SQL Problems . 217
20. Debug Trace Options . 220
21. Telnet Login Problems . 226
22. Incorrect Output Types for Telnet . 229
23. Telnet Commands from RFC 854 . 240
24. Telnet Command Options from RFC 1060 . 240
25. Format of Record 1 of an SMTP ADDRBLOK Data Set 248
26. Format of Record 2 (For an Unresolved From Record) of an SMTP ADDRBLOK Data Set 248
27. Format of Record 2 (For a Resolved From Record) of an SMTP ADDRBLOK Data Set 249
28. Format of Record 3 (For an Unresolved From Record) of an SMTP ADDRBLOK Data Set 249
29. Debugging Switches by Category . 253
30. qf File Code Letters . 259
31. Format of a SNALINK Trace Table Entry. 271
32. Configuration Files and Security Types . 335
33. OROUTED Incorrect Output . 421
34. OROUTED Session Outages . 421
35. OMPROUTE Trace Options . 450
36. NCPROUTE Connection Problems . 455
37. Diagnostic Steps for NCPROUTE Connection Problems 455
38. NCPROUTE PING Failures . 457
39. Diagnostic Steps for NCPROUTE PING Failures. 458
40. NCPROUTE Incorrect Output . 459
41. Diagnostic Steps for NCPROUTE Incorrect Output 459
42. NCPROUTE Session Outages . 460
43. Diagnostic Steps for NCPROUTE Session Outages 460
44. FFST Probes. 523
45. FFST Naming Conventions . 524
46. IOCTL Enablement Probes. 524
47. Infrastructure Services Probes . 524
48. FFST Probes for Pascal API . 525
49. PFS IOCTL Probes . 529
50. Telnet Transform Probes . 530
51. FFST Probes for Telnet SRV . 530
52. Configuration Services Probes . 530

© Copyright IBM Corp. 1994, 2000 xv

||

||
||
|
||
||

||

||
||

53. TCP/IP Base Probes . 530
54. Transmission Control Protocol Probes . 530
55. Update Datagram Protocol Layer Probes . 531
56. Streams Probes. 531
57. Raw IP Layer Probes. 532
58. FFST Probes for Internet Protocol . 532
59. XCF Probes . 532
60. Relationship between RC Field and Maximum I-Field Value. 536
61. IP Information Apars . 551

xvi OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

About This Book

This book tells you how to diagnose and report problems occurring in the IBM®®

OS/390 Transmission Control Protocol/Internet Protocol (TCP/IP). Additional
information is provided for diagnosing problems with selected applications that are
part of IBM Communications Server for OS/390 V2R10 (CS for OS/390).

CS for OS/390 is an integral part of the OS/390® family of products. For an
overview and map of the documentation available for OS/390 V2R10, refer to
OS/390 Planning for Installation.

Who Should Use This Book
Use this book if you are a system programmer to diagnose problems with TCP/IP or
to diagnose problems with CS for OS/390 components.

To use this book, you should be familiar with OS/390 TCP/IP Services and the
TCP/IP suite of protocols.

How to Use This Book
Use this book to perform the following tasks:
v Diagnose and solve problems in an CS for OS/390 installation
v Describe problems to the IBM Software Support Center and document the

problems appropriately

How This Book Is Organized
Part 1 of this book contains general information about diagnostic procedures and
tools.

v “Chapter 1. Overview of the Diagnosis Procedure” on page 3 describes the
procedure when diagnosing problems and reporting them to the IBM Software
Support Center.

v “Chapter 2. Selecting Tools and Service Aids” on page 7 provides an overview of
specific tools and service aids for TCP/IP diagnosis. These include dumps,
traces, and aids such as common storage tracking. This chapter also identifies
the types of documentation, including machine-readable documentation, you
need to submit when reporting a problem to the IBM Software Support Center.

v “Chapter 3. Diagnosing Abends, Loops, and Hangs” on page 21 describes how to
analyze abends, loops, and hangs.

v “Chapter 4. Diagnosing Network Connectivity Problems” on page 25 describes
how to diagnose tips regarding network-connectivity problems, including the
commands you can use to diagnose these problems.

Part 2 of this book describes the types of traces, control blocks, and IPCS
commands available in CS for OS/390:

v “Chapter 5. TCP/IP Services Traces and IPCS Support” on page 47 describes
how to use the TCP/IP Services traces and IPCS support. Component Trace,
Packet Trace, Socket Data Trace, and Configuration Profile Trace are described.

v “Chapter 6. IPCS Subcommands for TCP/IP” on page 87 provides information
about IPCS commands including, for example, TCPIPCS.

© Copyright IBM Corp. 1994, 2000 xvii

Part 3 of this book provides diagnostic information about the types of problems you
may encounter with selected CS for OS/390 components:

v “Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD)
Problems” on page 167

v “Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems” on page 191

v “Chapter 9. Diagnosing OS/390 UNIX Telnet Problems” on page 219

v “Chapter 10. Diagnosing Telnet Problems” on page 225

v “Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems” on
page 243

v “Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper Problems” on
page 253

v “Chapter 13. Diagnosing SNALINK LU0 Problems” on page 261

v “Chapter 14. Diagnosing SNALINK LU6.2 Problems” on page 273

v “Chapter 15. Diagnosing Dynamic Domain Name Server (DDNS) Problems” on
page 295

v “Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems” on page 301

v “Chapter 17. Diagnosing OS/390 UNIX REXEC, REXECD, and RSHD Problems”
on page 309

v “Chapter 18. Diagnosing Network Database System (NDB) Problems” on
page 313

v “Chapter 19. Diagnosing X Window System and OSF/Motif Problems” on
page 329

v “Chapter 20. Diagnosing Simple Network Management Protocol (SNMP)
Problems” on page 333

v “Chapter 21. Diagnosing Policy Agent Problems” on page 377

v “Chapter 22. Diagnosing RSVP Agent Problems” on page 395

v “Chapter 23. Diagnosing Traffic Regulator Management Daemon (TRMD)
Problems” on page 409

v “Chapter 24. Diagnosing OROUTED Problems” on page 417

v “Chapter 25. Diagnosing OMPROUTE Problems” on page 435

v “Chapter 26. Diagnosing NCPROUTE Problems” on page 451

v “Chapter 27. Diagnosing X.25 NPSI Problems” on page 475

v “Chapter 28. Diagnosing IMS Problems” on page 485

v “Chapter 29. Diagnosing Restartable VMCF/TNF Problems” on page 503

v “Chapter 30. Diagnosing Problems with CICS” on page 505

The appendixes provide additional diagnostic-related information:

v “Appendix A. Collecting Component Trace Data” on page 513 provides short
descriptions of selected tracing procedures, such as displaying component trace
status.

v “Appendix B. Search Paths” on page 521 provides an overview of CS for OS/390
search paths.

v “Appendix C. First Failure Support Technology (FFST)” on page 523 provides
information about the First Failure Support Technology™ (FFST™) probes in
TCP/IP.

v “Appendix D. Overview of Internetworking” on page 533 provides information
about some of the concepts and technologies involved in large TCP/IP networks.

v “Appendix E. How to Read a Syntax Diagram” on page 547 provides information
about how to read the syntax diagrams used in this book.

xviii OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v “Appendix F. Information Apars” on page 551 provides information about how to
read the syntax diagrams used in this book.

v “Appendix G. Notices” on page 553 provides information about legal notices and
trademarks used in this book.

What Is Not in This Book
This book does not cover the LESSTRACE, MORETRACE, TRACE and
NOTRACE commands, which have been replaced by CTRACE.

Where to Find More Information
“Bibliography” on page 559 describes the books in the IBM Communications Server
for OS/390 library, arranged according to task. The bibliography also lists the titles
and order numbers of books related to this book, or cited by name in this book.

Note: Most licensed books were declassified in OS/390 V2R4 and are now
included on the OS/390 Online Library Collection, SK2T-6700. The remaining
licensed books appear in unencrypted BookManager® softcopy and PDF
form on the OS/390 Licensed product Library, LK2T-2499.

Where to Find Related Information on the Internet
You might find the following information helpful.

You can read more about VTAM, TCP/IP, OS/390, and IBM on these Web pages.
For up-to-date information about Web addresses, please refer to informational
APAR II11334.

Home Page Web address
IBM Communications Server product

http://www.software.ibm.com/network/commserver/
IBM Communications Server support

http://www.software.ibm.com/network/commserver/support/
OS/390 http://www.ibm.com/s390/os390/
OS/390 Internet Library

http://www.ibm.com/s390/os390/bkserv/
IBM Systems Center publications

http://www.redbooks.ibm.com/
IBM Systems Center flashes

http://www-1.ibm.com/support/techdocs/atsmastr.nsf
VTAM and TCP/IP

http://www.software.ibm.com/network/commserver/about/csos390.html
IBM http://www.ibm.com

For definitions of the terms and abbreviations used in this book, you can view or
download the latest IBM Networking Softcopy Glossary at the following Web
address:

http://www.networking.ibm.com/nsg/nsgmain.htm

Note: Any pointers in this publication to web sites are provided for convenience
only and do not in any manner serve as an endorsement of these web sites.

About This Book xix

http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/s390/os390/
http://www.ibm.com/s390/os390/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/support/techdocs
http://www.software.ibm.com/network/commserver/about/csos390.html
http://www.ibm.com
http://www.networking.ibm.com/nsg/nsgmain.htm

How to Contact IBM Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within eight business hours (Monday-Friday, 8:00
A.M.-5:00 P.M., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

xx OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Summary of Changes

Summary of Changes
for SC31-8521-04
IBM Communications Server for OS/390 V2R10

This edition contains new and changed information, indicated by vertical lines in the
left margin.

New Information

v “Diagnosing Sysplex Distributor Problems” on page 39

v FFST probes added

– EZBIEC07

– XCF probes

v Additional popper diagnostic aids

v Load module information

v DDNAME trace support

v TRMD

v SNMP TRAPFWD trace

v Additional ARP tracing information

v CTRACE fields, options, and option groups, which include the following:

– ACCESS

– CSOCKET

– DLC

– IN

– LATCH

– OETCP

– OEUDP

– PING

– ROUTE

– RW

– SMTP

– SOCKAPI

– SYSTEM

– TC

– TN

– UD

v TCPIPCS commands, which include the following:

– API

– CONNECTION

– FIREWALL

– FRCA

– HASH

– HELP

– POLICY

– VMCF

© Copyright IBM Corp. 1994, 2000 xxi

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

– XCF

v Socket API Trace section

Changed Information

v The CTRACE sample files, CTIEZB00 and CTIORA00, and TCP/IP IPCS exit
definition file EZAIPCSP are now shipped in SYS1.PARMLIB instead of
hlq.SEZAINST.

v IPCS commands

v Default destination of trace and debug output for omproute traces

v ARP displayed values in trace outputs

v TCP/IP ROUTE sample

v TCP/IP PROFILE sample

v ENGINE, INIT, OPCMDS, OPMSGS, and QUEUE CTRACE trace options are
aliases

v The SYS1.PARMLIB member CTIEZB00

v Maximum buffer size has increased from 16M to 256M

v FFST console example

v The term SecureWay® has been removed from our product name. The new
product name is IBM Communications Server for OS/390.

Deleted Information

v EZBIEC02 IOCTL enablement probe

v REXX run-time library

v TCPIPCS PROFILE command ddname and dataset_name parameters

v TCPIPCS INETSTAT and SKSH commands

v SYSCALL and CTC options, from the SYS1.PARMLIB member CTIEZB00

Summary of Changes
for SC31-8521-03
SecureWay Communications Server for OS/390 V2R8

This edition contains new and changed information, indicated by vertical lines in the
left margin.

New Information

v Diagnosing Policy Agent Problems

v Diagnosing RSVP Agent Problems

v Sample component trace full format output

v EZBIEC07 IOCTL probe

Changed Information

v The term eNetwork is replaced by SecureWay as part of our product name. The
new name is SecureWay Communications Server.

v The Bibliography has been revised to show book number dash levels and
delivery format.

v The SYS1.PARMLIB member CTIEZB00

v The operating system Trace command OPTIONS response, updated to reflect
additional trace options

xxii OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|

|

|
|
|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

Summary of Changes
for SC31-8521-02
eNetwork Communications Server for OS/390 V2R7

This book contained information about changes for CS for OS/390 V2R7.

The following enhancements were part of CS for OS/390 Version 2 Release 7:

v A new CTRACE option, AFP, for Fast Response Cache Accelerator.

v A new CTRACE option, SPACKET, for OMPROUTE. SPACKET traces inbound
and outbound packets sent between the SNMP agent and the OMPROUTE
subagent.

v A new option for the MODIFY command that lets you start and stop message
logging for the OMPROUTE subagent. It also lets you stop DPI tracing.

v The following changes to SNMP:

– A new standards-based network-management framework, SNMPv3, replaces
the experimental SNMPv2u. Diagnostic procedures are now available for
debugging problems with SNMPv3.

– The search order for the /etc/snmpv2.conf file has been changed, allowing it
to reside in a location other than the /etc directory. The file is now referred to
generically as the OSNMP.CONF file.

v FFST probes for the following components:

– TCP/IP Base (EZBABCxx)

– Transmission Control Protocol (EZBTCCxx)

– Update Datagram Protocol Layer (EZBUDCxx)

– Sockets Module (EZBSMCxx)

– Streams (EZBSKCxx)

– Raw IP Layer (EZBRWCxx)

– Internet Protocol (EZBIPCxx)

v Information about the OMPROUTE DISPLAY commands was moved to the
OS/390 IBM Communications Server: IP Configuration Guide.

v The static routes associated with deleted interfaces in the routing table no longer
appear in the reports generated with the NETSTAT ROUTE, NETSTAT GATE,
onetstat -r, and onetstat -g commands.

v The run time for the REXX execs for the TCPIPCS subcommand is provided by
TCP/IP and is located in the tcpip.SEZAMIG data set. Use the TSOLIB command
or the TASKLIB parameter (when invoking IPCS) to add tcpip.SEZAMIG as a
STEPLIB data set in your TSO logon procedure.

Note: If you use the run time located in tcpip.SEZAMIG, you may not be able to
run other compiled REXX procedures. If you want to use other compiled
REXX procedures, do not place tcpip.SEZAMIG in your LINKLIST.

v Procedures for diagnosing problems with OS/390 UNIX System Services
(OS/390 UNIX) OMPROUTE, a routing application that runs outside the TCP/IP
Services stack. OMPROUTE obtains the initial static contents of the stack routing
table, informs the stack of changes that it has made to a route, and installs those
changes in the stack routing table.

v Procedures for diagnosing problems with OS/390 UNIX sendmail.

v MVS® Component Trace support for the OMPROUTE application.

v First failure support technology, which provides immediate notification and first
failure data capture for software anomalies.

Summary of Changes xxiii

v A new TCPIPCS subcommand, TCPIPCS TELNET. Invocation of this command
displays either the address or address and contents of Telnet control blocks.

Note: As part of the name change of OpenEdition to OS/390 UNIX System
Services, occurrences of OS/390 OpenEdition were changed to OS/390
UNIX System Services or its abbreviated name, OS/390 UNIX. OpenEdition
may continue to appear in messages, panel text, and other code with
OS/390 UNIX System Services.

xxiv OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Part 1. General Diagnosis Information

© Copyright IBM Corp. 1994, 2000 1

2 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 1. Overview of the Diagnosis Procedure

To diagnose a problem suspected to be caused by CS for OS/390, first identify the
problem, then determine if it is a problem with TCP/IP, and finally, if it is a problem
with TCP/IP, gather information about the problem so that you can report the source
of the problem to the IBM* Software Support Center.

With this information, you can work with IBM® Software Support Center
representatives to solve the problem. This book helps you identify the source of the
problem.

Figure 1 on page 4 summarizes the procedure to follow to diagnose a problem. The
text following the figure provides more information about this procedure.

© Copyright IBM Corp. 1994, 2000 3

�1� Determine if the source of the problem is TCP/IP.

Various messages appearing in the console log or in the SYSPRINT or
SYSERROR data sets, together with alerts and diagnostic aids, provide
information that helps you to find the source of a problem. You should also
check syslogd output and be prepared to provide this information to the IBM
Software Support Center. If the problem is with TCP/IP, go to Step �3�;
otherwise, go to Step �2�.

�2� Check appropriate books.

Refer to the diagnosis guide of the hardware device or software application
that has the problem.

�3� Gather information.

1

7

4

10

2

8

5

3

9

6

Diagnosis
Procedure

Is
problem

with
TCP/IP?

No

No

No

Yes

Yes

Yes

Go to the diagnosis
guide for the device
or application with
the problem.

Use information in
Chapter 3 to document
the problem.

Diagnosis task
is completed.

Report the problem
to the IBM
Support Center.

IBM Support Center
creates an APAR.

Solution is developed
by the IBM
Support Center.

Apply the solution.

Does
IBM Support

Center supply
a solution?

Is
problem

resolved?

Figure 1. Overview of the Diagnosis Procedure

4 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Refer to “Chapter 2. Selecting Tools and Service Aids” on page 7, for a
detailed explanation of diagnostic procedures and how to collect information
relevant to the problem.

�4� Try to solve the problem.

If you cannot solve the problem, go to Step �6�.

�5� The diagnosis task is completed.

The problem has been solved.

�6� Report the problem to the IBM Software Support Center.

After you have gathered the information that describes the problem, report it
to the IBM Software Support Center. If you are an IBMLink® user, you can
perform your own RETAIN® searches to help identify problems. Otherwise,
a representative uses your information to build keywords to search the
RETAIN database for a solution to the problem.

The object of this keyword search using RETAIN is to find a solution by
matching the problem with a previously reported problem. When IBM
develops a solution for a new problem, it is entered into RETAIN with a
description of the problem.

�7� Work with IBM Support Center representatives.

If a keyword search matches a previously reported problem, its solution
might also correct this problem. If so, go to Step �10�. If a solution to the
problem is not found in the RETAIN database, the IBM Software Support
Center representatives will continue to work with you to solve the problem.
Go to Step �8�.

�8� Create an APAR.

If the IBM Software Support Center does not find a solution, they will create
an authorized program analysis report (APAR) on the RETAIN database.

�9� A solution is developed by the IBM Software Support Center.

Using information supplied in the APAR, IBM Software Support Center
representatives determine the cause of the problem and develop a solution
for it.

�10� Apply the solution.

Apply the corrective procedure supplied by the IBM Software Support
Center to correct the problem. Go to Step �4� to verify that the problem is
corrected.

Chapter 1. Overview of the Diagnosis Procedure 5

6 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 2. Selecting Tools and Service Aids

This chapter introduces the tools and service aids that CS for OS/390 provides for
diagnosis. As used in this book, the term tools includes dumps and traces, while the
term service aids includes all other facilities provided for diagnosis. For example:
v SVC dump and system trace are tools.
v LOGREC data set and IPCS are service aids.

The following topics are discussed in this chapter:

v “How Do I Know Which Tool or Service Aid to Select?” lists problem types and
matches them with the appropriate tool or service aid. Use this topic to select the
tool or service aid you need for a particular problem.

v “What Tools and Service Aids Are Available?” on page 11 describes each tool and
service aid, including when to use it for diagnosis. Use this topic when you need
an overview of tools and service aids, or to find the appropriate time to use a
particular tool or service aid.

v “Guidelines for Machine-Readable Documentation” on page 17 describes the
guidelines for submitting machine-readable documentation.

v “Submitting Documentation Electronically” on page 18 describes how to send
documentation electronically to IBM using FTP or e-mail.

v “Necessary Documentation” on page 18 lists the documentation you need to
gather before contacting the IBM Software Support Center.

How Do I Know Which Tool or Service Aid to Select?
This section describes the criteria for selecting a tool or service aid, depending on
the problem or need:
v Selecting a Dump (see Table 1)
v Selecting a TCP/IP Services Component Trace (see Table 2 on page 8)
v Selecting a Service Aid (see Table 3 on page 11)

The tables show the problem, the corresponding tool or service aid, and the chapter
or book that covers it in complete detail. Use these tables to find a tool or service
aid quickly.

Refer to “Guidelines for Machine-Readable Documentation” on page 17 for
information about submitting dumps and traces to the IBM Software Support Center.

Note: The traces given in this book are only examples. Traces in your environment
can differ from these examples because of different options selected.

Table 1. Selecting a Dump

What Is the Problem? Type of Dump to Use

Abnormal end of an authorized program or a problem
program.

ABEND dump

See “Analyzing Abends” on page 21 for detailed
information.

TCP/IP server or client address space stops processing
or is stopped by the operator because of slowdown or
looping condition.

SVC dump

The SVC dump is created using the DUMP command.

See “Analyzing Loops” on page 22 for detailed
information.

© Copyright IBM Corp. 1994, 2000 7

Table 2. Selecting a Trace

What Is the Problem? Type of Trace or Command to Use Trace Output Location

Network Connectivity

See “Chapter 4. Diagnosing Network
Connectivity Problems” on page 25 for
detailed information.

oping, ARP (onetstat -R)

For information on oping, see “Using
PING and oping” on page 29. For
information on onetstat -R, see
“onetstat -R” on page 36.

n/a

Packet trace

See Chapter 5. TCP/IP Services
Traces and IPCS Support for detailed
information about packet trace.

CTRACE managed data set.

TCP/IP Socket application

See “Socket API Traces” on page 69
for detailed information.

Component Trace (SYSTCPIP)
SOCKAPI option

TCP/IP address space or external
writer

LPR Client

See “LPR Client Traces” on page 170
for detailed information.

LPR command with the TRACE option sysout

LPD Server

See “LPD Server Traces” on page 176
for detailed information.

See “LPD Server Traces” on page 176
for ways to activate traces.

SYSPRINT

OS/390 UNIX FTP Server

See “Chapter 8. Diagnosing File
Transfer Protocol (FTP) Problems” on
page 191 for detailed information.

OS/390 UNIX FTP server trace Server traces appear on the console
if syslogd is not started. If it is
started, traces appear in the file
designated in the syslog.conf file.
Refer to the OS/390 IBM
Communications Server: IP
Configuration Guide for more
detailed information about syslogd.

OS/390 UNIX Telnet See “Chapter 9.
Diagnosing OS/390 UNIX Telnet
Problems” on page 219, for detailed
information.

OS/390 UNIX Telnet traces syslogd

Telnet

See “Chapter 10. Diagnosing Telnet
Problems” on page 225 for detailed
information.

Telnet traces TCP/IP address space or external
writer

SMTP

See “RESOLVER Trace” on page 250
for detailed information.

Resolver Trace (see also “Debugging
with a Resolver Directive” on
page 297

Job log output

Popper

See “Chapter 12. Diagnosing OS/390
UNIX sendmail and Popper Problems”
on page 253 for detailed information.

Popper Messages syslogd

SNALINK LU0

See “Chapter 13. Diagnosing
SNALINK LU0 Problems” on page 261
for detailed information.

IP Packet Trace CTRACE managed data set

Debug Trace SNALINK LU0 address space

8 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|

|
|
|
|

|

|
|

||

|

|
|

|
|
|

|

|
|

|
|
|

|

|

|
|
|

||

|

|
|
|

||

||

Table 2. Selecting a Trace (continued)

What Is the Problem? Type of Trace or Command to Use Trace Output Location

SNALINK LU6.2

See “Chapter 14. Diagnosing
SNALINK LU6.2 Problems” on
page 273 for detailed information.

TRACE DETAIL ALL SYSPRINT

IP Packet Trace CTRACE managed data set

TCP/IP Internal Trace SYSDEBUG

VTAM Buffer Trace GTF managed data set, refer to
OS/390 IBM Communications
Server: SNA Diagnosis V1
Techniques and Procedures

Dynamic Domain Name System
(DDNS)

See “Chapter 15. Diagnosing Dynamic
Domain Name Server (DDNS)
Problems” on page 295 for detailed
information.

Error messages syslogd

Resolver Trace Job log output

TCP/IP component trace CTRACE managed data set

OS/390 UNIX REXEC

See “Chapter 17. Diagnosing OS/390
UNIX REXEC, REXECD, and RSHD
Problems” on page 309.

OS/390 UNIX REXEC debug trace syslogd

OS/390 UNIX REXECD

See “Chapter 17. Diagnosing OS/390
UNIX REXEC, REXECD, and RSHD
Problems” on page 309.

OS/390 UNIX REXECD debug trace syslogd

OS/390 UNIX RSHD

See “Chapter 17. Diagnosing OS/390
UNIX REXEC, REXECD, and RSHD
Problems” on page 309.

OS/390 UNIX RSHD debug trace syslogd

Network Database System (NDB)

See “Chapter 18. Diagnosing Network
Database System (NDB) Problems”
on page 313 for detailed information.

NDB Trace Job log output

X Windows and OSF/Motif

See “Chapter 19. Diagnosing X
Window System and OSF/Motif
Problems” on page 329 for detailed
information.

XWTRACE and XWTRACEC

(environment variables)

stderr

SNMP

See “Chapter 20. Diagnosing Simple
Network Management Protocol
(SNMP) Problems” on page 333 for
detailed information.

Manager Traces Console (osnmp) or SYSPRINT
(NetView SNMP)

SNMP Agent Traces syslogd

TCP/IP Subagent Traces

OMPROUTE Subagent Traces

SLA Subagent Traces

TRAPFWD Traces

Policy Agent

See “Chapter 21. Diagnosing Policy
Agent Problems” on page 377 for
detailed information.

Log file See OS/390 IBM Communications
Server: IP Configuration Guide

Chapter 2. Selecting Tools and Service Aids 9

|

|
|
|

||

||

||

||
|
|
|

|
|

|
|
|
|

||

||

||

|

|
|
|

||

|

|
|
|
|

|

|

|

|

|
|
|
|

||
|

||

|

|

|

|

|

|
|
|

||
|

Table 2. Selecting a Trace (continued)

What Is the Problem? Type of Trace or Command to Use Trace Output Location

RSVP Agent

See “Chapter 22. Diagnosing RSVP
Agent Problems” on page 395 for
detailed information.

Log file See OS/390 IBM Communications
Server: IP Configuration Guide

Traffic Regulator Management
Daemon (TRMD)

See “Chapter 23. Diagnosing Traffic
Regulator Management Daemon
(TRMD) Problems” on page 409 for
detailed information.

Log file syslogd

OS/390 UNIX OROUTED

See “Chapter 24. Diagnosing
OROUTED Problems” on page 417 for
detailed information.

OS/390 UNIX OROUTED trace Defaults to syslogd. User can use
other parameters to send output to
the STDOUT DD statement in the
OROUTED cataloged procedure.
Refer to “Where to Send OROUTED
Trace Output” on page 425.

OMPROUTE

See “Chapter 25. Diagnosing
OMPROUTE Problems” on page 435.

Component Trace

For detailed information about
OMPROUTE Component Trace, see
“TCP/IP Services Component Trace
for OMPROUTE” on page 447.

CTRACE managed data set

OMPROUTE Trace

For detailed information, see
“OMPROUTE Traces and Debug
Information” on page 438.

stdout

NCPROUTE

See “Chapter 26. Diagnosing
NCPROUTE Problems” on page 451
for detailed information.

NCPROUTE Traces SYSPRINT

X.25 NPSI

See “Chapter 27. Diagnosing X.25
NPSI Problems” on page 475 for
detailed information.

Server activity log SYSPRINT

IMS

See “Chapter 28. Diagnosing IMS
Problems” on page 485 for detailed
information.

IP Packet Trace CTRACE managed data set

TCP/IP Internal Trace CTRACE managed data set

IMS Trace See IMS/ESA Utilities Reference:
System

CICS

See “Chapter 30. Diagnosing
Problems with CICS” on page 505 for
detailed information.

CICS external trace data set
(auxtrace)

See CICS/ESA 5.2 Problem
Determination Guide

TCP/IP Internal trace CTRACE managed data set

10 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|

||
|

|
|

|
|
|
|

||

|

|
|
|

||

|

|
|
|

||

|

|
|
|

||

||

||
|

|

|
|
|

|
|
|
|

||

Table 3. Selecting a Service Aid

What Is the Problem? Type of Service Aid to Use

System or hardware problem: need a starting point for
diagnosis or when diagnosis requires an overview of
system and hardware events in chronological order.

LOGREC data set or EREP

Refer to OS/390 MVS Diagnosis: Tools and Service Aids
for detailed information.

Information about the contents of load modules and
program objects or a problem with modules on the
system.

AMBLIST

Refer to OS/390 MVS Diagnosis: Tools and Service Aids
for detailed information.

Diagnosis requires a trap to catch problem data while a
program is running. The DISPLAY TCPIP,,STOR
command may be used to help set a SLIP trap.

Service Level Indication Processing (SLIP)

Refer to OS/390 MVS System Commands for detailed
information.

Diagnosis requires formatted output of problem data,
such as a dump or trace.

IPCS

Refer to OS/390 MVS IPCS User’s Guide for detailed
information.

What Tools and Service Aids Are Available?
This section provides an overview of the tools and service aids in a little more
detail. The sections that follow contain a brief description of each tool or service aid,
some reasons why you would use it, and a reference to the chapter or book that
covers the tool or service aid in detail. (Most of the detailed information on tools
and service aids is in this book.) A description of tools and service aids are covered
in the following sections:
v Dumps (see Table 4 on page 12)
v Traces (see Table 5 on page 13)
v First Failure Support Technology (see “First Failure Support Technology (FFST)”

on page 14)
v Display Commands (see “Display Commands” on page 16)
v System Service Aids (see Table 6 on page 16)

In the tables that follow, the dumps, traces, or service aids are listed by frequency
of use.

Note: The traces given in this book are only examples. Traces in your environment
can differ from these examples because of different options selected.

Dumps
Table 4 on page 12 describes the types of available dumps.

Chapter 2. Selecting Tools and Service Aids 11

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

Table 4. Description of Dumps

Type of Dump Description

ABEND Dumps Use an ABEND dump when ending an authorized program or a problem
program because of an uncorrectable error. These dumps show:
v The virtual storage for the program requesting the dump
v System data associated with the program

The system can produce three types of ABEND dumps— SYSABEND,
SYSMDUMP, and SYSUDUMP. Each one dumps different areas. Select the
dump that gives the areas needed for diagnosing your problem. The
IBM-supplied defaults for each dump are:

v SYSABEND dumps. The largest of the ABEND dumps, containing a
summary dump for the failing program plus many other areas useful for
analyzing processing in the failing program.

v SYSMDUMP dumps. Contains a summary dump for the failing program,
plus some system data for the failing task. In most cases, SYSMDUMP
dumps are recommended, because they are the only ABEND dumps that
are formatted with IPCS.

v SYSUDUMP dumps. The smallest of the ABEND dumps, containing only
data and areas about the failing program.

Reference: Refer to OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

SVC Dumps SVC dumps can be used in two different ways:

v Most commonly, a system component requests an SVC dump when an
unexpected system error occurs, but the system can continue processing.

v An authorized program or the operator can also request an SVC dump
when diagnostic data to solve a problem is needed.

SVC dumps contain a summary dump, control blocks and other system code,
but the exact areas dumped depend on whether the dump was requested by
a macro, command, or SLIP trap. SVC dumps can be analyzed using IPCS.

Reference: Refer to OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

FFST Dumps FFST dumps fall into two categories: SDUMPs (full dumps) and FFST
minidumps (partial dumps). The type of dump produced depends on the
characteristics of the probe that produced it.

v FFST uses the operating system SDUMP macroinstruction to provide a full
dump of the address space where the problem occurred.

v If the SDUMP option has not been coded for the probe triggering the
dump, an FFST minidump is written to the output data set. The probe
output data for the TCP/IP minidumps are found in data sets that were
allocated when FFST was installed.

Stand-Alone Dumps Use a stand-alone dump when:
v The system stops processing.
v The system enters a wait state with or without a wait state code.
v The system enters an instruction loop.
v The system is processing slowly.

These dumps show central storage and some paged-out virtual storage
occupied by the system or stand-alone dump program that failed.
Stand-alone dumps can be analyzed using IPCS.

See “Analyzing Loops” on page 22 for detailed information.

12 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Traces
Table 5 describes the types of available traces.

Table 5. Description of Traces

Trace Description

Component Trace Use a component trace when you need trace data to report a client/server
component problem to the IBM Software Support Center. Component tracing
shows processing between the client and server.

Reference: See “Chapter 5. TCP/IP Services Traces and IPCS Support” on
page 47 for detailed information.

Data trace Use a data trace to trace socket data (transforms) into and out of the
physical file structure (PFS).

Reference: See “Socket Data Trace” on page 64 for detailed information.

GTF Trace Use a Generalized Trace Facility (GTF) trace to show system processing
through events occurring in the system over time. The installation controls
which events are traced.

Use GTF when you’re familiar enough with the problem to pinpoint the one or
two events required to diagnose your system problem. GTF can be run to an
external data set.

Reference: Refer to OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

Master Trace Use the master trace to show the messages to and from the master console.
Master trace is useful because it provides a log of the most recently issued
messages. These can be more pertinent to your problem than the messages
accompanying the dump itself.

You can either accept a dump or write this trace to GTF.

Reference: Refer to OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

Packet Trace Use a packet trace to obtain traces of IP packets flowing from and into
TCP/IP on a CS for OS/390 host. The PKTTRACE statement lets you copy
IP packets as they enter or leave TCP/IP, and then examine the contents of
the copied packets.

While the component trace function collects event data about TCP/IP internal
processing, packet trace collects data records that flow over the links.

Reference: See “Chapter 5. TCP/IP Services Traces and IPCS Support” on
page 47 for detailed information.

System Trace Use system trace to see system processing through events occurring in the
system over time. System tracing is activated at initialization and, typically,
runs continuously. It records many system events, with minimal details about
each. The events traced are predetermined, except for branch tracing.

You can either take a dump or write this trace to GTF.

Reference: Refer to OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

VTAM Trace CS for OS/390 uses two VTAM® components, CSM and MPC. VTAM traces
contain entries for many TCP/IP events, especially I/O and storage requests.

Reference: Refer to OS/390 IBM Communications Server: SNA Diagnosis
V2 FFST Dumps and the VIT for detailed information.

Chapter 2. Selecting Tools and Service Aids 13

Table 5. Description of Traces (continued)

Trace Description

OS/390 UNIX Applications OS/390 UNIX applications send debug and trace output to syslogd. For more
information on individual components, such as OS/390 UNIX FTP, OS/390
UNIX SNMP, or OS/390 UNIX OROUTED, refer to those chapters in this
manual.

Reference: Refer to the OS/390 IBM Communications Server: IP
Configuration Guide for more detailed information about syslogd.

First Failure Support Technology (FFST)
First failure support technology (FFST) is a licensed program that captures
information about a potential problem when it occurs. See “Appendix C. First Failure
Support Technology (FFST)” on page 523 for descriptions of the various FFST
probes contained in TCP/IP.

Note: For a complete description of FFST commands, refer to theFFST/MVS
FFST/VM Operations Guide .

When a problem is detected, a software probe is triggered by TCP/IP. FFST then
collects information about the problem and generates output to help solve the
problem. Based on the options active for the probe you get a dump and a generic
alert. See “Generic Alert” on page 15 for information on generic alerts. You also get
the FFST “EPW” message group.

FFST Dumps
Each TCP/IP Services FFST probe can trip up to five times in five minutes before it
is automatically turned off. Only one of the five dumps will be produced, thereby
limiting the number of dumps that you get if a recurring problem triggers a probe.

You get either an SDUMP (full dump) or an FFST minidump (partial dump)
depending on the characteristics of the probe that is triggered.

FFST saves the TCP/IP minidump on a dynamically allocated sequential data set.
The TCP/IP Services FFST full dump (SDUMP) is saved on SYSLDUMPx data
sets. You must specify the volume serial number and the UNIT identification
information for this data set. Provide this information to FFST on a DD statement in
the FFST installation procedure or in the FFST startup command list installed at
system installation. A startup command list contains MVS commands to control
FFST.

SDUMP
The SDUMP option has been coded in the probe, FFST uses the operating system
SDUMP macroinstruction to provide a full dump of the address space where the
potential problem occurred.

Formatting an SDUMP
Use the standard IPCS dump formatting and viewing facilities to access the dump.
If you use the EPWDMPFM clist to format a full dump, message EPW9561E, NOT A
VALID FFST DUMP is issued.

14 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

FFST Minidump
If the SDUMP option has not been coded for the probe triggering the dump, an
FFST minidump is written to the output data set. The probe output data for the
TCP/IP minidumps are found in the data sets that were allocated when FFST was
installed.

Formatting an FFST Minidump
Use the dump formatting CLIST, EPWDMPFM, to format your TCP/IP Services
FFST minidump. EPWDMPFM formats your minidump and writes it to a data set
you can view online or print using the IEBPTPCH utility program.

Generic Alert
A software generic alert is built from the symptom record and routed to the NetView
program if installed. The generic alert contains the following:

v The date and time that the probe was triggered

v The system name from the CVTSNAME field

v The product name (TCP)

v The component identifier and the release number of the product triggering the
probe

v The hardware identification information:

– Machine type

– Serial number

– Model number

– Plant code

v The dump data set and volume if a dump was taken

v The probe statement

v The statement description

v The probe statement severity level

The Symptom String
The primary symptom string contains the following data supplied by TCP/IP:

v PIDS/component IP. The TCP/IP component identifier

v LVLS/level. The TCP/IP specification for the product level

v PCSS/Probe ID. From the probe that was triggered

v PCSS/FULL or MINI. Type of dump taken

v RIDS. Module name from the probe that was triggered

FFST Console
The following is a sample for a console listing for FFST. In this sample, the FFST
program console message group “EPW” shows information that a probe has been
triggered and that the data is being collected. The EPW0404I message contains the
primary symptom string for TCP/IP.
EPW0401I FFST390: EVENT DETECTED BY TCP FOR PROBEID EZBXFC05
EPW0406I DUMP DATASET IS: SYSTEM DUMP DATA SET
EPW0402I PRIMARY SYMPTOM STRING FOR PROBEID EZBXFC05 FOLLOWS:
EPW0404I PIDS/5655HAL00 LVLS/50A PCSS/EZBXFC05 PCSS/FULL
EPW0404I RIDS/EZBXFMSO
EPW0701I END OF MESSAGE GROUP

Chapter 2. Selecting Tools and Service Aids 15

|
|
|
|
|
|

Display Commands
Display commands can be useful tools and service aids. This section provides a
brief description of the DISPLAY TCPIP,,STOR command. For detailed information
about this command, refer to the OS/390 IBM Communications Server: IP
Configuration Reference.

DISPLAY TCPIP,,STOR
Use the DISPLAY TCPIP,,STOR command to display the location and level of a
TCP/IP stack module. You can use this command to verify that the load module has
the appropriate service level.

System Service Aids
Table 6 lists the service aids supported by CS for OS/390.

Table 6. Description of Service Aids

Service Aid Description

AMBLIST Use AMBLIST when you need information about the contents of load
modules and program objects or you have a problem related to the modules
on your system. AMBLIST is a program that provides lots of data about
modules in the system, such as a listing of the load modules, map of the
CSECTs in a load module or program object, list of modifications in a
CSECT, map of modules in the LPA, and a map of the contents of the
DAT-on nucleus.

Reference: Refer to the OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

Common Storage Tracking Use common storage tracking to collect data about requests to obtain or free
storage in CSA, ECSA, SQA, and ESQA. This is useful to identify jobs or
address spaces using an excessive amount of common storage or ending
without freeing storage.

Use Resource Measurement Facility* (RMF*) or the IPCS VERBEXIT
VSMDATA subcommand to display common storage tracking data.

References:

v Refer to the RMF User’s Guide for more information about RMF.

v Refer to the OS/390 MVS Initialization and Tuning Guide for detailed
information about requesting common storage tracking.

v Refer to the VSM chapter of the OS/390 MVS IPCS User’s Guide for
information about the IPCS VERBEXIT VSMDATA subcommand.

IPCS Use IPCS to format and analyze dumps, traces, and other data. IPCS
produces reports that can help in diagnosing a problem. Some dumps, such
as SNAP and SYSABEND and SYSUDUMP ABEND dumps, are
preformatted and are not formatted using IPCS.

Reference: Refer to the OS/390 MVS IPCS User’s Guide for detailed
information.

LOGREC Data Set Use the LOGREC data set as a starting point for problem determination. The
system records hardware errors, selected software errors, and selected
system conditions in the LOGREC data set. LOGREC information gives you
an idea of where to look for a problem, supplies symptom data about the
failure, and shows the order in which the errors occurred.

Reference: Refer to the OS/390 MVS Diagnosis: Tools and Service Aids for
detailed information.

16 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|
|

|
|
|
|

Table 6. Description of Service Aids (continued)

Service Aid Description

SLIP Traps Use serviceability level indication processing (SLIP) to set a trap to catch
problem data. SLIP can intercept program event recording (PER) or error
events. When an event that matches a trap occurs, SLIP performs the
problem determination action that you specify:
v Requesting or suppressing a dump
v Writing a trace or a LOGREC data set record
v Giving control to a recovery routine
v Putting the system in a wait state

Reference: Refer to the SLIP command in OS/390 MVS System Commands
for detailed information.

Guidelines for Machine-Readable Documentation
If, after talking to the IBM Support Center representative about a problem, it is
decided that documentation should be submitted to the TCP/IP support team,
documentation may be submitted in machine-readable form (that is, on tape).
Machine-readable documentation can be handled most efficiently by the IBM
Support Center if it conforms to the following guidelines when creating the tape (or
tapes).

When preparing machine-readable documentation for submission in an MVS
environment, the following guidelines should be followed:

1. Submit dumps and traces on tape.

v For dumps:
Dump data should not be formatted in any way prior to or during the
transfer of the dump to tape.
The DCB parameters of the dump data set should not be changed. The
DCB parameters should be:

LRECL=4160, BLKSIZE=4160, RECFM=F (for CS for OS/390.)

v For external CTRACE, IP packet trace, and data trace:
CTRACE data should not be formatted in any way prior to or during the
transfer to tape. DCB parameters of the CTRACE data set should not be
changed.

The IPCS commands COPYDUMP and COPYTRC can also be used. For
more information, refer to the IPCS Command Reference.

v For GTF traces:
GTF trace data should be moved from the trace data set (which is usually
SYS1.TRACE) to tape using IEBGENER only.
The DCB parameters for a GTF trace should be one of the following:

LRECL=4092, BLKSIZE=4096, RECFM=VB
LRECL=4092, BLKSIZE=32760, RECFM=VB

For both traces and dumps, do not reblock the data (that is, do not use a
different BLKSIZE value) when moving the information to tape. Only the DCB
parameters shown above should be used.

Note: Use of any other utility (IBM or non-IBM) to transfer dump or trace data
to tape might result in a processing delay and could result in the APAR
being returned to the customer (closed RET) due to the inability of the
change team to process the tape.

Chapter 2. Selecting Tools and Service Aids 17

2. Submit other types of information (such as TCP/IP traces, configuration files,
console logs, and so forth) on paper or tape. Tape is preferable. If submitted
on tape, the data should be written to tape using IEBGENER only. The DCB
parameters used when writing this type of data to tape should be the same as
the input data set (that is, the same DCB parameters as the source of the data).

3. Tapes that are submitted to the TCP/IP support team may be standard label
(SL) or nonlabel (NL). Cartridge (3480) or reel tapes may be used. Each tape
should contain an external label to identify the tape and its contents in some
way. The problem number or APAR number should appear on the label. If
multiple tapes, or multiple files on one tape, are used, a separate explanation
should be included itemizing the contents of each tape or file.

4. Include the output from the job used to create each tape with the tapes. It is
very important that the IBM Software Support Center have the output from the
job that created the tape (not simply the JCL that was used) to verify that the
tape was created correctly and that the job completed normally.

Submitting Documentation Electronically
You can send documentation to IBM using File Transfer Protocol (FTP) or e-mail. If
you use FTP, compress all dumps and traces with the TRSMAIN (MVS terse)
program, and send the data in BINARY mode. To obtain TRSMAIN and detailed
instructions on its use, follow these steps:

1. FTP to the web site at service.software.ibm.com.

2. Login using anonymous as the user ID and your e-mail address as the
password.

3. Change directories (CD) to /s390/mvs/tools/packlib/, where you will find two
files: README.TXT and TRSMAIN.

4. Read the README file for detailed instructions.

If you require any additional directions, call the IBM Support Center.

Necessary Documentation
Before you call the IBM Support Center, have the following information available:

Customer Number
The authorization code that allows you to use the IBM Support Center. Your
account name, your TCP/IP license number, and other customer
identification should also be available.

Problem Number
The problem number previously assigned to the problem. If this is your first
call about the problem, the support center representative assigns a number
to the problem.

Operating System
The operating system that controls the execution of programs (such as
MVS/ESA). Include the MVS or OS/390 release level.

LE Runtime Library
The release level of the link edit run-time library is also needed if you are
compiling user-written applications written in C or C++.

Component ID
A number that is used to search the database for information specific to
TCP/IP. If you do not give this number to the support center representative,
the amount of time taken to find a solution to your problem increases.

18 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Release Number
An number that uniquely identifies each TCP/IP release.

Table 7 lists the TCP/IP-specific information that you should provide to the IBM
Support Center.

Table 7. TCP/IP Component Name and Release Level

Component Name and
Release Level

System
Maintenance
Program

Field Maintenance Identifier/CLC

CS for OS/390 Version
2 Release 10

SMP/E The following identifiers are associated with this
stack:

v HTCP50A (base)

v JTCP56A (NPF)

v JTCP59A (HFS)

v JTCP5PA (HSAS)

v HTCP38X (X Window)

v HTCP52A (Kerberos 56-bit DES)

v HTCP53A (Kerberos non-DES

v JTCP5KA (IP Security Triple DES)

Note: High Speed Access Services are no
longer supported, but the JTCP5PA (HSAS)
FMID is required by OS/390 Unix System
Services.

The following are component ID numbers for CS for OS/390.

Licensed IBM Program
CS for OS/390

Component ID Number
5655HAL00

A complex problem might require you to talk to several people when you report your
problem to the IBM Support Center. Therefore, you should keep all the information
that you have gathered readily available.

Note: You might want to keep the items that are constantly required, such as the
TCP/IP component ID, in a file for easy access.

Chapter 2. Selecting Tools and Service Aids 19

|

||

|
|
|
|
|

|

|
|
||
|

|

|

|

|

|

|

|

|

|
|
|
|
|

|

20 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 3. Diagnosing Abends, Loops, and Hangs

This chapter contains information about abends, loops, and hangs. More
information is given in the individual component chapters in this book.

Analyzing Abends
An abend is an abnormal end. Table 8 describes the types of abends that can
occur.

Table 8. Types of Abends

Type of Abend Description Where to Find Help

User abends User abends are generated by C
run-time routines. They usually
start with U409x.

Refer to the OS/390 C/C++ IBM
Open Class Library Reference.

Platform abends Abend 3C5 and abend 4C5 are
internal abends generated by
TCP/IP. Note the reason code
stored in register 15 and check
the IBM database for known
problems.

For further assistance, call the
IBM Support Center.

System Abends 0C4, 0C1, and 878 are system
abends.

Refer to the OS/390 MVS System
Codes.

0D6/0D4/0C4 abends can occur
when an application is removed
from VMCF/TNF with the F
VMCF/TNF, REMOVE command,
or if VMCF is not active when an
application or command which
requires it is started or issued.

Refer to the OS/390 MVS System
Codes. Can occur when an
application is removed from
VMCF/TNF with the F VMCF/TNF,
REMOVE command. It can also
occur when an application or
command, which requires it is
started or issued.

CEEDUMPs LE produces certain types of
abends detected for OS/390 UNIX
applications such as OS/390 UNIX
Telnet. CEEDUMPs are usually
written to the current working
directory in the hierarchical file
structure.

Refer to the OS/390 Language
Environment for OS/390 and VM
Debugging Guide publication.

A dump is usually produced when TCP/IP or a TCP/IP component address space
abends. If an abend occurs and no dump is taken, the dump files or spools might
be full or a SYSMDUMP DD statement might not have been specified in the failing
procedure. If TCP/IP or a TCP/IP component was not able to complete the dump,
you will have to recreate the abend or wait for it to occur again.

Note: For more information about debugging the abends and the system abends
(for example, abends 0C4, 0C1, and 878), refer to the OS/390 MVS
Diagnosis: Procedures.

© Copyright IBM Corp. 1994, 2000 21

Analyzing Loops
If processing stops or if TCP/IP doesn’t respond to commands, TCP/IP could be in
a loop. Some indicators of a loop are:
v Slow response time
v No response at all
v Inordinately high CPU utilization by TCP/IP

If the problem is a loop, use the following procedure to collect documentation.

1. Get dump output.

v Enabled

Get an SVC dump of TCP/IP or the looping TCP/IP component by issuing the
DUMP command from the MVS system console, or press the Program
Restart key. Refer to the OS/390 MVS Diagnosis: Tools and Service Aids for
more information about the DUMP command.

Note: Please make sure that the following storage areas are dumped: CSM,
TCP/IP, VTAM address space and any dataspace used by the DLCS,
RGN, CSA, LSQA, NUC, PSA, LPA, and TCPIPDS1. TCPIPDS1 is the
data space containing the TCP/IP component trace records. For
information on dumping this data space, see “Appendix A. Collecting
Component Trace Data” on page 513.

v Disabled

If the loop is disabled, the MVS system console is not available for input. Try
the following:

– Use a PSW RESTART to terminate a looping task. This process creates a
LOGREC entry with a completion code of X'071'. Use the LOGREC record
and the RTM work area to locate the failing module. Depending on the
PSW bit 32, the last three bytes (24-bit mode) or four bytes (31-bit mode)
contain the address being executed at the time of the dump. Scan the
dump output to find the address given in the PSW. For more information
on using PSW RESTART, refer to the VTAM Diagnosis publication.

– Take a stand-alone dump. Refer to the OS/390 MVS Diagnosis: Tools and
Service Aids for information about stand-alone dumps.

2. Get the MVS system console log (SYSLOG), the job log from the started
procedure, and the LOGREC output.

The MVS system console log might contain information, such as error
messages, that can help you diagnose the problem. Also, print the LOGREC
file.

Use the LOGDATA option to print the in-core LOGREC buffers. Refer to the
OS/390 MVS Diagnosis: Tools and Service Aids or the OS/390 MVS IPCS
Commands for more information about the LOGDATA option.

Note: The SYSERROR data set might contain additional information to help
you diagnose the problem.

3. Is a message involved?

Determine whether there are any messages associated with the loop, such as a
particular message always preceding the problem, or the same message being
issued repeatedly. If so, add the message IDs to your problem documentation.

4. Examine the trace entries using IPCS.

22 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

By examining all of the trace entries in the system trace table, you might be
able to determine whether there is a loop. The most obvious loops would be a
module or modules getting continual control of the TCP/IP system.

Use the PSW to determine the names of the modules in the loop. Refer to the
OS/390 MVS IPCS User’s Guide for information about using IPCS.

In the output shown in Figure 2, the CLKC entries indicate an enabled loop. The
PSW addresses on the CLKCs identify the looping program. Use the WHERE
subcommand to locate the responsible program.

Analyzing Hangs
If the problem is a hang, use the following procedure to collect documentation:

1. Determine the extent of the hung state in the operation of the TCP/IP
network.

Determine whether all TCP/IP processing stopped or only processing with
respect to a single device, or something in between. Also determine what, if
any, recovery action was taken at the time the hang was encountered by the
operator or user. Some information about the activity that immediately preceded
the hang might be available on the system log or in application program
transaction logs.

2. Does TCP/IP respond to any commands?

Determine if TCP/IP responds to commands, such as oping or onetstat. If
TCP/IP does not respond to these commands, take an SVC dump of TCP/IP
address space and contact the IBM Software Support Center. If TCP/IP does
respond to the commands, it is not hung.

3. Is a particular application (such as OS/390 UNIX FTP or a user-written
application) hung?

Take a dump of the OMVS address space, the TCP/IP address space, and the
application address space.

02-0029 008E7220 CLKC 078D2600 83A8192C 00001004 00000000

02-0029 008E7220 CLKC 078D2600 83A81934 00001004 00000000

02-0029 008E7220 CLKC 078D2600 83A81930 00001004 00000000

02-0029 008E7220 CLKC 078D2600 83A8192A 00001004 00000000

02-0029 008E7220 CLKC 078D2600 83A81930 00001004 00000000

02-0029 008E7220 CLKC 078D2600 83A81938 00001004 00000000

Figure 2. Example of Output from the IPCS SYSTRACE Command

Chapter 3. Diagnosing Abends, Loops, and Hangs 23

24 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 4. Diagnosing Network Connectivity Problems

Interconnectivity between network hosts encompasses the physical layer or
hardware layer, the protocols such as, TCP and IP, and the applications that use
the services of TCP and IP. Isolating network problems is an essential step in
successful implementation of a network application.

Diagnostic commands are available for either the OS/390 UNIX environment or the
TSO environment. The examples in this chapter are for the OS/390 UNIX
environment. You can substitute the equivalent TSO command, as shown in
Table 9. For complete descriptions of these commands, refer to the OS/390 IBM
Communications Server: IP User’s Guide .

Table 9. Diagnostic Commands

UNIX command TSO command Refer to

oping PING “Using PING and oping” on
page 29

onetstat NETSTAT “Using NETSTAT and
onetstat” on page 31

otracert TRACERTE “Using TSO TRACERTE and
otracert” on page 37

Notes:

1. The RESOLVER and NAMESERVER functions, which translate symbolic names
to IP addresses, should be avoided when diagnosing network problems. Use
the host IP address instead.

2. MVS-style data sets are written in capital letters (for example, hlq.TCPIP.DATA).
Files names in the hierarchical file system (HFS) are written in lowercase (for
example, /etc/hosts).

For detailed information on internetworking, see “Appendix D. Overview of
Internetworking” on page 533.

Communicating through the Correct Stack
If you are running multiple stacks, the first question to ask is whether the application
is communicating through the correct stack. To identify the stack an application is
using, you can look at the keyword TCPIPjobname in the TCPIP.TCPIP.DATA file.
An application can also select a stack using the SETIBMOPT socket API.

You can use the onetstat -p <tcpname> command to determine the characteristics
of the stack through which the application is currently communicating.

Using the information provided by onetstat -p tcpname, you can change, if
necessary, the hlq.PROFILE.TCPIP data set or the application configuration file.
Alternatively, the application may need to communicate through another stack.

It is also helpful to understand the search order used by CS for OS/390. See
“Appendix B. Search Paths” on page 521.

For more information on running multiple stacks, refer to OS/390 IBM
Communications Server: IP Configuration Reference .

© Copyright IBM Corp. 1994, 2000 25

Problems Connecting to the Server
Figure 3 on page 27 shows the steps to take in diagnosing network connectivity
problems.

26 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are explanations of the steps in Figure 3.

No
Is

hostname
resolved?

Problem?

DNS
problem

PING
host?

Connected
to

OE?

No Yes

No

Yes
PING

IP
address?

Use onestat-g or -r

Yes

No

No
Is

gateway
correct?

Yes

Correct routes

Yes PING
router?

No

Connectivity/
route problem
beyond router

Yes

Yes

PING
another

host on local
net?

No

Router problem

Use onestat-d

Is
device
ready?

Yes

Check
connection
to network
from device

Is server
active?

Start server
No

Correct
port?

Use onestat-sNo

Yes

Yes

NoUse VARY
command to
start device

Ready?

No

Physical
connectivity

error to device

Server
setup problem

See
config book

Call IBM
Support Center

12

8

6

5 1

2

3

4

10

11

7

Firewall routing
problem

PING
through
firewall?

No

9

Figure 3. Procedure for Diagnosing Server Connection Problems

Chapter 4. Diagnosing Network Connectivity Problems 27

�1� Use oping loopback to assure that TCP/IP is running correctly on your
host. Then, oping one of your home addresses.

�2� Use the oping hostname command to check connectivity to a remote host.
If the host is accessible, you have a server setup problem.

For basic information about the oping command, see Using PING and oping
or refer to the OS/390 IBM Communications Server: IP User’s Guide for
details.

�3� Is the server started? If not, start the server.

�4� Is the server started on the correct port? Use the onetstat -s command to
determine which port the server is on. If the server is not on the correct
port, configure it correctly.

For basic information about the onetstat -s command, see “Using NETSTAT
and onetstat” on page 31 or refer to the OS/390 IBM Communications
Server: IP User’s Guide for details. For details on server configuration, refer
to the OS/390 IBM Communications Server: IP Configuration Reference.

�5� Is the server properly connected to OS/390 UNIX? If it is not, refer to the
OS/390 IBM Communications Server: IP Configuration Reference. If it is,
call the IBM Support Center. For the types of documentation you need to
provide, see “Documentation for the IBM Support Center” on page 43.

�6� Was the hostname resolved? If it was not, check the resolver trace. The
first thing the resolvers do is look for the value of the RESOLVER_CONFIG
environment variable. You can set the value in the parameter list of the JCL
of the started procedure, using the keyword ENVAR. For an example, refer
to the OS/390 IBM Communications Server: IP Configuration Reference.
For more information on using the resolver trace, refer to Accessing OS/390
Open/Edition MVS from the Internet.

If, after checking the trace, you see that the hostname was not resolved,
you have a name resolution problem. Check the following files to make sure
the name is correct:

v /etc/resolv.conf or hlq.TCPIP.DATA

v /etc/hosts

v hlq.HOSTS.LOCAL

In addition, you may want to check other configuration files. For details,
refer to the OS/390 IBM Communications Server: IP Configuration
Reference.

�7� If the hostname resolves, use the oping command with the IP address of
the host to check connectivity. If you get a response, you have a name
resolution problem.

�8� Use the onetstat -r or the onetstat -g command to display routes to the
network. Verify whether or not TCP/IP has a route to the destination.

�9� Use the oping command to check connectivity to the gateway (router). If
you do not get a response, the router may be down or the host may not be
connected to the network. If you get a response using the oping command,
you have a route problem. To resolve it, do the following:

1. Verify routes to your host.

2. Check for connectivity or route problems beyond the router.

�10� Use the oping command to check connectivity from the secure to the
nonsecure side of the firewall. If you do not get a response, make sure the

28 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

static routing is set properly on the firewall. To verify static routes, use the
onetstat -g and onetstat -h commands. The onetstat -h command shows the
addresses for the links (adapters) defined to TCP/IP and onetstat -g shows
information about the static routing. You should have an interface route for
each interface and your default route should point to the router on the
nonsecure side of the firewall.

If you are able to oping the secure interface on the firewall and the
nonsecure interface on the firewall, but are unable to oping the external
router, you are probably missing a return route in the external router. The
return route in the external router is a static route to your secure network
listing the firewall nonsecure interface at the gateway. If you are using
unregistered addresses in your secure network, you will not be able to
setup a return route.

For additional information about firewall, refer to OS/390 Firewall
Technologies Guide and Reference.

�11� Use the oping command to check connectivity to another host in the local
network.

�12� Use the onetstat -d command to verify device status. If the device is ready,
check the physical connectivity to the network (for example, 3172 or
RS/6000® LAN connection).

�13� Try to start the device using the VARY TCPIP...START, devname command.
(For information about this command, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.) If that is
unsuccessful, do the following:

1. Verify connectivity to the device (channel connector).

2. Check whether you have a problem at the device itself.

Using PING and oping
The packet internet groper (PING) command sends an Internet Control Message
Protocol (ICMP) Echo Request to a host, gateway, or router with the expectation of
receiving a reply. The oping command is the OS/390 UNIX version of the TSO
PING command. It runs from a UNIX shell.

For the most part, PING and oping produce the same result. (Table 10 lists some
commonly used options.) However, oping is case sensitive and must be entered in
lowercase. For a complete description of the PING and oping commands, refer to
the OS/390 IBM Communications Server: IP User’s Guide.

Table 10. OS/390 UNIX oping Options Compared with TSO PING Options

OS/390 UNIX oping TSO PING

-l Length

-c Count

-t Timeout

-p n/a

v Use PING or oping loopback to verify the installation of TCP/IP in the CS
for OS/390 environment.

The oping loopback is essentially an internal software test. This command uses
the IP address 127.0.0.1, which is the standard loopback address. An IP packet
is not sent to a physical device.

Chapter 4. Diagnosing Network Connectivity Problems 29

oping loopback
Ping CS V2R10: Pinging host (127.0.0.1).
PING: Ping #1 response took 0.001 seconds.

v PING or oping a home address to verify the information from the onetstat
-h command.

This is an internal software test. An IP packet is not sent to a physical device.
oping 193.9.200.1
Ping CS V2R10: Pinging host 193.9.200.1.
PING: Ping #1 response took 0.001 seconds.

v PING or oping a host on a directly-attached network to verify the following:
– The directly-attached network is defined correctly.
– The device is properly connected to the network.
– The device is able to send and receive packets on the network.
– The remote host (193.9.200.2) is able to receive and send packets.
ping 193.9.200.2
Ping CS V2R10: Pinging host 193.9.200.2.
PING: Ping #1 response took 0.021 seconds.

v PING or oping a host on a remote network to verify the following:
– The route to the remote network is defined correctly.
– The router is able to forward packets to the remote network.
– The remote host is able to send and receive packets on the network.
– The remote host (9.67.43.126) has a route back to the local host.
oping 9.67.43.126
Ping CS V2R10: Pinging host 9.67.43.126.
PING: Ping #1 response took 0.221 seconds.

Correcting Timeout Problems
A PING or oping timeout message can occur for many reasons, and various
techniques can be used to identify whether the problem is the local OS/390 server
or a remote host or router. Possible reasons for a timeout are shown in Table 11:

Table 11. Diagnosis of a Timeout

Problem Diagnostic Techniques

The device is not transmitting packets to
the local network.

Use NETSTAT DEvlinks or onetstat -d to
collect information to help you diagnose the
problem . (See “onetstat -d” on page 31.)

The remote host is not receiving or
transmitting packets on the network.

Use NETSTAT ARp or onetstat -R to display
the entry for the remote host. (See “onetstat
-R” on page 36.)

The remote host does not have a route
back to the local OS/390 server.

Use NETSTAT Gate or onetstat -g on the
remote host to make sure it has a route back.
(See “onetstat -g” on page 35.)

An intermediate router or gateway is not
correctly forwarding IP packets.

Use a packet trace. (See “Chapter 5. TCP/IP
Services Traces and IPCS Support” on
page 47.)

The ipconfig reassemblytimeout value may
be set too low.

Refer to the chapter on configuring the TCP/IP
address space in OS/390 IBM
Communications Server: IP Configuration
Reference.

30 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

PING and oping Command Return Codes
Following is a list of the return codes generated by the PING and oping commands:

Code Description
0 Response
4 No response
8 TCP/IP address space failure (PING only)
12 Socket API failure (oping only)
100 Incorrect parameter

Using NETSTAT and onetstat
Use the NETSTAT or onetstat command to verify TCP/IP configuration. The
following onetstat command options are covered in this section. For the equivalent
NETSTAT commands, see OS/390 IBM Communications Server: IP User’s Guide.

v “onetstat -h”

v “onetstat -d”

v “onetstat -g” on page 35

v “onetstat -r” on page 36

v “onetstat -R” on page 36

Notes:

1. You can run onetstat or NETSTAT against a TCP/IP stack of the same version.
For example, you can run CS for OS/390 onetstat against a CS for OS/390
stack.

2. The information provided in the output from the onetstat command should be
checked against the values in the default configuration data set
hlq.PROFILE.TCPIP. Refer to PROFILE DD statement in the TCP/IP started
task procedure for the name of the configuration data set.

For details about the onetstat command, refer to the OS/390 IBM Communications
Server: IP User’s Guide.

onetstat -h
Use the onetstat -h command to verify ADDRESS and LINK values returned by
onetstat. Be sure that correct values are coded on the HOME statement in the
hlq.PROFILE.TCPIP data set.

onetstat -h

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPCS 12:34:56
Home address list:
Address Link Flg
------- ---- ---
9.67.113.27 TR1 P
9.67.116.91 CTC1
9.67.116.99 ETH2
9.67.1.8 OSA90LINK1
9.67.116.1 X25LINK
9.67.116.2 CDLCLINK
9.67.116.3 HCHLINK
9.67.116.4 PTPLINK
9.67.116.5 SNA1
9.67.116.6 SNA62
127.0.0.1 LOOPBACK

onetstat -d
Use the onetstat -d command to display the status and associated configuration
values for a device and defined links as coded in the hlq.PROFILE.TCPIP data set.

Chapter 4. Diagnosing Network Connectivity Problems 31

|
|

onetstat -d

MVS TCP/IP onetstat CS V2R10 TCPIP NAME: TCPCS 08:08:14
DevName: LOOPBACK DevType: LOOPBACK DevNum: 0000

DevStatus: Ready
LnkName: LOOPBACK LnkType: LOOPBACK LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 0000002036 BytesOut: 0000002036

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 0.0.0.0

Multicast Specific:
Multicast Capability: No

DevName: LCS1 DevType: LCS DevNum: 0D00
DevStatus: Ready
LnkName: TR1 LnkType: TR LnkStatus: Ready

NetNum: 0 QueSize: 0
BytesIn: 0000230896 BytesOut: 0000000056
ArpMacAddress: Non-Canonical SrBridgingCapability: Yes
BroadcastCapability: Yes BroadcastType: All Rings

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128

Multicast Specific:
Multicast Capability: Yes
Group RefCnt
----- ------
224.0.0.1 0000000001

DevName: MPCIPAD DevType: MPCIPA DevNum: 0000
DevStatus: Not Active CfgRouter: Non ActRouter: Unknown
LnkName: MPCIPAL LnkType: IPAQGNET LnkStatus: Not Active

NetNum: 0 QueSize: 0
BytesIn: 0000000000 BytesOut: 0000000000

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128

Multicast Specific:
Multicast Capability: Unknown

DevName: HYDRAPFD DevType: MPCIPA DevNum: 0000
DevStatus: Ready CfgRouter: Pri ActRouter: Pri
LnkName: LHYDRAF LnkType: IPAQENET LnkStatus: Ready

NetNum: 0 QueSize: 0 HighSpeed: 0000001000
BytesIn: 0000000000 BytesOut: 0000000000

ArpOffload: Yes ArpOffloadInfo: Yes
BSD Routing Parameters:

MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.128

Multicast Specific:
Multicast Capability: Unknown

DevName: OSATRL90 DevType: ATM DevNum: 0000
DevStatus: Not Active
LnkName: OSA90LINK1 LnkType: ATM LnkStatus: Not Active

NetNum: 0 QueSize: 0
BytesIn: 0000000000 BytesOut: 0000000000

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 0.0.0.0 SubnetMask: 255.0.0.0

ATM Specific:
ATM portName: OSA90
ATM PVC Name: STEPH PVC Status: Not Active
ATM LIS Name: LIS1
SubnetValue: 9.67.1.0 SubnetMask: 255.255.255.0
DefaultMTU: 0000009180 InactvTimeOut: 0000000300
MinHoldTime: 0000000060 MaxCalls: 0000001000
CachEntryAge: 0000000900 ATMArpReTry: 0000000002
ATMArpTimeOut: 0000000003 PeakCellRate: 0000000000
NumOfSVCs: 0000000000
ATMARPSV Name: ARPSV1
VcType: PVC ATMaddrType: NSAP
ATMaddr:
IpAddr: 0.0.0.0

Multicast Specific:
Multicast Capability: No

32 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

Following are brief descriptions of the fields in this example:
v Device name

The device name.
v Device type

The device type.
v Device number

The device number.
v Status of the device

The following list describes the possible device statuses:

Device Status Description

Starting A START of the device has been issued by the operator, and TCP/IP has
sent an Activation request to the Data Link Control (DLC) layer.

Sent SETUP
Request

DLC has acknowledged the TCP/IP Activation request, and TCP/IP has
requested DLC to perform the initial I/O sequence with the device.

Enabling DLC has acknowledged the TCP/IP Activation request, and TCP/IP has
requested DLC to allow data connections to be established for the
device.

Connecting DLC has accepted the ″Initial I/O Sequence″ request.

Connecting2 The control connection for a CLAW device has been established, and the
second connection (on which IP traffic is carried) is being established.

Negotiating The initial I/O sequence with the device is complete, and TCP/IP is
performing additional link-layer initialization.

Ready The initialization sequence with the device is complete. The device is
now ready.

Deactivating DLC has performed the first stage of an orderly device deactivation.

Not active The device is not active. (The device has never been started, or has
been stopped after having been started.)

v Configured router status

This field is significant only for MPCIPA devices.
v Actual router status

This field is significant only for a MPCIPA device and is determined when the
device starts.

v Link name

The link name.
v Link type

The link type.
v Status of the link

The following list describes the possible link statuses:

Link Status Description

Ready A START of the device has been issued by the operator, and TCP/IP has
been sent an Activation request to the Data Link Control (DLC) layer.

Not Active The link is not active. (There is no command to start a link; link activation
is normally performed during START device processing. A link will be
marked Not Active when:

– the device has not yet been started

– a failure has been encountered during the link activation phase. (Such
a failure will have produced an error message to the operator console,
indicating the cause.)

Chapter 4. Diagnosing Network Connectivity Problems 33

|

|

|

|||

||
|

|
|
|
|

||
|
|

||

||
|

||
|

||
|

||

||
|
|
|

|
|

|
|

||
|

||
|
|

|

|
|
|

v Net number

Displays the link adapter number, if applicable.
v Queue size

This field is significant only for links on LCS and ATM devices.
v Speed

This field is significant only if the link is active and the TCP/IP stack set the
speed.

v Number of bytes received
v Number of bytes transmitted
v ARP MAC addresses

This field is significant only for token-ring links.
v SR bridging capability

This field is significant only for token-ring links.
v Broadcast capability

This field is significant only for links on LCS devices.
v Broadcast type

This field is significant only for token-ring links.
v ARP offload

This field is significant only for active links that support ARP offload.
v ARP offload information

This field is significant only for active links that support ARP offload.
v BSD parameters
v Packet trace settings

The effective values of each of the packet trace options for the link. This
information is displayed only when packet trace settings are defined and on.

v ATM specific information

This field is significant only for ATM devices and links.

ATM PVC Status Description

Ready The initialization sequence for the PVC is complete. The PVC is now
ready for use.

Not Active The PVC is not active. (There is no command to start a PVC; PVC
activation is normally attempted during START device processing. A PVC
will be marked Not Active when:

– the device has not yet been started

– the remote side of the PVC is not active

– a failure has been encountered during the PVC activation phase.
Such a failure will have produced an error message to the operator
console, indicating the cause.)

v Multicast specific

This field is significant only for multicast capable devices.

If a link is being used to receive multicast data, then all the multicast groups, and
the counts of receivers for each multicast group, are displayed. There is no limit
to the number of multicast groups for which a link can receive data.

– Multicast capability

This field is always Yes for the following devices: CDLC, CLAW, CTC, and
MPCPTP.

For LCS and MPCIPA devices, the multicast capability is only known after the
device is in the Ready state. If the device is not yet Ready, the multicast
capability will be Unknown.

34 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|

|

|
|

|

|

|||

||
|

||
|
|

|

|

|
|
|
|
|

Notes:

1. No link-related information, packet trace settings, or BSD parameters are
displayed for a device that has no link defined.

2. The packet trace setting is displayed only when it is defined and set to ON.

3. ATM specific information is displayed only for ATM devices that have links
defined.

4. The LOOPBACK device and link are displayed.

onetstat -g
The onetstat -g command displays the current routing tables for TCP/IP. In order to
establish connectivity to a remote host, the remote host must also have a route
back to the OS/390 server. Following is an example of onetstat -g output.

onetstat -g

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPCS 12:34:56
Known gateways:
NetAddress FirstHop Link Pkt Sz Subnet Mask Subnet Value
---------- -------- ---- ------ ----------- ------------
Defaultnet 9.67.113.1 TR1 576 <none>
9.0.0.0 <direct> TR1 2000 0.255.255.128 0.67.113.0
9.67.116.90 <direct> CTC1 4000 HOST
224.0.0.5 <direct> TR1 2000 HOST

The onetstat -g command provides the following information about each gateway:
v Address of the network
v First hop address
v Link name used by the first hop

Note: Only the first 8 characters of the link name are displayed by this
command. Issue the onetstat -r command to see more than 8 characters
of the link name.

v Packet size used by the first hop
v Subnet mask and subnet value

DETAIL
Displays the preceding information plus the metric associated with the cost
of the use for the link, and displays the following MVS specific configured
parameters for each gateway:
v Maximum retransmit time
v Minimum retransmit time
v Round trip gain
v Variance gain
v Variance multiplier

Note: The static routes associated with deleted interfaces in the routing table no
longer appear in the reports generated with the onetstat -g command.

If you note any errors, check hlq.PROFILE.TCPIP for the following:

v Make sure no statements were flagged in either the initial profile or in any
subsequent VARY TCPIP commands. (For information on the VARY TCP/IP
command, refer to OS/390 IBM Communications Server: IP Configuration
Reference.)

v Make sure the HOME statement has been coded correctly.

v If static routing is provided by way of the GATEWAY statement, make sure the
entries in the statement correlate to a valid link name.

Chapter 4. Diagnosing Network Connectivity Problems 35

v If static routing is provided by way of the GATEWAY statement, make sure there
is a GATEWAY or DEFAULTNET entry that correlates to the NETWORK or
HOST addresses available on the network.

onetstat -r
The onetstat -r displays routing information. Following is an example of onetstat -r
output:

onetstat -r

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPCS 09:51:02
Destination Gateway Flags Refcnt Interface
----------- ------- ----- ------ ---------
Defaultnet 9.67.113.1 UG 000000 TR1
9.67.1.9 0.0.0.0 H 000000 OSA00LINK1
9.67.113.0 0.0.0.0 U 000000 TR1
9.67.113.43 0.0.0.0 UH 000000 TR1
127.0.0.1 0.0.0.0 UH 000002 LOOPBACK
198.11.24.106 198.11.10.210 UGHD 000006 LCISCH
198.11.25.104 198.11.22.109 UGH 000000 LMCH2IT22
201.2.10.31 0.0.0.0 UH 000000 VIPLC9020A1F

The onetstat -r command provides the following information:

Destination
The address of a destination host or network

Gateway
The gateway used in forwarding packets

Flags The state of the route:
U The route is up.
H The route is to a host rather than to a network.
G The route is a gateway.
D The route was created dynamically by a redirect.

Reference count
The current number of active users for the route

Interface
The link name for the route

Note: The static routes associated with deleted interfaces in the routing table no
longer appear in the reports generated with the onetstat -r command. New
PMTU routes are displayed. Loopback route is displayed. Implicit (HOME
list) routes are displayed..

onetstat -R
Use the command onetstat -R <net address> to query the ARP cache for a given
address. Use onetstat -R ALL to query an entire ARP cache table. Make sure
onetstat -R displays an ARP entry for the remote hosts.

Following is an example of onetstat -R output:

onetstat -R 9.67.112.25

MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPCS 12:34:56
Querying ARP cache for address 9.67.112.25
Link: TR1 IBMTR: 10005A0019F5
Route info: 0000

The ARP entry for the host on a remote network contains the destination IP address
and the MAC address for the router.

36 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

To ensure the host has a route back to the OS/390 server, review the routing tables
on the remote host. The route back can be a HOST route or NETWORK route.
Intermediate routers must also be configured correctly.

Notes:

1. For more information about onetstat -R, refer to the OS/390 IBM
Communications Server: IP User’s Guide.

2. The information provided differs depending on the type of device. See OS/390
IBM Communications Server: IP Configuration Guide for information on what is
supported for each device.

Using TSO TRACERTE and otracert
The traceroute function displays the route that a packet takes to reach the
requested target. Trace starts at the first router and uses a series of UDP probe
packets with increasing IP time-to-live (TTL) values to determine the sequence of
routers that must be traversed to reach the target host.

The packetSize otracert option lets you increase the IP packet size to see how size
affects the route that the otracert packet will take. It also shows the point of failure if
a destination address cannot be reached.

For the complete syntax of the TSO TRACERTE and OS/390 UNIX otracert
command, refer to OS/390 IBM Communications Server: IP User’s Guide,
GC31-8514.

The following examples use the OS/390 UNIX otracert command, however, the
TSO TRACERTE command can also be used.

v The otracert command issued to a valid destination:
otracert 9.130.40.72
--
Traceroute to 9.130.40.72 (9.130.40.72).
Use escape C sequence to interrupt
1 buzz-113.tcp.raleigh.ibm.com (9.67.113.1) 7 ms 56 ms 6 ms
2 b500-503-1.raleigh.ibm.com (9.37.32.1) 25 ms 66 ms 19 ms
3 rtp2wf-atm.raleigh.ibm.com (9.37.1.132) 8 ms 19 ms 23 ms
4 9.32.204.30 (9.32.204.30) 60 ms 16 ms 19 ms
5 9.32.1.69 (9.32.1.69) 49 ms 65 ms 48 ms
6 9.32.44.2 (9.32.44.2) 58 ms * *
7 pok008-1.pok.ibm.com (9.117.1.1) 41 ms 44 ms 58 ms
8 * sqv014-1.endicott.ibm.com (9.130.104.12) 148 ms 93 ms
9 gdlvm7.endicott.ibm.com (9.130.40.72) 91 ms 89 ms 87 ms

Following are brief descriptions of some of the items in the preceding example:

– Each line in this example shows a “hop” to a different router.

– An asterisk (*) represents a lost packet.

– The time displayed (7 ms 56 ms, and so on) is in milliseconds. It shows the
round-trip time calculated from when the probe was sent from otracert and
when otracert received the ICMP reply. Each time displayed is independent; it
is the time it takes for otracert to send a probe and receive a reply.

v The otracert command issued to an address of an unreachable host (!H):
otracert 1.1.1.1
--
TRACEROUTE TO 1.1.1.1 (1.1.1.1).
USE ESCAPE C SEQUENCE TO INTERRUPT
1 buzz-113.tcp.raleigh.ibm.com (9.67.113.1) 5 ms 5 ms 5 ms
2 b500-503-1.raleigh.ibm.com (9.37.32.1) 8 ms 12 ms 8 ms
3 rtp2wf-atm.raleigh.ibm.com (9.37.1.132) 8 ms 12 ms 11 ms

Chapter 4. Diagnosing Network Connectivity Problems 37

|
|
|

4 9.32.204.30 (9.32.204.30) 30 ms 9 ms 8 ms
5 9.32.204.30 (9.32.204.30) 14 ms !H * *
6 * * *
7 * * 9.32.204.30 (9.32.204.30) 10 ms !H
8 * * *
9 * * *

Following are brief descriptions of some of the items in the preceding example:

” Unreachable port

!H Unreachable host

!P Unreachable protocol

v The otracert -d hugo command to turn on debug information:
$ otracert -d hugo
<EZACDTRT C> Line <1606>: SETIADDR: dest set to:
<EZACDTRT C> Line <1606>: SETIADDR: sin_len: 16 sin_family: 2 sin_port
sin_addr: 0x07432B3E
Traceroute to hugo (11.7.45.62).
Use escape C sequence to interrupt
TRT1623 parsOE Traceroute: host = hugo
TRT1624 parsOE Traceroute: retryCount = 3
TRT1625 parsOE Traceroute: port = 4096
TRT1626 parsOE Traceroute: waitTime = 5
TRT1627 parsOE Traceroute: maxTTL = 30
TRT1628 parsOE Traceroute: maxPacket = 40
TRT1629 Parsed otracert parameters}
TRT0700 openSock: recv socket failed 111(12FC00B0): EDC5111I Permission Denied
EZZ6354I OE Traceroute: Recv socket() error detected (111/12FC00B0)
TRT1633 openSock() failed with rc = 12

Following are brief descriptions of the some of the items in the preceding
example:

host Name of the host you are trying to reach

retryCount
Number of times the probe is sent with the same TTL value

port The number of the unused port used at the destination (defaults to 4096)

waitTime
The wait time in seconds (defaults to 5)

maxTTL
The number of “hops” the trace will take before it dies

maxPacket
The size of the probe packet.

Note: The otracert command uses the site tables, rather than the Domain Name
Server, for inverse name resolution. Refer to the OS/390 IBM
Communications Server: IP Configuration Reference for more information
about using the site tables. If a host name is found in the site table, it is
printed along with its IP address.

Using SNMP Remote PING
Use this command to determine the response time between two remote hosts. For
example, from Host A, you can determine the response time (PING) between Hosts

38 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

B and C, assuming the SNMP agent and TCP/IP subagent are running on Host B.
Refer to the OS/390 IBM Communications Server: IP User’s Guide for more
information.

Diagnosing Sysplex Distributor Problems
Diagnosing Sysplex Distributor problems presents some unique challenges.
Because a DVIPA can be associated with multiple stacks in a sysplex, determining
where a problem is can be more difficult. Using a combination of onetstat, TSO
netstat, and display sysplex commands provide a clear picture of the sysplex. See
the OS/390 IBM Communications Server: IP Configuration Guide chapter on virtual
addressing for an introduction to sysplex distribution with virtual addressing.

Netstat information can be obtained in any of the following ways.

v Using onetstat from the omvs shell

v Using netstat from TSO

v Using the display netstat command from the system console

The display netstat command is used in the examples below but any of the three
commands can be used.

v For the types of problems where the actual DVIPAs defined on a stack are not
what the user expected, confirm the current definitions on a stack (Step 1).

v For Sysplex Distributor workload monitoring, Steps 5 and 6 can be used. If the
output from these commands is not what you expected Step 4 will give you the
overall picture of all DVIPA activity in your sysplex.

v If the output from Step 4 reveals an expected target stack not listed for a
distributed DVIPA use Step 2 on the target stack in question. This will help
identify configuration problems on that stack. Note what is required of target
stacks. Also verify, with Step 7, that a server application has indeed been
activated and bound to the correct port.

v A CTRACE with options XCF, INTERNET, TCP and VTAMDATA on participating
stacks is useful in following the flow of packets into and throughout the sysplex.
These can be used to:

1. Identify the connection being received by the distributing stack.

2. Determine the stack to which the connection will be forwarded.

3. Verify the connection being forwarded..

4. Determine the expected target stack receiving and processing the connection.

Once the connection has been established subsequent packets can be followed
in the same manner. When the connection is terminated CTRACE records will
record target stacks cleaning up the connection and notifying the distributing
stack.

The following are the steps to take in diagnosing sysplex problems.

1. Run the display command d tcpip,tcpcs,net,vipadcfg on the distributing stack
to confirm it is configured to distribute the DVIPA and how it is to be distributed.

The following report shows that the TCP/IP identified by TCPCS has been
configured to distribute two DVIPAs. Workload for the first DVIPA, 201.2.10.11
ports 20 and 21, will be distributed to all stacks in the sysplex including TCPCS
itself. Workload for 201.2.10.12, ports 20 and 21, will only be distributed to the
TCP/IP with Dynamic XCF address 193.9.200.2.

d tcpip,tcpcs,net,vipadcfg

EZZ2500I NETSTAT CS V2R10 TCPCS 477
DYNAMIC VIPA INFORMATION:

Chapter 4. Diagnosing Network Connectivity Problems 39

|

|
|
|
|
|
|

|

|

|

|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

VIPA DEFINE:
IP ADDRESS ADDRESSMASK MOVEABLE
---------- ----------- --------
201.2.10.11 255.255.255.240 IMMEDIATE
201.2.10.12 255.255.255.240 IMMEDIATE

VIPA DISTRIBUTE:
IP ADDRESS PORT XCF ADDRESS
---------- ---- -----------
201.2.10.11 00020 ALL
201.2.10.11 00021 ALL
201.2.10.12 00020 193.9.200.2
201.2.10.12 00021 193.9.200.2

2. Run the display command d tcpip,tcpcs,net,config on the distributing stack
and all target stacks to confirm that the correct IPCONFIG options have been
specified.

a. DATAGRAMFWD must be specified on the distributing stack in order for
datagrams to be forwarded to target stacks.

b. SYSPLEXROUTING must be specified on the distributor and all target
stacks to get WLM based distribution.

c. Verify that DYNAMICXCF was specified on the distributor and all target
stacks.

Following is the output of this command for the distributing TCP/IP.
d tcpip,tcpcs,net,config

EZZ2500I NETSTAT CS V2R10 TCPCS 568
TCP CONFIGURATION TABLE:
.
.
IP CONFIGURATION TABLE:
FORWARDING: YES TIMETOLIVE: 00064 RSMTIMEOUT: 00060
FIREWALL: 00000 ARPTIMEOUT: 01200 MAXRSMSIZE: 65535
IGREDIRECT: 00001 SYSPLXROUT: 00001 DOUBLENOP: 00000
STOPCLAWER: 00000 SOURCEVIPA: 00000 VARSUBNET: 00001
MULTIPATH: NO PATHMTUDSC: 00000
DYNAMICXCF: 00001

IPADDR: 193.9.200.1 SUBNET: 255.255.255.0 METRIC: 14

Run the display command D WLM,SYSTEM=MVS004 on the distributing and all
targets stacks to confirm that WLM is active and in GOAL mode.

D WLM,SYSTEM=MVS004

IWM025I 08.06.58 WLM DISPLAY 610
ACTIVE WORKLOAD MANAGEMENT SERVICE POLICY NAME: CS390SVT
ACTIVATED: 2000/01/11 AT: 19:09:58 BY: xxxxxxx FROM: yyyyyyyy
DESCRIPTION: WLM POLICY FOR CS/390 SVT Group.
RELATED SERVICE DEFINITION NAME: CS390WLM
INSTALLED: 2000/01/11 AT: 19:09:51 BY: xxxxxxx FROM: yyyyyyyy
WLM VERSION LEVEL: LEVEL008
WLM FUNCTIONALITY LEVEL: LEVEL006
WLM CDS FORMAT LEVEL: FORMAT 3
STRUCTURE SYSZWLM_WORKUNIT STATUS: DISCONNECTED
SYSNAME *MODE* *POLICY* *WORKLOAD MANAGEMENT STATUS*
MVS004 GOAL CS390SVT ACTIVE

3. Run the display command d tcpip,tcpcs,net,vipadyn on the distributing stack
to verify the DVIPA status is ACTIVE and the distribution status is DIST or
DIST/DEST.

d tcpip,tcpcs,net,vipadyn

EZZ2500I NETSTAT CS V2R10 TCPCS 570

40 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
201.2.10.11 255.255.255.240 ACTIVE VIPADEFINE DIST/DEST
201.2.10.12 255.255.255.240 ACTIVE VIPADEFINE DIST

Then run display command d tcpip,tcpcs2,net,vipadyn on the target stacks to
verify it has activated the distributing DVIPA and has it marked as a DEST. In
this case TCPCS2 has marked the distributing DVIPAs as DEST and that
TCPCS2 is a backup stack for these two DVIPAs (status and origination show
backup).

d tcpip,tcpcs2,net,vipadyn

EZZ2500I NETSTAT CS V2R10 TCPCS2 891
IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
201.2.10.11 255.255.255.240 BACKUP VIPABACKUP DEST
201.2.10.12 255.255.255.240 BACKUP VIPABACKUP DEST
201.2.10.13 255.255.255.192 ACTIVE VIPADEFINE
201.2.10.21 255.255.255.192 BACKUP VIPABACKUP
201.2.10.22 255.255.255.192 BACKUP VIPABACKUP

4. Run the display command d tcpip,tcpcs,sysplex,vipad from any stack in the
sysplex to get a global view of how and where DVIPAs are defined within the
sysplex and what their status is on each stack. The following display shows:

v Two distributed DVIPAs in the sysplex, 201.2.10.11 and 201.2.10.12

v Which TCP/IPs have been made targets, DIST field = DEST

v The status of all other DVIPAs in this sysplex
d tcpip,tcpcs,sysplex,vipad

EZZ8260I SYSPLEX CS V2R10 513
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS004
IPADDR: 201.2.10.11 LINKNAME: VIPLC9020A0B

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS004 BACKUP 010 DEST

IPADDR: 201.2.10.12 LINKNAME: VIPLC9020A0C
ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS MVS004 ACTIVE 255.255.255.240 201.2.10.0 DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS004 BACKUP 010

IPADDR: 201.2.10.13
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS2 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 100
TCPCS3 MVS004 BACKUP 010

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----
TCPCS3 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK ADDRESS MASK NETWORK PREFIX DIST
-------- -------- ------ ---- --------------- --------------- ----

Chapter 4. Diagnosing Network Connectivity Problems 41

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TCPCS3 MVS004 ACTIVE 255.255.255.192 201.2.10.0
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

15 OF 15 RECORDS DISPLAYED

5. Run the display command d tcpip,tcpcs,net,vdpt on the distributing stack to
confirm that there are target stacks available with server applications ready.
With the keyword DETAIL you can also see the current WLM/QOS distributing
values for each target stack (each DESTXCF ADDR). See theOS/390 IBM
Communications Server: IP User’s Guide for more information.

This display will only show target stacks that are currently up and have joined
the sysplex. If there are fewer entries than what showed up in the display
command d tcpip,,net,vipadcfg, then the missing entries may be for target
stacks that are not yet up, or are up but did not specify the expected
DynamicXCF address.

d tcpip,tcpcs,net,vdpt detail

EZZ2500I NETSTAT CS V2R10 TCPCS 439
DYNAMIC VIPA DISTRIBUTION PORT TABLE:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN
----------- ----- ------------ --- ---------
201.2.10.11 00020 193.9.200.1 000 0000003561

WLM: 32 W/Q: 04
201.2.10.11 00020 193.9.200.2 000 0000003500

WLM: 16 W/Q: 08
201.2.10.11 00020 193.9.200.3 000 0000003700

WLM: 00 W/Q: 00
201.2.10.11 00021 193.9.200.1 001 0000000499

WLM: 32 W/Q: 16
201.2.10.11 00021 193.9.200.2 001 0000000450

WLM: 16 W/Q: 08
201.2.10.11 00021 193.9.200.3 001 0000000415

WLM: 00 W/Q: 00
201.2.10.12 00020 193.9.200.2 000 0000000239

WLM: 16 W/Q: 02
201.2.10.12 00021 193.9.200.2 001 0000000059

WLM: 16 W/Q: 02

8 OF 8 RECORDS DISPLAYED

Interrogate the READY (RDY) count fields. If the count is 0, then no server
application has been activated or no server is LISTENing on DPORT on the
target stack identified by the DESTXCF ADDR. For servers that use more than
one port, the RDY value reflects the port the LISTEN is performed on. For
example, for FTP, the control connection port (port 21) is where you would
expect to see a RDY count greater than 0. If the ready count is not what you
expect, proceed to Step 7 to verify whether any server is LISTENing on the
DPORT on the target stack.

Check the TotalConn count to see the distribution history. This is a cumulative
count of the number of connections that have been forwarded by the distributing
stack to each target stack.

If the connections are not being distributed to the target stacks as expected, or
the WLM field contains 00, then consider the following.

v If using WLM to distribute connections based upon the workload of the target
stacks, verify that ALL participating stacks (distributor and all targets) have
SYSPLEXROUTING specified (see Step 2 above for instructions for verifying
this). Also, verify that WLM is configured and active in GOAL mode on all
participating stacks (see Step 2 above).

42 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

v If the WLM configuration appears correct, consider whether the unexpected
distribution results may be due to the current workload on the target stacks.

v If the unexpected distribution results have not yet been explained and
Sysplex Distributor Performance Policies have been defined using PAGENT,
consider whether the distribution may be due to network performance (TCP
retransmissions and time-outs).

v If Sysplex Distributor Routing Policies have been defined using PAGENT,
consider whether the definition of that policy is affecting the connection
distribution. See “Diagnosing Policy Agent Problems” on page 379 for more
information.

6. Run the display command d tcpip,tcpcs,net,vcrt on the distributing stack to
see if there are any active connections being routed by the distributor.

If this table is empty, then connection requests may not be getting to the
distributor. Check for a routing problem from the client to the distributor.

If you see expected entries in the table, note the Dynamic XCF address and
proceed to Step 7.

d tcpip,tcpcs,net,vcrt

EZZ2500I NETSTAT CS V2R10 TCPCS 363
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST IPADDR DPORT SRC IPADDR SPORT DESTXCF ADDR
----------- ----- ---------- ----- ------------
201.2.10.11 00021 193.9.200.5 01029 193.9.200.1
201.2.10.11 00021 193.9.200.8 01050 193.9.200.2
201.2.10.11 00021 193.9.200.11 01079 193.9.200.3
201.2.10.12 00021 193.9.200.9 01030 193.9.200.2

7. Go to the target stack(s) represented by the DESTXCF ADDR field in the VCRT
or VDPT display and run the display command d
tcpip,tcpcs3,net,allconn,ipa=201.2.10.11 to see the connection(s) on the
target stack.
d tcpip,tcpcs3,net,allconn,ipa=201.2.10.11

01.45.56 EZZ2500I NETSTAT CS V2R10 TCPCS3 737
USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
FTPD1 00000034 201.2.10.11..21 193.9.200.11..1079 ESTBLSH

Note: For a variety of reasons, the VCRT and ALLCONN displays may not
match exactly. For example with short lived connections such as Web
connections, an entry may show up in one display but be gone by the
time the second display is run. Also the distributing stack places an entry
into the Dynamic VIPA Connection Routing Table when it first forwards a
connection request. A busy server may reject these connection requests
and therefore cause a temporary mismatch in the two displays.

Documentation for the IBM Support Center
Persistent error conditions, in most cases, indicate an installation or configuration
problem. Contact the local IBM branch office for installation assistance. If a software
defect is suspected, collect the following information prior to contacting the IBM
Support Center:
v hlq.PROFILE.TCPIP
v hlq.TCPIP.DATA
v Output from onetstat commands
v Output from onetstat -r or oping traces
v Network diagram or layout

Chapter 4. Diagnosing Network Connectivity Problems 43

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

v Error messages received (refer to OS/390 IBM Communications Server: IP
Messages Volume 1 (EZA) for information about messages)

v OMPROUTE component trace in the CTRACE managed data set and
OMPROUTE trace in stdout

44 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Part 2. Traces and Control Blocks

© Copyright IBM Corp. 1994, 2000 45

46 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 5. TCP/IP Services Traces and IPCS Support

This chapter describes selected procedures for TCP/IP Services component trace,
packet trace, and ITRACE. For short descriptions of other key tracing procedures,
such as displaying trace status, see “Appendix A. Collecting Component Trace
Data” on page 513.

Component Trace
You typically use component trace when recreating a problem. Component Trace
performs the following functions:

v Captures trace requests.

v Adds trace records to an internal buffer.

v Writes the internal buffer to an external writer, if requested.

v Formats the trace records using the Interactive Problem Control System (IPCS)
subcommand CTRACE.

v Provides a descriptor at the beginning of a trace record that specifies the
address and length of each data area. Each data area in the trace record is
dumped separately.

v Provides an optional identifier for the connection (UDP, TCP, and so on) as part
of each record.

CS for OS/390 provides component trace support for TCP/IP stacks, OMPROUTE,
and for end-user socket programs written with APIs that use either the TCP/IP
Macro API or the Call Instruction API. See “Component Trace for TCP/IP Stacks”
and “TCP/IP Services Component Trace for OMPROUTE” on page 447. For
detailed information, refer to the following books:

v OS/390 MVS Diagnosis: Tools and Service Aids for information about Component
Trace Procedures

v OS/390 MVS Initialization and Tuning Reference for information about the
Component Trace SYS1.PARMLIB member

v OS/390 MVS System Commands for information about commands

v OS/390 MVS Authorized Assembler Services Guide for procedures and return
codes for component trace macros

Component Trace for TCP/IP Stacks
Component trace for TCP/IP stacks traces individual TCP/IP components (such as
STORAGE, INTERNET, and so forth) and writes the information to a data set. To
aid in first failure data capture, a minimal Component Trace is always started during
TCP/IP initialization, if you use the TCP/IP Component Trace SYS1.PARMLIB
member, CTIEZBxx.

You can select trace records at runtime by any of the following methods:

v JOBNAME

v Address space identifiers (ASID)

v Trace option

v IP address

v Port number

© Copyright IBM Corp. 1994, 2000 47

|
|
|
|
|

|
|

|
|

|

|
|

|

Specifying Trace Options
You can specify component trace options at TCP/IP initialization or after TCP/IP has
initialized.

Specifying Trace Options at Initialization: To start TCP/IP with a specific trace
member, use the following command:

S tcpip_procedure_name,PARMS=CTRACE(CTIEZBxx)

where CTIEZBxx is the component trace SYS1.PARMLIB member. You can create
this member yourself or you can update the default SYS1.PARMLIB member,
CTIEZB00 (see Figure 4 on page 49). For a description of trace options available in
the CTIEZB00, see Table 12 on page 52.

Note: Besides specifying the desired TCP/IP traces, you can also change the
component trace buffer size. The buffer size can be changed only at TCP/IP
initialization.

48 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

/**/
/* */
/* Communications Server for OS/390 */
/* SMP/E Distribution Name: CTIEZB00 */
/* */
/* MEMBER: CTIEZB00 */
/* */
/* COPYRIGHT = Licensed Materials - Program Property of IBM. */
/* This product contains "Restricted Materials of IBM"*/
/* 5647-A01 (C) Copyright IBM Corp. 1996, 2000 */
/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted */
/* by GSA ADP Schedule Contract with IBM Corp. */
/* See IBM Copyright Instructions */
/* */
/* STATUS = CSV2R10 */
/* */
/* DESCRIPTION = This parmlib member causes component trace for */
/* the TCP/IP product to be initialized with a */
/* trace buffer size of 8 megabytes. */
/* */
/* This parmlib members only lists those TRACEOPTS */
/* value specific to TCP/IP. For a complete list */
/* of TRACEOPTS keywords and their values see */
/* OS/390 MVS INITIALIZATION AND TUNING REFERENCE. */
/* */
/* $MAC(CTIEZB00) PROD(TCPIP): Component Trace SYS1.PARMLIB member */
/* */
/* CHANGE-ACTIVITY = */
/* CFD List: */
/* */
/* $L0=D005509 HTCP330 960619 MWS: RAS DCR - Trace Enhancements */
/* $D1=D0077 HTCP340 970916 DWJ: RAS DCR - Update options */
/* $P1=MV15775 TCPV3R4 971010 DYY: Remove HPNSAPPL, HPNSTCP opts */
/* $D2=D0109 HTCP340 971026 KDJ: OS/390 Copyright */
/* $A1=PQ16720 HTCP350 980520 MWS: Add FIREWALL option (MV17568) */
/* $G1=D270.14 CSV2R7 980521 HMS: Sysplex Sockets */
/* $G2=D270 CSV2R7 980909 MWS: Add jobname, asid, and wtr */
/* $H1=D280.9 CSV2R8 981203 MWS: Add IpAddr and Port keywords */
/* $H2=MV18932 CSV2R8 990203 MWS: Update default size to 8M */
/* $J1=D310.19 CSV2R10 990503 LAN: Added TRACE ROUTE */
/* $J2=D310.21 CSV2R10 990806 SAH: Trace enhancements */
/* $J3=D310.22 CSV2R10 990810 BDM: Socket API Trace */
/* $J4=MV19951 CSV2R10 990907 SAH: Add new trace group names */
/* $J5=MV20658 CSV2R10 991213 JPW: Fix typos */
/* $J6=MV21237 CSV2R10 000227 BDM: Fix prolog errors */
/* $J7=MV21293 CSV2R10 000306 BDM: Remove ROUTE from ALL */
/* */
/* End CFD List: */
/**/

Figure 4. SYS1.PARMLIB Member CTIEZB00 (Part 1 of 3)

Chapter 5. TCP/IP Services Traces and IPCS Support 49

TRACEOPTS
/* -- */
/* ON OR OFF: PICK 1 */
/* -- */

ON
/* OFF */
/* -- */
/* BUFSIZE: A VALUE IN RANGE 128K TO 256M */
/* -- */

BUFSIZE(8M)
/* JOBNAME(jobname1,...) */
/* ASID(Asid1,...) */
/* WTR(wtr_procedure) */
/* -- */
/* Note, the following groups of trace options are supported: */
/* */
/* ALL = All options except ROUTE, SERIAL, STORAGE, and TIMER */
/* CSOCKET = PFS + SOCKET */
/* DLC = CLAW + INTERNET + LCS + VTAM + VTAMDATA */
/* IN = CONFIG + INIT + IOCTL + OPCMDS + OPMSGS */
/* LATCH = SERIAL */
/* MINIMUM = INIT + OPCMDS + OPMSGS */
/* OETCP = ENGINE + PFS + QUEUE + TCP */
/* OEUDP = ENGINE + PFS + QUEUE + UDP */
/* PING = ARP + ICMP + RAW */
/* RW = ENGINE + PFS + QUEUE + RAW + SOCKET */
/* SMTP = ENGINE + IOCTL + PASAPI + PFS + QUEUE + SOCKET + TCP */
/* SYSTEM = INIT + OPCMDS + OPMSGS + SERIAL + STORAGE + TIMER + */
/* WORKUNIT */
/* TC = ENGINE + PFS + QUEUE + SOCKET + TCP */
/* TN = PFS + TCP + TELNET + TELNVTAM */
/* UD = ENGINE + PFS + QUEUE + SOCKET + UDP */
/* */
/* OPTIONS: NAMES OF FUNCTIONS OR GROUPS TO BE TRACED: */
/* */
/* -- */

Figure 4. SYS1.PARMLIB Member CTIEZB00 (Part 2 of 3)

50 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 12 on page 52 describes the available trace options and groups. A group
turns on multiple trace options. The group name identifies traces that should be on
for a specific problem area. Trace groups provide a way to collect trace data by
problem type.

/* OPTIONS(*/
/* 'ALL ' */
/* ,'ACCESS ' */
/* ,'AFP ' */
/* ,'ARP ' */
/* ,'CLAW ' */
/* ,'CONFIG ' */
/* ,'CSOCKET ' */
/* ,'DLC ' */
/* ,'ENGINE ' */
/* ,'FIREWALL' */
/* ,'ICMP ' */
/* ,'IN ' */
/* ,'INIT ' */
/* ,'INTERNET' */
/* ,'IOCTL ' */
/* ,'IPADDR(nnn.nnn.nnn.nnn/mmm.mmm.mmm)' */
/* ,'LATCH ' */
/* ,'LCS ' */
/* ,'MESSAGE ' */
/* ,'MINIMUM ' */
/* ,'NONE ' */
/* ,'OETCP ' */
/* ,'OEUDP ' */
/* ,'OPCMDS ' */
/* ,'OPMSGS ' */
/* ,'PASAPI ' */
/* ,'PFS ' */
/* ,'PING ' */
/* ,'PORT(ppppp,ooooo,rrrrr,ttttt) ' */
/* ,'QUEUE ' */
/* ,'RAW ' */
/* ,'ROUTE ' */
/* ,'RW ' */
/* ,'SERIAL ' */
/* ,'SMTP ' */
/* ,'SNMP ' */
/* ,'SOCKAPI ' */
/* ,'SOCKET ' */
/* ,'STORAGE ' */
/* ,'SYSTEM ' */
/* ,'TC ' */
/* ,'TCP ' */
/* ,'TELNET ' */
/* ,'TELNVTAM' */
/* ,'TIMER ' */
/* ,'TN ' */
/* ,'UD ' */
/* ,'UDP ' */
/* ,'VTAM ' */
/* ,'VTAMDATA' */
/* ,'WORKUNIT' */
/* ,'XCF ' */
/*) */

Figure 4. SYS1.PARMLIB Member CTIEZB00 (Part 3 of 3)

Chapter 5. TCP/IP Services Traces and IPCS Support 51

|
|
|
|

Table 12. Trace Options

Trace Event Description

ALL

All types of records except ROUTE, SERIAL, STORAGE, and
TIMER.
Slow Performance: Using this option will slow performance
considerably, so use with caution.

ACCESS
Trace creation, modification, and manipulation of the Network
Access tree, along with results of all Network Access queries.

AFP Turn on trace for fast response cache accelerator

ARP

Shows address resolution protocol (ARP) cache management
and ARP timer management. This option also shows all
outbound and inbound ARP packets.
Note: The information provided differs depending on the type
of device. See OS/390 IBM Communications Server: IP
Configuration Guide for information on what is supported for
each device.

CLAW Shows all control flows for a CLAW device.

CONFIG Turn on trace for configuration updates.

CSOCKET Turn on the following trace options:

v PFS

v SOCKET

DLC Turn on the following trace options:

v CLAW

v INTERNET

v LCS

v VTAM

v VTAMDATA

ENGINE Turn on trace for stream head management.
Note: The ENGINE and QUEUE options are aliases. If you
turn one on, you turn on all related options, and if you turn
one off, you turn off all related options.These alias options are
only for recording the trace. When formatting the trace, these
options can be filtered separately.

FIREWALL Turn on trace for firewall events.

ICMP Turn on trace for the ICMP protocol.

IN Turn on the following trace options:

v CONFIG

v INIT

v IOCTL

v OPCMDS

v OPMSGS

INIT Turn on trace for TCP/IP Initialization/Termination.

Note: The INIT, OPCMDS,and OPMGS options are aliases. If
you turn one on, you turn on all related options, and if you
turn one off, you turn off all related options. These alias
options are only for recording the trace. When formatting the
trace, these options can be filtered separately.

INTERNET Turn on trace for Internet Protocol layer.

IOCTL Turn on trace for IOCTL processing.

52 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

||

|

|
|
|
|

|
|
|

||

|

|
|
|
|
|
|
|

||

||

||

|

|

||

|

|

|

|

|

||
|
|
|
|
|

||

||

||

|

|

|

|

|

||

|
|
|
|
|

||

||

Table 12. Trace Options (continued)

Trace Event Description

IPADDR=(list) Turn on trace by IP address.

LATCH Turn on the following trace option:

v SERIAL

LCS Shows all control flows for an LCS device.

MESSAGE Turn on trace for message triple management.

MINIMUM Turn on the following trace options:

v INIT

v OPCMDS

v OPMSGS

NONE Turn off all traces but exception traces, which always stay on.

OETCP Turn on the following trace options:

v ENGINE

v PFS

v QUEUE

v TCP

OEUDP Turn on the following trace options:

v ENGINE

v PFS

v QUEUE

v UDP

OPCMDS Turn on traces of operator commands.

Note: The INIT, OPCMDS,and OPMGS options are aliases. If
you turn one on, you turn on all related options, and if you
turn one off, you turn off all related options. These alias
options are only for recording the trace. When formatting the
trace, these options can be filtered separately.

OPMSGS Turn on message trace for console messages.

Note: The INIT, OPCMDS,and OPMGS options are aliases. If
you turn one on, you turn on all related options, and if you
turn one off, you turn off all related options. These alias
options are only for recording the trace. When formatting the
trace, these options can be filtered separately.

PASAPI Turns on traces for transforms that handle Pascal APIs.

PFS Turn on trace for the physical file system layer.

PING Turn on the following trace options:

v ARP

v ICMP

v RAW

PORT=(list) Turn on trace by port number.

QUEUE Turn on trace for stream queue management.
Note: The ENGINE and QUEUE options are aliases. If you
turn one on, you turn on all related options, and if you turn
one off, you turn off all related options.. These alias options
are only for recording the trace. When formatting the trace,
these options can be filtered separately.

Chapter 5. TCP/IP Services Traces and IPCS Support 53

|

||

||

||

|

||

||

||

|

|

|

||

||

|

|

|

|

||

|

|

|

|

||

|
|
|
|
|

||

|
|
|
|
|

||

||

||

|

|

|

||

||
|
|
|
|
|

Table 12. Trace Options (continued)

Trace Event Description

RAW Turn on trace for the RAW transport protocol.

ROUTE Trace manipulation of IP Routing Tree

RW Turn on the following trace options:

v ENGINE

v PFS

v QUEUE

v RAW

v SOCKET

SERIAL Turn on trace for lock obtain and release.

SMTP Turn on the following trace options:

v ENGINE

v IOCTL

v PASAPI

v PFS

v QUEUE

v SOCKET

v TCP

SNMP Turn on trace for SNMP SET requests.

SOCKAPI Trace Macro and Call Instruction API calls (see “Socket API
Traces” on page 69)

SOCKET Turn on trace for the Sockets API layer.

STORAGE Turn on trace for storage obtain and release.

SYSTEM Turn on the following trace options:

v INIT

v OPCMDS

v OPMSGS

v SERIAL

v STORAGE

v TIMER

v WORKUNIT

TC Turn on the following trace options:

v ENGINE

v PFS

v QUEUE

v SOCKET

v TCP

TCP Turn on trace for the TCP transport protocol.

TELNET Turn on trace for TELNET events.

TELNVTAM (an alias for
TELNET)

Turn on trace for TELNET events.

TIMER Turn on trace for TCP timers.

54 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

||

||

||

||

|

|

|

|

|

||

||

|

|

|

|

|

|

|

||

||
|

||

||

||

|

|

|

|

|

|

|

||

|

|

|

|

|

||

||

|
|
|

||

Table 12. Trace Options (continued)

Trace Event Description

TN Turn on the following trace options:

v PFS

v TCP

v TELNET

v TELNVTAM

UD Turn on the following trace options:

v ENGINE

v PFS

v QUEUE

v SOCKET

v UDP

UDP Turn on trace for UDP transport protocol.

VTAM Shows all of the non data-path signaling occurring between IF
and VTAM. Turn on this option; it will have no effect on
mainline performance and will provide helpful information.

VTAMDATA Shows data-path signaling between IF and VTAM, including a
snapshot of media headers and some data. This option can
slow performance, so use with caution.

WORKUNIT Turn on trace for work unit scheduling.

XCF Turn on trace for XCF events.

Specifying Trace Options After Initialization: After TCP/IP initialization, you
must use the TRACE CT command to change the component trace options. All
options except for the size of the TCP/IP component trace buffer can be changed
using this command. Each time a new component trace is initiated, all prior trace
options are turned OFF and the new traces are activated.

You can specify TRACE CT with or without the PARMLIB member. See
“Appendix A. Collecting Component Trace Data” on page 513.

Filter TCPIP CTRACE by IP Address
To execute a trace on a particular IP address use the IP address, port number, asid
and JOBNAME as targets for filtering the records.

To use this function, start by issuing the TRACE command:
TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpip_procedure_name)

R 01,OPTIONS=(IPADDR(192.48.32.37),PORT(80,33))
R 02,OPTIONS=(ENGINE,PFS),END

Trace records of type ENGINE or PFS, and for an IP address of 192.48.32.37 and
a port number of 80 or 33 will be captured. The IP address used is the foreign
session partner IP address. The local port number is the local session partner port
number. The choice of the IP and Port numbers is determined by the direction of
the data. When filters are used the trace record must be accepted by each filter.
Each filter can specify multiple values (up to sixteen). The trace record must match
one of the values.

Chapter 5. TCP/IP Services Traces and IPCS Support 55

|

||

||

|

|

|

|

||

|

|

|

|

|

||

||
|
|

||
|
|

||

||
|

|

Inbound
Data received at the IP layer is considered inbound data. The source IP
address and the destination port number are used.

Outbound
Data sent in the PFS layer is considered outbound data. The destination IP
address and the source port number are used.

There are five criteria for selecting trace records for recording: TYPE, JOBNAME,
ASID, IPADDR and PORT. Each criterion may specify one or more values. If a
criterion has been specified, the record to be traced must match one of the values
for that criterion. If a criterion has not been specified, the record is not checked and
will not prevent the record from being recorded. However, the record must match all
specified criteria. In the above example, JOBNAME and ASID were not specified so
the value of JOBNAME and ASID in the record are not checked.

Note: There is an exception for IPADDR and PORT. Some trace records will not
have a IP address or a port number. Therefore, the IP address will only be
checked if it is nonzero and the port number will be checked only if it is
nonzero.

You can also specify a range of IP addresses to trace. For example,
TRACE CT,ON,COMP=SYSTCPIP,SUB=(TCPIP_PROC_NAME)
R xx, OPTIONS = (IPADDR=(nn.nn.nn.nn,{nn.nn.nn.nn/mm.mm.mm.mm}), PORT = (pppp{,pppp}))

IPADDR
The list of IP address to be filtered. Up to sixteen IP addresses may be
specified. The address is specified in dotted decimal format. Submasking
may be indicated by using a slash followed by a dotted decimal submask.
For example, 192.48.32/255.255.255.0 will allow addresses from
192.48.32.00 to 192.48.32.255. A trace record with a zero IP address is not
subject to IP address filtering.

PORT The list of port numbers to be filtered. Up to sixteen port numbers may be
specified. The port numbers, specified in decimal, are in the range
0–65535. A trace record with a zero port number is not subject to port
number filtering.

Notes:

1. The equal sign (=) after the IPADDR and PORT keywords is optional.

2. The IPADDR and PORT keywords may be specified multiple times in an
OPTIONS string. All the values will be saved.

3. All the values in the OPTIONS keyword must be specified in one trace
command. The next trace command with an OPTIONS keyword will replace all
the options specified.

Formatting Trace Records for TCP/IP Stacks
You can format component trace records using IPCS panels or a combination of
IPCS panels and the CTRACE command. For a description of the relevant IPCS
panels, see “Appendix A. Collecting Component Trace Data” on page 513. For more
information about other CTRACE options, refer to the OS/390 MVS IPCS
Commands.

When using an IPCS panel, enter the trace types in the following format:
<option> DUCB() CID()

56 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following is the syntax for the CTRACE command for TCP/IP stacks. For more
information on the command and IPCS, refer to the OS/390 MVS IPCS User’s
Guide.

SS OPTIONS((
Type Name DUCB(process index)

S

S
CID(connection identifier) IPADDR(ip address)

S

S
PORT(port number)

)) ST

Type Name
The name of a trace type. Only records of these types will be formatted.
For a list of types, see Table 12 on page 52.

DUCB A process index for the thread of execution. Up to sixteen indexes can be
specified. The DUCB index values can be entered either in decimal (such
as DUCB(18)) or hexadecimal (such as DUCB X'12') but are displayed in
hexadecimal format.

CID A connection identifier. Up to sixteen identifiers can be specified. The CID
values can be entered in either decimal (such as CID(182)) or hexadecimal
(such as CID(X'0006CE7E')) but are displayed in hexadecimal. This is the
same value that appears in the NETSTAT connections display.

IPADDR
An IP address. Up to sixteen addresses can be specified. These are in
dotted decimal notation. For Example: 192.48.24.57. An IP address of ‘0’
may be used for trace records that do not have an IP address. A subnet
mask is indicated by a slash (‘/’) followed by a dotted decimal value of the
subnet mask. For example: 192.48.24/255.255.255.0

PORT A port number. Up to sixteen port numbers may be specified. Please note
that the port numbers can be entered in decimal, such as PORT(53), or
hexadecimal, such as PORT(x'35'), but are displayed in decimal. These are
port numbers in the range 0–65535. A port number of 0 may be used for
trace records that do not have a port number.

Note: Standard TSO syntax is used for the keywords and their values. For
example, CID (1 2 3).

Figure 5 on page 58 contains the start of the CTRACE formatted output. The
CTRACE command parameters are followed by the trace date and column
headings. Then there is one TCP/IP CTRACE record with 4 data areas. The parts
of the TCP/IP CTRACE record are:

1. Standard IPCS header line, which includes the system name (VIC142), TCP/IP
option name (PFS), time stamp, and record description.

2. TCP/IP header line with address space and user (or jobname) information

3. TCP/IP header line with task and module information

4. TCP/IP header line with session information (CID, IP address, and port number)

Chapter 5. TCP/IP Services Traces and IPCS Support 57

||
|
|
|

||
|
|
|

||
|
|
|
|

|
|
|
|

|
|

|

|

|

5. TCP/IP header line for a data area. This line has the address (first 4 bytes are
the ALET), the length of data traced, and the data description. Following the
description, the actual data is in dump format (hexadecimal offset, hexadecimal
data, and EBCDIC data).

6. There are 4 data areas in this example. The third one (″Return Value Errno
ErrnoJr″) has an extra line. The ERRNO line is added only when the return
value is -1 and the ERRNO indicates an error. In this example, the return code
is hexadecimal 462 (decimal 1122). Refer to the OS/390 IBM Communications
Server: IP and SNA Codes for more information.

7. TCP/IP trailer and separator line with the record sequence number
(hexadecimal 573E).

Additional Fields in CTRACE Output
The ERRNO line in Figure 5 is one of two cases in which the formatter extracts
data and formats it in a special way. The other case is for ″TCB CTRL″ and ″IUDR″
data. Several fields are copied from the data and formatted with character
interpretation of fields, such as converting values to decimal or dotted decimal.
Figure 6 on page 59 is an example. Note the additional fields (TcpState, TpiState,
etc.) following the hexadecimal data.

COMPONENT TRACE FULL FORMAT
COMP(SYSTCPIP)SUBNAME((TCPSVT))
**** 11/03/1999
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
VIC142 PFS 60010018 14:57:59.207826 Socket IOCTL Exit
HASID..001E PASID..000E SASID..001E USER...OMPROUTE
TCB....007E7A68 MODID..EZBPFIOC REG14..161D86C0 DUCB...0000000C
CID....0000003A PORT... 0 IPADDR.000.000.000.000

ADDR...00000000 14D9EED0 LEN....000000A0 OSI
+0000 D6E2C940 000000A0 00000000 00000000 | OSI |
+0010 0500001B 14D9EF70 00500AC8 00000000 |R...&.H.... |
+0020 00000000 00000000 00000000 00000000 | |
+0030 00000000 00000000 00000000 00281080 | |
+0040 14D9FC0C 00000C00 14D9FFE8 00000000 | .R.......R.Y.... |
+0050 00000000 00000000 00000000 00000000 | |
+0060 00000000 00000000 00000000 00000000 | |
+0070 00000000 00000000 00000000 00000000 | |
+0080 00000000 00000000 00000000 00000000 | |
+0090 00000000 00000000 00000000 00000000 | |

ADDR...00000000 12D7F874 LEN....00000004 SCB Flags
+0000 00280000 | |

ADDR...00000000 12E88598 LEN....00000010 Return Value Errno ErrnoJr
+0000 C5D9D9D5 FFFFFFFF 00000462 740E006B | ERRN..........., |

ERRNO..-1, 462, 740E006B
ADDR...00000000 14D9F4E4 LEN....00000048 IOCTL Request

+0000 C3C6C7D4 D9C5D840 0000008E 00000462 | CFGMREQ |
+0010 00000320 00000500 00000000 00000000 | |
+0020 740E0005 00000000 14B4C7C0 00000000 |G{.... |
+0030 00000000 00050063 00000000 00000000 | |
+0040 F3F1F0F1 00000000 | 3101.... |

==0000573E

Figure 5. Start of Component Trace Full Format

58 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

Component Trace for OMPROUTE
TCP/IP Services component trace is also available for use with the OMPROUTE
application. “TCP/IP Services Component Trace for OMPROUTE” on page 447.

Packet Trace
Packet trace is a diagnostic method for obtaining traces of IP packets flowing to
and from a TCP/IP stack on a CS for OS/390 host. You can use the PKTTRACE
statement to copy IP packets as they enter or leave TCP/IP, and then examine the
contents of the copied packets. To be traced, an IP packet must meet all the
conditions specified on the PKTTRACE statement.

The Trace Process
Trace data is collected as IP packets enter or leave TCP/IP. The actual collection
occurs within the device drivers of TCP/IP, which capture the data that has just
been received from or sent to the network.

Note: Packets that are captured have extra information added to them before they
are stored. This extra information is used during the formatting of the
packets. The captured data reflects exactly what the network sees. For
example, the trace contains the constituent packets of a fragmented packet
exactly as they are received or sent.

The selection criteria for choosing packets to trace are specified through the
PKTTRACE statement for the TCP/IP address space. Refer to OS/390 IBM
Communications Server: IP Configuration Reference for more information about the
PKTTRACE statement and subcommand.

BOTSWANA TCP 40030002 20:51:35.652462 Select/Poll Exit Detail
HASID..0082 PASID..0088 SASID..000E USER...POLAGENT
TCB....007E4640 MODID..EZBTCFSP REG14..10FD7C5E DUCB...00000016
CID....000004DC PORT... 1925 IPADDR.197.011.106.001

ADDR...00000000 116B04DC LEN....00000004 Select function code
+0000 00000002 | |

ADDR...00000000 116B0668 LEN....00000004 Output condition indicators
+0000 40000000 | ... |

ADDR...00000000 7F60C508 LEN....000003D8 Transmission Control Block
+0000 E3C3C240 C3E3D9D3 00050009 81801000 | TCB CTRL....a... |
+0010 00000000 00000000 00000000 138C4F08 ||. |
...
+0170 00000000 00020000 00003000 45000028 | |
+0180 1CB14000 40060000 C50B6A01 C50B6A01 |E...E... |
+0190 00000000 00000000 00000000 00000000 | |
+01A0 00000000 00000000 00000000 00000000 | |
+01B0 00000000 00000000 0000FFFF FFFF4000 | |
+01C0 00000000 00000000 00000000 00000001 | |
+01D0 07850185 F4258CA0 F425A310 50107F32 | .e.e4...4.t.&.". |
+01E0 00000000 0004FFCB 01030300 0101080A | |
...
+03D0 010E1301 0E21010E | |

TcpState..ESTAB TpiState..WLOXFER
SrcIPAddr.197.11.106.1 SrcPort..1925
DstIPAddr.197.11.106.1 DstPort..389
FLAGS.....ACK

Figure 6. Component Trace Full Format Showing Character Interpretation of Fields

Chapter 5. TCP/IP Services Traces and IPCS Support 59

|

The PKTTRACE statement and subcommand are applied to device links that are
defined in the TCP/IP address space through the LINK statement. Figure 7
illustrates the overall control and data flow in the IP packet tracing facility.

Supported Devices
IP packet tracing is supported for all network interfaces supported by TCP/IP
(including loopback).

Packet Trace Format
Use the VARY TCPIP PKTTRACE command to set up tracing from an operator
console.

SS Vary TCPIP ,
procname

S

S , PKTTRACE
(1) (2)

,PKT, LINKName=* , ON PKT Opt
LINKName=link_name OFF

ST

Notes:

1 Each option can be specified only once. The order of options is not important.

2 The MVS TRACE command must also be issued for component SYSTCPDA
to activate the packet trace. See “Appendix A. Collecting Component Trace
Data” on page 513 for details.

TCPIP
Profile/

VARY TCP/IP

TCPIP
Address
Space

TCPIP
Data

Space

CTrace
Dataset

IPCS
Format

Program

Trace
Report

Figure 7. Control and Data Flow in the IP Packet Tracing Facility

60 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

PKT Opt:

W

Packet Length
Protocol Type
Packet Dest Address
Packet Source Port
Packet Dest Port

Packet Length:

,FULL

=200
,ABBREV
,ABBREV=abbrev_length

Protocol Type:

,PROT=*

,PROT=TCP
,PROT=UDP
,PROT=ICMP
,PROT=protocol_number

Packet Dest Address:

,IP=*

,SUBNet=255.255.255.255
,IP=IP_address

,SUBNet=subnet_mask

Packet Source Port:

,SRCPort=*

,SRCPort=source_port

Packet Dest Port:

,DESTport=*

,DESTport=destination_port

Chapter 5. TCP/IP Services Traces and IPCS Support 61

procname
Specifies the name of the TCP/IP address space to query for information.

PKTTRACE
Requests PKTTRACE information.

PKT Opt

ABBREV
Specifies that a truncated portion of the IP packet is to be traced. You can
specify a length in the range 1—65535 or use the default of 200. The
ABBREV parameter can be used to reduce the volume of data stored in the
trace file.

DESTport
Specifies a port number that will be compared with the destination port of
inbound and outbound packets. The port number is an integer in the range
1—65535. If the destination port of a packet is the same as the specified
port number, the packet will be traced. This comparison is only performed
for packets using either the TCP or UDP protocol; packets using other
protocols are not traced. If the DESTPORT parameter is omitted, there is
no checking of the destination port of packets. If an asterisk (*) is specified,
packets of any protocol and any source port will be traced.

IP Specifies an IP address that will be compared with both the source and
destination addresses of inbound and outbound packets. If either the source
or destination address of a packet matches the specified IP address, the
packet will be traced. The IP address must be specified in dotted decimal
notation. If the IP option is omitted, or an asterisk (*) is specified, all IP
addresses will be traced.

LINKName
Specifies the name of the link defined in the preceding LINK statement. If
the LINKName parameter is omitted or an asterisk (*) is specified, the
PKTTRACE parameters will apply to all links prior to this statement.

To facilitate defining packet tracing when many links are involved, use the
PKTTRACE statement with the LINKName=* option to define packet tracing
characteristics for the majority of the links. Then use individual PKTTRACE
statements with specific LINKName parameters for each link that must be
defined differently from the majority.

OFF
Disables packet tracing for the links specified and removes the
characteristics defining how they should be traced.

If LINKName=* and all other parameters are defaults, all trace structures
are deactivated and removed from all existing links.

If LINKName=* and PROT=UDP, all trace structures for all resources are
analyzed; any matches are removed. If no trace structures remain, trace is
deactivated for that resource.

If LINKName=link_name and there are no other parameters, all trace
structures for link_name are deactivated and removed.

If LINKName=link_name,IPADR=127.0.0.1, that particular trace structure is
removed if it is found. If there is only one trace structure, then that structure
is removed and trace is deactivated for that resource.

62 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

ON
Turns on packet tracing, clears all settings previously defined and refreshes
just the default settings.

If you use LINKName=* and all other parameters are defaults, even if the
defaults are specified, the command results replaces any existing trace
structures for all existing links.

If you use LINKName=link_name and another nondefault parameter, the
command results are added to any existing trace structures. However, if the
existing trace structure for link_name is all defaults, the existing trace
structure will be discarded.

PROT
Specifies the protocol type to be traced. This can be specified as one of the
literals TCP, UDP, or ICMP, or as a number in the range 0—255 (ICMP=1,
TCP=6, UDP=17, and RAW=255). If the PROT parameter is omitted or an
asterisk (*) is specified, packets of any protocol will be traced.

SRCPort
Specifies a port number that will be compared with the source port of
inbound and outbound packets. The port number is an integer in the range
1—65535. If the source port of a packet is the same as the specified port
number, the packet will be traced. This comparison is only performed for
packets using either the TCP or UDP protocol; packets using other
protocols are not traced. If the SRCPORT parameter is omitted, there is no
checking of the source port of packets. If an asterisk (*) is specified,
packets of any protocol and any source port will be traced.

SUBNet
Specifies a subnet mask that applies to the host and network portions of
the IP address specified on the accompanying IP parameter. The subnet
mask must be specified in dotted decimal notation and must be specified in
conjunction with the IP parameter.

Starting Packet Trace
To start packet trace, use the following command:
V TCPIP,,PKT

Security Note: To use any VARY command, the user must be authorized in RACF.

The RACF profile for each user must have access for a resource of
the form MVS.VARY.TCPIP.xxx, where xxx are the first eight
characters of the command name. For packet trace, this would be
MVS.VARY.TCPIP.PKTTRACE.

Traces are placed in an internal buffer, which can then be written out using an
external writer. See “Appendix A. Collecting Component Trace Data” on page 513.
The MVS TRACE command must also be issued for component SYSTCPDA to
activate the packet trace.

Once you have started packet trace, you can display the status using the onetstat
command, as shown in the following example:
onetstat -p TCPCS -d
MVS TCP/IP onetstat IPA TCPIP Name: TCPCS 12:34:56

DevName: LOOPBACK DevType: LOOPBACK DevNum: 0000

Chapter 5. TCP/IP Services Traces and IPCS Support 63

|
|

LnkName: LOOPBACK LnkType: LOOPBACK Status: Ready
NetNum: 1 QueSize: 0 ByteIn: 0000000304 ByteOut: 0000000304

BSD Routing Parameters:
MTU Size: 00000 Metric: 00
DestAddr: 8.67.113.22 SubnetMask: 255.255.0.0

Packet Trace Setting:
Protocol: * TrRecCnt: 00000000 PckLength: FULL
SrcPort: * DestPort: *
IpAddress: * Subnet: ipaddressmask

In this example, the packet length (PckLength) is FULL.

Note: If you are a TSO user, use corresponding NETSTAT option.

Modifying Options with Vary
After starting packet trace, you can change the trace using the VARY command.
For example, if you want to change the packet trace to abbreviate the data being
traced, use the following command:
v tcpip,,pkt,abbrev

You can display the results of the VARY command using onetstat:
onetstat -p TCPCS -d
MVS TCP/IP onetstat CS V2R10 TCPIP Name: TCPCS 12:34:56

DevName: LOOPBACK DevType: LOOPBACK DevNum: 0000
LnkName: LOOPBACK LnkType: LOOPBACK Status: Ready

NetNum: 1 QueSize: 0 ByteIn: 0000000304 ByteOut: 0000000304
BSD Routing Parameters:

MTU Size: 00000 Metric: 00
DestAddr: 8.67.113.22 SubnetMask: 255.255.0.0

Packet Trace Setting:
Protocol: * TrRecCnt: 00000000 PckLength: 00200
SrcPort: * DestPort: *
IpAddress: * Subnet: ipaddressmask

Note: If you are a TSO user, use corresponding NETSTAT option.

Socket Data Trace
You can use the DATTRACE command to trace socket data (transforms) into and
out of the physical file structure (PFS). DATTRACE works with the following
Application Programming Interfaces (APIs):

v REXX

v C-sockets

v IMS®

v CICS®

v Native OS/390 UNIX

DATTRACE has the following format.

Notes:

1. Be sure to enter the DATTRACE command before the socket is opened.

2. The MVS TRACE command must also be issued for component SYSTCPDA to
activate the data trace. See “Appendix A. Collecting Component Trace Data” on
page 513 for details.

64 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

SS Vary TCPIP,
procname

S

S
FULL , JOBNAME , IP

, DATTrace,
ON
OFF

ST

FULL:

FULL

200
ABBREV=

abbrev_length

JOBNAME:

JOBNAME=*

JOBNAME=job_name

IP:

IP=*

SUBNet=255.255.255.255
IP=client_IP_address

SUBNet=subnet_mask

Following are descriptions of the DATTRACE parameters:

ON
Turns on socket data tracing, clears all settings previously defined and
refreshes just the default settings.

OFF
Turns off socket data tracing.

ABBREV
Specifies that a truncated portion of the IP packet is to be traced. You can
specify a length in the range 1—65535 or use the default of 200. The ABBREV
parameter can be used to reduce the volume of data stored in the trace file.

FULL
Specifies that the entire IP packet is to be traced

JOBNAME
Specifies the name of the TCP/IP address space to query for information

IP Specifies an IP address that will be compared with both the source and
destination addresses of inbound and outbound packets. If either the source or

Chapter 5. TCP/IP Services Traces and IPCS Support 65

destination address of a packet matches the specified IP address, the packet
will be traced. The IP address must be specified in dotted decimal notation. If
the IP option is omitted, or an asterisk (*) is specified, then all IP addresses will
be traced.

Note: IP address selection is not recommended for use with DATTRACE.

SUBNET
Specifies a SUBNET mask that applies to the host and network portions of the
IP address specified on the accompanying IP parameter. The subnet mask must
be specified in dotted decimal notation and must be specified in conjunction
with the IP parameter.

Starting Data Trace
You can start data trace for all jobnames using the VARY command:
V TCPIP,,DAT

Security Note:

1. To use any VARY command, the user must be authorized in RACF. This
replaces the old OBEY list authorization.

2. Each user’s RACF profile must have access for a resource of the form
MVS.VARY.TCPIP.xxx, where xxx is the first eight characters of the command
name. For data trace, this would be MVS.VARY.TCPIP.DATTRACE.

3. Traces are placed in an internal buffer, which can then be written out using an
external writer. The MVS TRACE command must also be issued for component
SYSTCPDA to activate the data trace. See “Appendix A. Collecting Component
Trace Data” on page 513.

Displaying Data Traces
You can use the NETSTAT or onetstat command to display data traces. Figure 8
shows a data trace for a single entry.

Figure 9 shows a data trace for multiple entries.

Formatting Packet Traces Using IPCS
You can format Packet Trace and Data Trace records using IPCS panels or a
combination of IPCS panels and the CTRACE command. (For a description of the
relevant IPCS panels, see “Appendix A. Collecting Component Trace Data” on
page 513.) The following options are available for both Packet Trace and Data
Trace:

PACKETTRACE
Select packet trace records

Data Trace Setting:
Jobname: * TrRecCnt: 0000000000 Length: FULL
IpAddr: * SubNet: 255.255.255.255

Figure 8. Data Trace: Single Entry

Data Trace Setting:
Jobname: MEGA4 TrRecCnt: 0000000000 Length: 200
IpAddr: 127.0.0.3 SubNet: 255.255.255.255
Jobname: * TrRecCnt: 0000000000 Length: 0
IpAddr: 127.0.0.9 SubNet: 255.255.255.255

Figure 9. Data Trace: Multiple Entries

66 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

X25 Select X25 records

DATATRACE Select data trace records

LINK (linkname1 . . . linkname10)
One to ten link names

IPADDR (ipaddr1 . . . ipaddr10)
Match on either the source or destination address:

nnn.nnn.nnn.nnn
A dotted IP address. Each nnn in the IP address can be
replaced with an asterisk (*) to indicate that the value can
be ignored. For example, in 9.67.*.14, the third byte is
ignored.

A Class A address

B Class B address

C Class C address

L Loopback address

TYPE (type1...type16)
Use one or more of the following device type keywords:

ATM
CDLC
CETIETHERNET
CETI8023
CETIETHERNET8023
CETITOKENRING
CLAWRS6000
CLAWETHERNET
CLAW8023
CLAWETHERNET8023
CLAWTOKENRING
CLAWFDDI
CTC
HIPPI
HYPERCHANNEL
IPAQENET
IUCV
LCSETHERNET
LCSETHERNET8023
LCSFDDI
LCSTOKENRING
LCS8023
LOOPBACK
MPC
OSAENET
OSAFDDI
SNALINK
SNALU0
SNALU62
X25NPSI
VIPA
X25

Chapter 5. TCP/IP Services Traces and IPCS Support 67

You can abbreviate the keyword as long as its meaning is clear; for
example, you can use CLAWF instead of CLAWFDDI.

Note: Class A, B, C, and Loopback are methods of specifying an IP address and
subnet for internet addresses.

Configuration Profile Trace
You can use the ITRACE statement in the PROFILE.TCPIP data set to activate
TCP/IP run-time tracing for configuration, the TCP/IP SNMP subagent, commands,
and the autolog subtask. ITRACE should only be set at the direction of an IBM
Support Center representative.

SS
CONFIG SUBAGENT 1

ITRACE ON
CONFig
SUBAGENt level
COMMAND
AUTODAEMON
CONFIG SUBAGENT

OFF
CONFig
SUBAGENt
COMMAND
AUTODAEMON

ST

Following are descriptions of the ITRACE parameters:

ON
Select ON to establish run-time tracing. ITRACE ON commands are cumulative
until an ITRACE OFF is issued.

OFF
Select OFF to terminate run-time tracing.

CONFig
Turn internal trace for configuration ON or OFF.

SUBAgent
Turn internal trace for TCP/IP SNMP subagent ON or OFF.

COMMAND
Turn internal trace for command ON or OFF.

AUTODAEMON
Turn internal trace for the autolog subtask ON or OFF.

level
Indicates the tracing level to be established. Levels are as follows:

Level for CONFIG

1 ITRACE for all of config

2 General level of tracing for all of config

3 Tracing for configuration set commands

4 Tracing for configuration get commands

5 Tracing for syslog calls issued by config

68 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

100 Tracing for the parser

200 Tracing for scanner

300 Tracing for mainloop

400 Tracing for commands

Levels for SUBAGENT

1 General subagent tracing

2 General subagent tracing, plus DPI traces

3 General subagent tracing, plus extended storage dump traces

4 All trace levels

Level for COMMAND

1 ITRACE for all commands

Following is an example illustrating how to use the ITRACE command:
ITRACE ON CONFIG 3
ITRACE OFF SUBAGENT

Trace output is sent to the following locations:

v Subagent trace output is directed to the syslog daemon. This daemon is
configured by the /etc/syslog.conf file and must be active.

v AUTOLOG trace output goes to ALGPRINT.

v Trace output for other components goes to SYSPRINT.

Socket API Traces
SOCKAPI is a new option for the TCP/IP CTRACE component SYSTCPIP. The
SOCKAPI option is intended to be used for application programmers to debug
problems in their applications. The SOCKAPI option captures trace information
related to the socket API calls that an application may issue. In previous versions of
IBM Communications Server for OS/390, the TCP/IP CTRACE options already
included a SOCKET trace option. However, the SOCKET option is primarily
intended for use by TCP/IP Service and provides information meant to be used to
debug problems in the TCP/IP socket layer, UNIX System Services, or the TCP/IP
stack.

CTRACE is available only to users with console operator access. If the application
programmer does not have console access, someone must provide the CTRACE
data to the programmer. For security reasons, it is suggested that only the trace
data related to the particular application be provided. The following sections explain
how to obtain the trace data for a particular application, format it, and save the
formatted output. The application data can be isolated when recording the trace, or
when formatting it, or both.

OS/390 provides several socket APIs that can be used by applications. Figure 10
on page 70 shows different APIs along with the high level flows of how they interact
with the TCP/IP stack. The SOCKAPI trace output is captured in the Sockets
Extended Assembler Macro API (the ″Macro API″). Given the structure of the
TCP/IP APIs, this trace also covers the Call Instruction API, the CICS socket API,
and the IMS socket API. Some of the socket APIs based on the Macro API currently
encapsulate some of the Macro API processing. For example, in a CICS

Chapter 5. TCP/IP Services Traces and IPCS Support 69

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

environment, CICS transactions do not issue an INITAPI call. Rather, this is done
automatically for the socket API by the TCP/IP CICS TRUE (Task Related User
Exit) component layer. If the socket API trace is active, trace records for the INITAPI
calls are created.

Recommended Options for the Application Trace
The CTRACE facility has flexibility such as filtering, combining multiple concurrent
applications and traces, and using an external writer. Some things to keep in mind
when using CTRACE:

v Even though the CTRACE can be used to trace multiple applications at the same
time and in conjunction with other trace options, it is not recommended. Multiple
traces make problem determination more difficult.

v For security reasons, the data being recorded should be filtered, to minimize the
overhead of recording the trace, to make formatting faster, to save storage, and
to minimize wrapping (overwriting of older trace records by new trace records).

Optimally, use the CTRACE facility to capture all the SOCKAPI trace records for
one application. The trace can be filtered various ways when formatting. If
necessary, you can limit the trace data collected by IP address or port number, but
you risk some records not being captured. For example, the problem may be that
the wrong IP address or port number was coded or used. Both the IP address and
port number are formatting options.

Recommended options for optimally capturing the application data follow.

v Trace only one application. Use the jobname or ASID option when capturing
the trace to limit the trace data to one application.

v Trace only the SOCKAPI option. To get the maximum number of SOCKAPI
trace records, specify only the SOCKAPI option. (You will also get exception
records. Exception records are always traced because they are considered
unusual events that merit attention.)

v Use an external writer. The external writer is recommended:

– To separate the SOCKAPI trace records from other internal data that exists in
a dump (for security and other reasons)

Application Programs and Subsystems

Sockets Extended
Call API

Sockets Extended
Assembler Macro API CS OS/390 TCP/IP C/C++ Sockets

UNIX System Services Callable BPX Sockets

LE (UNIX) C/C++ SocketsP
as

ca
l A

P
I

R
E

X
X

 S
oc

ke
ts

X
T

I R
F

C
10

06

X
T

I X
P

G
4.

2

S
U

N
 R

P
C

 4
.0

D
C

E
 R

P
C

S
N

M
P

 D
P

I 2
.0

S
U

N
 R

P
C

 3
.9

N
C

S
 R

P
C

X
-W

in
do

w
s

X
11

R
4

X
-W

in
do

w
s

X
11

R
6

S
N

M
P

 D
P

I 1
.2

C
IC

S
 C

so
ck

et
s

IM
S

S
oc

ke
ts

Network Interface Layer

IP Network Protocol Layer

TCP and UDP Transport Protocol Layer

Figure 10. TCP/IP Networking API Relationship on OS/390

70 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
||

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|
|

– To avoid interrupting processing with a dump of the trace data

– To keep the buffer size from limiting the amount of trace data

– To avoid increasing the buffer size (which requires restarting TCP/IP)

– To handle a large number of trace records

v Trace only one TCP/IP stack. If you are running with multiple TCP/IP stacks on
a single OS/390 image, use the external writer for only one TCP/IP stack.

v Activate the data trace only if more data is required. The SOCKAPI trace
contains the first 96 bytes of data sent or received, which is usually sufficient. If
additional data is needed, the data trace records can be correlated with the
SOCKAPI records.

How to Collect the SOCKAPI Trace Option
The existing CTRACE facility for TCP/IP’s SYSTCPIP component is used for the
SOCKAPI trace option. Collecting the trace is described generally in “Component
Trace” on page 47. This section describes how to collect the trace for use by
application programmers.

The trace can be started automatically when TCP/IP starts or can be started or
modified while TCP/IP is executing. A CTRACE PARMLIB member is required for
starting the trace automatically, and can optionally be used after TCP/IP has been
started.

CTRACE PARMLIB Member CTIEZBxx
Sample member CTIEZB00 is shipped with TCP/IP. The most important option is
BUFSIZE because it cannot be changed after TCP/IP is started. All the other
options can be changed while TCP/IP is active.

Note: The BUFSIZE is the size of the internal tracing buffer and is not relevant if
you are using the external writer.

To get SOCKAPI records, you must specify either the SOCKAPI or ALL option. It is
recommended that you use the ALL option only if necessary as the output can very
large.

TCP/IP Start Procedure
The CTRACE PARMLIB member may be specified in the TCP/IP start procedure or
on the START command. The sample TCPIPROC start procedure specifies member
name CTIEZB00. Specifying the member name on the START command depends
on how the TCP/IP start procedure is coded. Following is an example of overriding
the PARMLIB member name using the sample TCPIPROC start procedure.
S TCPIPROC,PARM='CTRACE(CTIEZBAN)'

TRACE Command
To start, modify, or stop the trace after TCP/IP has been started, use the MVS
TRACE command. The TRACE command replaces all prior settings except the
buffer size (which is set during TCP/IP initialization and cannot be modified). When
modifying the options, be sure to specify the SOCKAPI option. Following are some
examples showing how to start the trace. The SUB option is the subtrace name,
which for TCP/IP is the jobname of the stack (usually this is the TCP/IP start
procedure name). In these examples, the subtrace is TCPIPROC, the name of the
sample procedure. In the examples, variable fields are in lower case.

v Example 1. Activating the trace with just the SOCKAPI option:
TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpiproc)
R n,JOBNAME=(ezasokjs),OPTIONS=(sockapi),end

v Example 2. Specifying a PARMLIB member which contains the trace options:

Chapter 5. TCP/IP Services Traces and IPCS Support 71

|

|

|

|

|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpiproc),PARM=ctiezban

To stop the trace, you can either use the TRACE CT,OFF command or you can
re-issue TRACE CT,ON with different parameters. Following is an example of the
OFF option:

TRACE CT,OFF,COMP=SYSTCPIP,SUB=(tcpiproc)

When using the TRACE command, be sure to notice message ITT038I, which
indicates whether the command was successful or not:

14.11.29 ITT038I NONE OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT
COMMAND WERE SUCCESSFULLY EXECUTED.

or
14.11.40 ITT038I ALL OF THE TRANSACTIONS REQUESTED VIA THE TRACE CT
COMMAND WERE SUCCESSFULLY EXECUTED.

See OS/390 MVS System Commands for more information about the TRACE
command.

External Writer
If the trace is active, it is always written to an internal buffer (whose size is set to
BUFSIZE during TCP/IP initialization). The internal buffer is available only in a
dump. Optionally, the trace can also be written to an external data set using the
MVS CTRACE external writer. If you use an external writer, the trace records are
copied to a data set.

To use an external writer, you must create a procedure which specifies the job to
run (the external writer) and the trace output data sets. There is an example in
“Appendix A. Collecting Component Trace Data” on page 513. Also, see the OS/390
MVS Diagnosis: Tools and Service Aids for more information about CTRACE, the
external writer (including a sample procedure), dispatching priority for the external
writer job, and wrapping.

The external writer must be started before the trace can be activated. The trace
must be inactivated before the writer can be stopped. The writer must be stopped
before the data set can be formatted or transferred. For example, here is a
sequence of commands for using an external writer procedure named ″ctw″:
TRACE CT,WTRSTART=ctw
TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpiproc)

R n,JOBNAME=(ezasokjs),OPTIONS=(sockapi),WTR=ctw,end

<run application being traced>

TRACE CT,OFF,COMP=SYSTCPIP,SUB=(tcpiproc)
TRACE CT,WTRSTOP=ctw

The external data set (specified in the procedure ″ctw″) is now available for
formatting.

Filtering Options When Recording the Trace
Options for filtering include the following:

Component
Required -- SYSTCPIP for SOCKAPI

Subtrace
Required - TCP/IP stack name.

Trace option
Highly recommended to limit the tracing to the SOCKAPI option. You can
also filter on this option when formatting the trace.

72 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

Jobname
Highly recommended for socket applications to limit the trace to one
application. You can also filter on this option when formatting the trace.

ASID Highly recommended as an alternative to the jobname if the application has
already started running (otherwise, the ASID is unknown). You can also
filter on this option when formatting the trace.

IP address
Recommended only for certain scenarios (see discussion below). The IP
address is a filtering option when formatting the trace.

Port Recommended only for certain scenarios (see discussion below). The port
number is a filtering option when formatting the trace.

If trace data for multiple applications is collected in the same data set or in a dump,
the trace output should be filtered so that the application programmer sees only the
data for his/her application for security reasons.

The IP address and Port options can be used to filter the trace both when collecting
the trace and when formatting the trace. In general, it is best to collect all the
application records to avoid having to recreate the problem. Once the records are
collected, you can filter the records various ways when formatting the trace.

An example scenario in which you would only want to collect records for one IP
address is if there is a problem with a particular remote client, and the local
application has many clients. If you tried to record the trace records for all clients,
there could be a lot of data and the trace could wrap, thus overwriting older
records. Note that if you specify an IP address when collecting the trace, the trace
records with no IP address are also collected. So you will get all the records for the
problem client, and you’ll also get some other client records.

An example scenario in which you would only want to collect records for one port
number is if there is a problem with a server on one port. If you specify a port
number when collecting the trace, the trace records with no port number are also
collected. You get all the records for the problem server application, and some other
applications’ records.

IP address/port filtering, when specified, has a varying effect depending on the type
of socket call being traced. Table 13 describes the effect of IP address/port filtering
for the different types of socket API calls. The Yes or No specified in columns 2 and
3 indicates whether local port filtering and remote IP address filtering can be
activated for the socket calls in column 1. Yes means that if a filter is set, only the
calls which match that fillter will be collected. No means that whether or not a filter
is specified, all the calls will be collected (no filtering is done).

Table 13. IP Address/Port Filtering Effect on Different Types of Socket API Calls

Socket Call
Filtering Active?

Local Port Remote IP address

ACCEPT Yes No (1)

BIND Yes/No (2) No

CONNECT Yes/No (3) Yes

Chapter 5. TCP/IP Services Traces and IPCS Support 73

|
|
|

||
|
|

|
|
|

||
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

||

|
|

||

|||

|||

|||

Table 13. IP Address/Port Filtering Effect on Different Types of Socket API Calls (continued)

Socket Call
Filtering Active?

Local Port Remote IP address

CANCEL

GETCLIENTID

GETHOSTBYADDR

GETHOSTBYNAME

GETHOSTID

GETHOSTNAME

INITAPI

RECVFROM

RECVMSG

SELECT

SELECTEX

SENDMSG

SENDTO

SOCKET

TAKESOCKET

TERMAPI

No No

LISTEN Yes No

CLOSE

GETPEERNAME

GETSOCKNAME

GETSOCKOPT

GIVESOCKET

FNCTL

IOCTL

READ

READV

RECV

SHUTDOWN

SEND

SETSOCKOPT

WRITE

WRITEV

Yes Yes

Where Yes is indicated above, the assumption is made that the information
necessary for the filtering option is available. For example, if a SEND is issued on a
socket that is not bound and/or not connected, no filtering will take place. In
addition, the following describe some of the special considerations for the different
socket calls in the previous table.

1. Even though the remote IP address will be available after an ACCEPT call, it
will not be used for filtering the exit ACCEPT trace record. This is done to avoid
confusion where the entry trace record for ACCEPT would not be filtered but the
exit trace record would.

74 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|
|
|
|
|

|
|
|
|

2. Assumes a BIND issued for a non-zero port. If a BIND is issued for port 0
(meaning an ephemeral port will be assigned by TCP/IP), no filtering will take
place for this BIND call.

3. If the socket is bound at the time of the CONNECT, local port filtering will be
honored. Otherwise the CONNECT will not be subject to local port filtering.

Monitoring the Trace
Use the MVS command DISPLAY TRACE to check the trace options currently in
effect. Here’s an example of a console showing the display command and the
resulting output (the line numbers were added for discussion reference).
1. 14.27.14 D TRACE,COMP=SYSTCPIP,SUB=(tcpiproc)
2. 14.27.14 IEE843I 14.27.14 TRACE DISPLAY
3. SYSTEM STATUS INFORMATION
4. ST=(ON,0064K,00064K) AS=ON BR=OFF EX=ON MT=(ON,064K)
5. TRACENAME
6. =========
7. SYSTCPIP
8. MODE BUFFER HEAD SUBS
9. =====================
10. OFF HEAD 1
11. NO HEAD OPTIONS
12. SUBTRACE MODE BUFFER HEAD SUBS
13. ---
14. TCPIPROC ON 0008M
15. ASIDS *NONE*
16. JOBNAMES EZASOKJS
17. OPTIONS SOCKAPI
18. WRITER CTW

For component SYSTCPIP, do not be misled by line 10 in the example. It always
says the trace is off because TCP/IP uses the subtrace for all tracing. The subtrace
TCPIPROC on line 14 indicates the actual state of the trace. In this example, the
trace is active (ON) with an internal buffer size of 8 megabytes and only the
SOCKAPI option is active. Only one application (EZASOKJS) is being traced and
the trace is being written to an external writer.

Line Description

1 The MVS DISPLAY TRACE command. For more information on this
command, see OS/390 MVS System Commands.

2–4 These are explained in the OS/390 MVS System Messages, Vol 1
(ABA-ASA) for IEE843I.

5–7 Show that this is the CTRACE component SYSTCPIP.

8–11 These are not applicable for TCP/IP because TCP/IP uses only the
subtrace facility of the MVS CTRACE service. Instead of activating a global
trace, the trace options are specified for each stack individually.1 Thus,
there can be multiple TCP/IP stacks with different CTRACE options. Note
however that line 10 is useful -- it shows that there is one subtrace
(meaning one TCP/IP stack is active).

14 Shows the ″subtrace″ name is the TCP/IP procedure name (TCPIPROC in
this example), whether the trace is active (MODE=ON), and the buffer size
is eight megabytes. The buffer size is the number of bytes in the data
space that is used for recording the trace.

15–16 Show the ASID and jobname filtering values. If any ASIDs or jobnames are
listed, only those trace entries matching the ASID or jobname will be
collected. ″ASIDS *NONE*″ indicates that all address spaces are being
traced (there is no filtering).

Chapter 5. TCP/IP Services Traces and IPCS Support 75

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

||

||
|

||
|

||

||
|
|
|
|
|

||
|
|
|

||
|
|
|

17 shows the specific options that are active, as specified in the TRACE
command or in the CTIEZBxx PARMLIB member. If port or IP address
filtering were active, they would appear on this line.

18 Shows the external writer is inactive. If the writer is active, the writer
procedure name is shown instead of *NONE*.

Capturing the Trace
If you use only the internal buffer, you must obtain a dump with the TCP/IP data
space (TCPIPDS1) in order to view the CTRACE records. It is usually a good idea
to also capture the application address space. For example, using the MVS DUMP
command, type the following commands. Be sure to specify the TCP/IP data space
(TCPIPDS1) because that is where the CTRACE data is located. Note that the
SDATA options specified are appended to other options. The SDATA options shown
here are the generally recommended options.
DUMP COMM=(Sample dump for SOCKAPI)
R n,JOBNAME=(tcpiproc,ezasokjs),DSPNAME=('tcpiproc'.TCPIPDS1),CONT
R n,SDATA=(ALLNUC,CSA,LPA,LSQA,RGN,SWA,SQA,TRT),CONT
R n,END

Note: You can type the first three commands in advance, and you can then just
type the fourth command at the correct moment to capture the events.

If you use the external writer, see “External Writer” on page 72, which explains how
to capture the trace in a data set.

How to Format the SOCKAPI Trace Option
Use the IPCS CTRACE command to format the trace, both for a dump and for an
external writer. Interactively, you can either type the CTRACE command on the
IPCS Command panel or you can use the panel interface. IPCS is also available in
batch. Whichever interface you choose, for TCP/IP we recommend using the
CTRACE QUERY command to find out what subtraces are contained in the data
set. For example, the command CTRACE QUERY(SYSTCPIP) SHORT produced
the following output:
COMPONENT TRACE QUERY SUMMARY

COMPONENT SUB NAME
--------- --------

0001. SYSTCPIP TCPSVT
0002. SYSTCPIP TCPSVT3
0003. SYSTCPIP TCPSVT1
0004. SYSTCPIP TCPSVT2

There are several filters available which will help to limit the amount of data
formatted. In addition to the CTRACE options (start/stop time, etc.) provided by
IPCS, there are some options specifically for TCP/IP:

DUCB Not applicable for SOCKAPI. (DUCB is an internal TCP/IP token.)

CID (connection identifier)
Not applicable for SOCKAPI.

IPADDR
Can be used for SOCKAPI. Specify the IP address in dotted decimal
format, with a subnet mask. Several socket calls do not use an IP address.
To see the trace records without an IP address (or with an IP address of all
zero), specify zero for one of the IPADDR values. For example,
IPADDR(0,9.67.113/255.255.255.0) will format all CTRACE records with an
IP address of 000.000.000.000 and will format all CTRACE records with an
IP address of 009.067.113.*, where * is any number from 0 to 255.

76 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||
|
|

||
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

||

|
|

|
|
|
|
|
|
|
|

PORT Can be used for SOCKAPI.Specify the port number in decimal. Several
socket calls do not have an associated port number, such as INITAPI and
SOCKET. To see the trace records without a port (or with a port of 0),
specify zero for one of the port values. For example, PORT(0,389,1925)

You can save the formatted output to the IPCSPRNT data set.

If the formatted output does not contain the records you expect:

v In a dump, you can check the options specified when recording the trace by
using the TCPIPCS TRACE command to see the TCP/IP CTRACE filtering
options in effect. This will also indicate if any records were lost. See “Chapter 6.
IPCS Subcommands for TCP/IP” on page 87 for more information on the
TCPIPCS TRACE command.

v For either a dump or an external writer data set, use the CTRACE QUERY
command to see what tracing was in effect (subtrace name, start/stop times). For
a dump, this command will also show the buffer size and options. For example,
the command CTRACE QUERY(SYSTCPIP) SUB((TCPIPROC)) FULL produced the
following output for a dump:
COMPONENT TRACE QUERY SUMMARY

COMP(SYSTCPIP)SUBNAME((TCPIPROC))

START = 01/10/2000 19:49:21.234490 GMT
STOP = 01/10/2000 19:51:51.360653

Buffer size: 0256K

OPTIONS: ACCESS ,OPCMDS ,OPMSGS ,QUEUE ,ROUTE ,INIT ,SOCKAPI ,SOCKET

OPTIONS: MINIMUM

For TCP/IP, the first line of ″options″ (showing ACCESS) is the applicable one.
This shows the options as specified on the command line or in the CTIEZBxx
PARMLIB member.

See the OS/390 MVS IPCS User’s Guide for more information about CTRACE
formatting. See OS/390 MVS IPCS Commands for more information about the
CTRACE command.

How to Read and Interpret the SOCKAPI Trace Option
The SOCKAPI trace records trace the input and output parameters for most of the
API calls. The API calls not traced are GETIBMOPT, TASK, GLOBAL, and any API
calls that fail before the trace point is reached. (An API call will fail if module
EZBSOH03 cannot be located, if EZBSOH03 was unable to obtain storage, etc.). In
addition to tracing API calls, trace records are created for a few special situations
(Default INITAPI and Unsolicited Event exit being driven). For API calls, there is an
Entry record describing the input parameters and an Exit record describing the
output parameters (with some input parameters repeated for clarification). For
asynchronous calls, there is also an Async Complete (Asynchronous Complete)
record (see “Examples of SOCKAPI Trace Records” on page 79 below).

The following examples include:

v A SOCKAPI trace record

v Trace records for asynchronous applications

v GETHOSTBYADDR, GETHOSTBYNAME API calls

v External IOCTL commands

v API Call with an IOV parameter

Chapter 5. TCP/IP Services Traces and IPCS Support 77

||
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

v Default INITAPI

v Default TERMAPI

v SELECT

v SELECTEX

v Token error

v Unsolicited event exit

A SOCKAPI Trace Record
A typical SOCKAPI record is shown below. This example is a READ Entry.

The lines are numbered for discussion reference only. The description for each line
is for the example shown. Lines 1-5 are the separator and header lines which exist
for all SOCKAPI trace records. Lines 6-7 are optional header lines.

The parameters for the specific call follow the header lines. For Entry records, the
input parameters are shown. For Exit and Asynchronous Complete records, the
output parameters are shown and some input parameters may also be shown for
reference. Parameters are only formatted if they were specified in the call (i.e.,
optional parameters not supplied are not formatted). The parameters are listed in a
specific order for consistency. The parameter names are the same as the names in
the OS/390 IBM Communications Server: IP Application Programming Interface
Guide with a few exceptions; for example, S is formatted as SOCKET. The
parameter name, value, and address are shown on one line if the value will fit.
Numeric parameter values are in decimal unless followed by a lowercase x
indicating hexadecimal. Whenever possible, the values are interpreted (ERRNO,
etc.) for reference.
1. ==00007FE8
2. MVS026 SOCKAPI 60050042 19:31:08.338135 READ Entry
3. HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKGS
4. TCB......006E6A68 TIE......00008DF8 PLIST..00008E0C DUCB.....0000000C KEY..8
5. ADSNAME..GTASOKGS SUBTASK..MACROGIV TOKEN....7F6F3798 09902FB0
6. LOCAL PORT..12035 LOCAL IPADDR..9.67.113.58
7. REMOTE PORT..1034 REMOTE IPADDR..9.67.113.58
8. REQAREA..: 00008D90x Addr..00008D90
9. SOCKET...: 1 Addr..00008A38

10. NBYTE....: 40 Addr..00008A34
11. ALET.....: 00000000x Addr..000089A8
12. BUF......: (NO DATA) Addr..000089A8

Line Description

1 This separator line shows the previous SYSTCPIP component trace record
number in hexadecimal.

2 The first data line has the host name (MVS026), trace option (SOCKAPI),
trace code (60050042), time, and trace record name.

3 The home, primary, and secondary ASIDs are always the same value
(application’s ASID) for the SOCKAPI trace option. The jobname is also
shown.

4 The MVS TCB address is shown. TIE (Task Interface Element) is the value
of the TASK parameter on the EZASMI macro. The TIE is described in the
OS/390 IBM Communications Server: IP Application Programming Interface
Guide. The parameter list address and DUCB are shown. Multiple
concurrent calls can use the TIE; if so, they must have a different PLIST.
The key is the 4-bit storage key from the PSW.

5 The ADSNAME (from the INITAPI call) is formatted in EBCDIC. The subtask

78 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

||

||
|

||
|

||
|
|

||
|
|
|
|
|

||

name (from the INITAPI call) is formatted in EBCDIC if possible; otherwise,
it is formatted in hexadecimal. The token is an eight-byte value which
identifies the INITAPI call instance.

6–7 If applicable, the ports and IP addresses are shown. The ports are
formatted in decimal; the IP addresses are in dotted decimal.

8 The REQAREA parameter is shown because it was specified by the
application. This is the 4-byte token presented to the application’s exit when
the response to the function request is complete. At the far right, the
address in the application program of the REQAREA parameter is shown.

9 The SOCKET parameter is formatted in decimal. Its address is also shown.

10 The NBYTE parameter (number of bytes to be read) is formatted in
decimal, followed by its address.

11 The ALET parameter is formatted in hexadecimal, followed by its address.

12 The BUF parameter currently has no data (because no data has been read)
but its address is shown.In the READ Exit (or READ Async Complete)
record, if the call was successful, the first 96 bytes of the data are also
shown.

Examples of SOCKAPI Trace Records

Successful API Call: For asynchronous APIs, the Exit record merely indicates
whether or not the call was acceptable. The contents of general purpose register 15
are displayed to indicate this. The Asynchronous Complete record shows the actual
results of the call. In addition to the output parameters, several interesting values
are traced, including the contents of general purpose register 0, the pointer to the
asynchronous exit routine, the token passed to the asynchronous exit, the key in
which the asynchronous exit was invoked, and the authorization state in which the
exit is invoked. These values are not parameters on the GETHOSTID call, so their
addresses are not shown. In this example, note also that the return code is
formatted in dotted decimal and the meaning of the return code is provided.

Note: The API call may actually complete synchronously, in which case the Async
Complete trace record may appear in the trace prior to the Exit record.

==00007B01
MVS026 SOCKAPI 60050012 19:27:08.111729 GETHOSTID Exit
HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKOS
TCB......006E6A68 TIE......00006DF8 PLIST..00006E0C DUCB.....0000000C KEY..8
ADSNAME..EZASOKOS SUBTASK..00000000 00000000 TOKEN....7F6F3798 09902FB0
REQAREA..: 00006D90x Addr..00006D90
R15......: 0 (CALL ACCEPTED)
==00007B05
MVS026 SOCKAPI 60050032 19:27:08.111741 GETHOSTID Async Complete
HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKOS
TCB......006E6A68 TIE......00006DF8 PLIST..00006E0C DUCB.....0000000C KEY..8
ADSNAME..EZASOKOS SUBTASK..00000000 00000000 TOKEN....7F6F3798 09902FB0
REQAREA..: 00006D90x Addr..00006D90
R0.......: 0x (NORMAL RETURN)
ASYNC PTR: 00006B1C
EXIT TOKEN: 00006B98x
EXIT KEY.: 8x
AUTHORIZATION STATE: PROBLEM
RETCODE..: 9.67.113.58 (HOST IP ADDRESS) Addr..00006EB4

API Call Fails Synchronously: An asynchronous API call may fail synchronously
or asynchronously. In this example, the WRITE call error was detected in the
synchronous processing, so general purpose register 15 has a non-zero value. The

Chapter 5. TCP/IP Services Traces and IPCS Support 79

|
|
|

||
|

||
|
|
|

||

||
|

||

||
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

ERRNO value is interpreted (in this case, the NBYTE parameter on the WRITE call
had a value of zero, which is not acceptable).

Note: The ERRNO value is the TCP/IP Sockets Extended Return Code. See
OS/390 IBM Communications Server: IP and SNA Codes for information
about TCP/IP Sockets Extended Return Codes.

==00007B93
MVS026 SOCKAPI 60050057 19:27:13.817195 WRITE Exit
HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKOS
TCB......006E6A68 TIE......00006DF8 PLIST..00006E0C DUCB.....00000009 KEY..8
ADSNAME..EZASOKOS SUBTASK..00000000 00000000 TOKEN....7F6F3798 09902FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..1031 REMOTE IPADDR..9.67.113.58
REQAREA..: 00006D90x Addr..00006D90
SOCKET...: 1 Addr..00006BDC
R15......: NON-ZERO (CALL WAS NOT ACCEPTED)
ERRNO....: 10184 (EIBMWRITELENZERO) Addr..00006EB0
RETCODE..: -1 Addr..00006EB4

API Call Fails Synchronously with Parameter Not Addressable: If a parameter
specified in the API call is not addressable by TCP/IP when creating the SOCKAPI
record, the string (** PARAMETER NOT ADDRESSABLE **) is shown instead of the
parameter value. The parameter address is shown at the far right, as usual.
==00021347A
VIC102 SOCKAPI 60050050 17:36:51.302111 SEND Entry

HASID....0026 PASID....0026 SASID..0026 JOBNAME..USER2
TCB......006D6D50 TIE......0000BDF8 PLIST..0000BE0C DUCB.....00000009 KEY..8
ADSNAME..USER2 SUBTASK..EZASOKEC TOKEN....7F755798 09806FB0
LOCAL PORT..0 LOCAL IPADDR..0.0.0.0
REMOTE PORT..11007 REMOTE IPADDR..9.37.65.134
SOCKET...: 0 Addr..0000BA50
NBYTE....: 96 Addr..0000BA6C
BUF......: (** PARAMETER NOT ADDRESSABLE **) Addr..00015F38
FLAGS....: 0 (NONE) Addr..0000BC04

API Call Fails Synchronously with Diagnostic Reason Code: If the API call
does not complete successfully, the return code, ERRNO value (in decimal and
interpreted), and possibly a diagnostic reason code are shown. The first two bytes
of the diagnostic reason code are a qualifier (IBM internal use only). The last two
bytes of the diagnostic reason codes are the UNIX ERRNOJR values described in
the OS/390 IBM Communications Server: IP and SNA Codes.
==000085C1
MVS026 SOCKAPI 60050004 19:36:01.934828 ACCEPT Exit
HASID....01F6 PASID....01F6 SASID..01F6 JOBNAME..EZASOKUE
TCB......006E6A68 TIE......00006DF0 PLIST..00006E04 DUCB.....0000000D KEY..8
ADSNAME..EZASOKUE SUBTASK..EZASOKUE TOKEN....7F6F3798 09902FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..0 REMOTE IPADDR..0.0.0.0
REQAREA..: 00000000x Addr..00006D80
SOCKET...: 0 Addr..00006BA8
NAME.....: (NO DATA) Addr..00006BAC
DIAG. RSN: 76620291x
ERRNO....: 5 (EIO) Addr..00006EA8
RETCODE..: -1 Addr..00006EAC

GETHOSTBYADDR, GETHOSTBYNAME API Calls: The GETHOSTBYADDR and
GETHOSTBYNAME API calls use the HOSTENT structure described in the calls in
the OS/390 IBM Communications Server: IP Application Programming Interface
Guide. As shown in the example, the HOSTENT address is shown on one line and

80 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

the contents of the HOSTENT structure are described on separate lines. There may
be multiple aliases and host addresses; each one is listed separately. In this
example, there are two aliases.
==000051CB
MVS026 SOCKAPI 60050066 19:02:01.426345 GETHOSTBYADDR Exit

HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKGH
TCB......006E6A68 TIE......00007DF8 PLIST..00007E0C DUCB.....0000000A KEY..0
ADSNAME..EZASOKGH SUBTASK..00000000 00000000 TOKEN....00000000 09902FB0
HOSTENT..: Addr..00005F08
HOSTNAME.: Loopback Addr..00005F30
FAMILY...: 2 Addr..00005F10
ADDR LEN.: 4 Addr..00005F14
HOSTADDR.: 127.0.0.1 Addr..00005F54
ALIAS....: LOOPBACK Addr..00005F3C
ALIAS....: LOCALHOST Addr..00005F48
RETCODE..: 0 Addr..00007EB4

External IOCTL Commands: For external IOCTL commands, the command name
is interpreted. For IBM internal-use-only commands, the hexadecimal value of the
command is shown. The input and output for each command may differ. In this
example, the SIOCGIFCONF command requests the network interface
configuration. The exit record shows the call was successful (the return code is
zero) and the network interface configuration is shown.
==00001734

MVS026 SOCKAPI 6005001F 20:42:44.805938 IOCTL Entry

HASID....19 PASID....19 SASID..19 JOBNAME..USER1
TCB......006AFD40 TIE......68DF8 PLIST..00068E0C DUCB.....00000008 KEY..8
ADSNAME..USER1 SUBTASK..00000000 00000000 TOKEN....7F67F798 0A2B4FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..0 REMOTE IPADDR..0.0.0.0
SOCKET...: 0 Addr..000685A0
COMMAND..: SIOCGIFCONF Addr..0006782C
REQARG...: Addr..00068928

BUFFER LENGTH.. 99
==00000323
MVS026 SOCKAPI 60050020 20:42:44.806101 IOCTL Exit

HASID....19 PASID....19 SASID..19 JOBNAME..USER1
TCB......006AFD40 TIE......68DF8 PLIST..00068E0C DUCB.....00000008 KEY..8
ADSNAME..USER1 SUBTASK..00000000 00000000 TOKEN....7F67F798 0A2B4FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..0 REMOTE IPADDR..0.0.0.0
SOCKET...: 0 Addr..000685A0
COMMAND..: SIOCGIFCONF Addr..0006782C
RETARG...: Addr..000685C4
Socket Name.. TR1

PORT.... 0 IPADDR.... 9.67.113.58
FAMILY.. 2 (AF_INET) RESERVED.. 0000000000000000x

RETCODE..: 0 Addr..00068EB4

API Call with an IOV Parameter: The IOV parameter is an array of structures
used on the READV, RECVMSG, SENDMSG, and WRITEV API calls. Each
structure contains three words: the buffer address, the ALET, and the buffer length.
Each IOV entry is shown on one line. When there is data available (READV Exit,
RECVMSG Exit, SENDMSG Entry, and WRITEV Entry), some of the buffer data is
also displayed. A maximum of 96 bytes of data are displayed.

In the READV Exit example, three IOV entries were specified, but only two were
used. All the data is displayed because the total is less than 96 bytes.

Chapter 5. TCP/IP Services Traces and IPCS Support 81

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

==00001773
MVS026 SOCKAPI 60050045 19:19:20.954789 READV Exit

HASID....0024 PASID....0024 SASID..0024 JOBNAME..EZASOKKS
TCB......006E6A68 TIE......00007DF8 PLIST..00007E0C DUCB.....0000000B KEY..8
ADSNAME..EZASOKKS SUBTASK..EZASOKKS TOKEN....7F6F3798 09902FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..1032 REMOTE IPADDR..9.67.113.58
REQAREA..: 00007D90x Addr..00007D90
SOCKET...: 1 Addr..0000776C
IOVCNT...: 3 Addr..000077B4
IOVENTRY.: LENGTH..10 ALET..0x Addr..00007890

+0000 E38889A2 4089A240 8396 | This is co |
IOVENTRY.: LENGTH..10 ALET..0x Addr..0000789A

+0000 99998583 A34B | rrect. |
IOVENTRY.: LENGTH..10 ALET..0x Addr..000078A4
RETCODE..: 16 BYTES TRANSFERRED Addr..00007EB4

Default INITAPI: An explicit INITAPI call is not required prior to some API calls, so
TCP/IP creates a default INITAPI. (See the OS/390 IBM Communications Server: IP
Application Programming Interface Guide for the complete list.) The default INITAPI
record is traced after the Entry record for the API call that caused the default
INITAPI to occur. There is just one record for this event (no Exit record).
==000077EC
MVS026 SOCKAPI 60050040 19:24:11.552924 Default INITAPI

HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKSX
TCB......006E6A68 TIE......00007DF0 PLIST..00007E04 DUCB.....0000000A KEY..8
ADSNAME..EZASOKSX SUBTASK..00000000 00000000 TOKEN....7F6F3798 09902FB0
MAXSNO...: 49
APITYPE..: 2 (AF_INET)
RETCODE..: 0

Default TERMAPI: Usually, an application will end the connection between itself
and TCP/IP by issuing the TERMAPI call. But sometimes, the connection will end
for another reason, such as the application being cancelled. In this case, TCP/IP
will issue a default TERMAPI. The default TERMAPI is traced in a SOCKAPI trace
record. There is just one record for this event (no Exit record).
==00000168
MVS026 SOCKAPI 60050069 22:46:48.185419 Default TERMAPI

HASID....01F9 PASID....01F9 SASID..01F9 JOBNAME..EZASOKQS
TCB......006E6A68 TIE......08920888 PLIST..00000000 DUCB.....00000008 KEY..6
ADSNAME..EZASOKQS SUBTASK..EZASOKQS TOKEN....7F6F3798 00000000

SELECT: For SELECT and SELECTEX, the socket masks are formatted in both
binary and decimal. The socket list is displayed first in binary. The socket numbers
are indicated by the bit position in the mask, starting with bit position 0 (for socket
0) which is the far right bit. The bit positions (socket numbers) are shown at left. For
example, the lowest numbered sockets are on the last line, they are sockets 0 to
31. In this line, only sockets 0, 1, 2, and 3 are selected. Below the binary mask, the
decimal socket numbers are listed in numerical order. This is a very handy way to
check if the mask is coded as it is intended.
==00024EDF

BOTSWANA SOCKAPI 6005004C 20:51:35.477605 SELECT Entry

HASID....0078 PASID....0078 SASID..0078 JOBNAME..TN1
TCB......007F6988 TIE......1463227C PLIST..1477EF18 DUCB.....00000016 KEY..8
ADSNAME.. SUBTASK..14632138 TOKEN....7F75FFC8 1468FA90
REQAREA..: 1477EEF0x Addr..1477EF98
MAXSOC...: 100 Addr..14632258
TIMEOUT..: SECOND..0 MICRO SECOND..500000 Addr..1463226C

82 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

RSNDMSK..: Addr..14632108
SOCKET NO. READ SOCKET MASK (INPUT)
(Decimal) (Binary)
127 96 11110111
95 64 11111111 11111111 10111111 11111111
63 32 00111011 11111111 11111111 11111101
31 0 00000000 00000000 00000000 00001111
SELECTED SOCKETS:
0, 1, 2, 3, 32, 34, 35, 36, 37, 38
39, 40, 41, 42, 43, 44, 45, 46, 47, 48
49, 50, 51, 52, 53, 54, 55, 56, 57, 59
60, 61, 64, 65, 66, 67, 68, 69, 70, 71
72, 73, 74, 75, 76, 77, 79, 80, 81, 82
83, 84, 85, 86, 87, 88, 89, 90, 91, 92
93, 94, 95, 96, 97, 98, 100, 101, 102, 103

SELECTEX: The SELECTEX call can contain a list of ECBs. The high-order bit on
the SELECB adddress indicates whether or not a list of ECBs was specified. Since
the high-order bit is on in this example, there is a list of ECBs. The end of the list is
indicated by the high-order bit in the ECB address. In this example, the time limit
expired before any ECBs were posted. Since no selected sockets were ready, the
read, write, and error masks indicate there is no data to report.
==000078FB
MVS026 SOCKAPI 6005004F 19:25:48.610379 SELECTEX Exit

HASID....0027 PASID....0027 SASID..0027 JOBNAME..EZASOKX4
TCB......006E6A68 TIE......00007DF8 PLIST..00007E0C DUCB.....0000000C KEY..8
ADSNAME..EZASOKX4 SUBTASK..BARBARA TOKEN....7F6F3798 09902FB0
MAXSOC...: 33 Addr..00007AE8
TIMEOUT..: SECOND..0 MICRO SECOND..35 Addr..00007AF4
RRETMSK..: (NO DATA) Addr..00007B0C
WRETMSK..: (NO DATA) Addr..00007B14
ERETMSK..: (NO DATA) Addr..00007B1C
SELECB...: Addr..80007B60
ECB......: 00000000x Addr..00007B70
ECB......: 00000000x Addr..00007B74
ECB......: 00000000x Addr..00007B78
ECB......: 00000000x Addr..80007B7C
RETCODE..: 0 (TIME LIMIT EXPIRED) Addr..00007EB4

Token Error: When an API call fails very early in processing, before the SOCKAPI
Entry record is created, the Token Error SOCKAPI record is written. In the example,
the BIND call failed due to the token being overwritten (the token at offset 8 has
x’FFFF’). There is no BIND Entry or Exit record.
==00000158
MVS026 SOCKAPI 6005006A 22:46:48.173348 Token Error

HASID....01F9 PASID....01F9 SASID..01F9 JOBNAME..EZASOKQS
TCB......006E6A68 TIE......00006DF8 PLIST..00006E0C DUCB.....00000008 KEY..8
ADSNAME.. SUBTASK.. TOKEN....7F6F3798 09902FB0
CALL.....: BIND
TOKEN....: 7F6F3798 09902FB0 FFFF0000 00003FC5x
ERRNO....: 1028 (EIBMINVTCPCONNECTION)
RETCODE..: -1

Unsolicited Event Exit: If the unsolicited event exit is driven, a SOCKAPI trace
record is created (if the SOCKAPI trace option is active).

Note: The key in the header is 0. This means the UEE trace record was created
when TCP/IP was in key zero. The UEEXIT has key 8, when means the UE
exit will be invoked in key 8.

Chapter 5. TCP/IP Services Traces and IPCS Support 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

==000086FC
MVS026 SOCKAPI 60050041 19:36:04.965468 Unsolicited Event Exit Invoked

HASID....0024 PASID....0024 SASID..0024 JOBNAME..TCPIPROC
TCB......006E6A40 TIE......00006DF0 PLIST..00000000 DUCB.....00000000 KEY..0
ADSNAME..EZASOKUE SUBTASK..EZASOKUE TOKEN....7F6F3798 00000000
UEEXIT...: ADDRESS..00006B30 TOKEN..00006D80x ASCB.....00F94C80x KEY..8

REASON...1 (TCP/IP TERMINATION)

How to Correlate the Data Trace and Packet Trace with the SOCKAPI
Trace

The SOCKAPI option only records the first 96 bytes of data. To see all the data that
was sent or received, you will also have to activate the data trace or packet trace.
The data trace can be correlated easily with the SOCKAPI trace option because
both traces are recording data between the application and the TCP/IP stack. The
traces can be merged with the IPCS MERGE subcommand. The data trace header
contains fields that will allow the full data to be correlated.

Figure 11 on page 85 shows the data trace record corresponding to the READ Exit
SOCKAPI trace entry in Figure 12 on page 85. The server issues READ and waits
for a message. The data trace record shows the entire 120 bytes of data because
the FULL option was used when starting the data trace. In the READ Exit record,
only the first 96 bytes of data are shown. The records in the two traces can be
correlated by time, jobname, ASID, MVS TCB address, data length, port, and IP
address:

Time The data trace time must be prior to the READ Exit record time. The data
trace time is 20:08:09.181239. The READ Exit record time is
20:08:09.181354.

Jobname
The jobname is EZASOKAS in both records.

ASID The ASID is the server’s 0024 (hexadecimal) in both records.

TCB The TCB is 006E6A68 in both records.

Data length
In the data trace, the length is 78 hexadecimal, which is 120 decimal. The
SOCKAPI trace record shows the return code is 120 (decimal) bytes.

Port The source port number in the data trace record (11007 decimal) matches
the local port number in the SOCKAPI trace record. The destination and
remote ports also match (1040 decimal).

IP Address
The IP addresses are handled in the same way as the port numbers. In this
example, both the client and server were on the same TCP/IP stack, so the
IP addresses are the same.

84 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

||
|
|

|
|

||

||

|
|
|

||
|
|

|
|
|
|

|

The packet trace, on the other hand, does not correlate well with the SOCKAPI

trace option. The packet trace will record data being sent/received between the
TCP/IP stack and the network. The packet trace data has headers and the data
may be segmented or packed.

MVS026 DATA 00000003 20:08:09.181239 Data Trace

JOBNAME = EZASOKAS FROM FULL
TOD CLOCK = XB395B2C2 40035C03
PKT 2 LOST RECORDS = 0 HDR SEQUENCE NUM = 1
SOURCE IP ADDR = 9.67.113.58 DEST IP ADDR = 9.67.113.58
SOURCE PORT = 11007 DEST PORT = 1040 ASID = X0024 TCB = X006E6A68
DATA LENGTH = X0078

0000 E38889A2 4089A240 8140A2A3 99899587 *This is a string|....@..@.@......*
0010 40A689A3 88408696 99A3A840 83888199 * with forty char|@....@.....@....*
0020 8183A385 99A24B40 E38889A2 4089A240 *acters. This is |......K@....@..@*
0030 8140A2A3 99899587 40A689A3 88408696 *a string with fo|.@......@....@..*
0040 99A3A840 83888199 8183A385 99A24B40 *rty characters. |...@..........K@*
0050 E38889A2 4089A240 8140A2A3 99899587 *This is a string|....@..@.@......*
0060 40A689A3 88408696 99A3A840 83888199 * with forty char|@....@.....@....*
0070 8183A385 99A24B40 *acters. |......K@ *

Figure 11. Data trace record.

==00002403
MVS026 SOCKAPI 60050043 20:08:09.181354 READ Exit

HASID....0024 PASID....0024 SASID..0024 JOBNAME..EZASOKAS
TCB......006E6A68 TIE......00006DF8 PLIST..00006E0C DUCB.....00000009 KEY..8
ADSNAME..EZASOKAS SUBTASK..EZASOKAS TOKEN....7F6F3798 09902FB0
LOCAL PORT..11007 LOCAL IPADDR..9.67.113.58
REMOTE PORT..1040 REMOTE IPADDR..9.67.113.58
REQAREA..: 00006D90x Addr..00006D90
SOCKET...: 1 Addr..00006B94
NBYTE....: 120 Addr..00006B90
BUF......: Addr..00006B96

+0000 E38889A2 4089A240 8140A2A3 99899587 | This is a string |
+0010 40A689A3 88408696 99A3A840 83888199 | with forty char |
+0020 8183A385 99A24B40 E38889A2 4089A240 | acters. This is |
+0030 8140A2A3 99899587 40A689A3 88408696 | a string with fo |
+0040 99A3A840 83888199 8183A385 99A24B40 | rty characters. |
+0050 E38889A2 4089A240 8140A2A3 99899587 | This is a string |

RETCODE..: 120 BYTES TRANSFERRED Addr..00006EB4
==00002407

Figure 12. SOCKAPI trace record.

Chapter 5. TCP/IP Services Traces and IPCS Support 85

||

|
|
|

86 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 6. IPCS Subcommands for TCP/IP

The IPCS subcommands for TCP/IP are used to format data from IPCS system
dumps. This chapter describes the commands (including description, syntax,
parameters, and sample output), installation, and execution.

There are two types of subcommands.

v Many of the TCP/IP subcommands work on a specific stack. These
subcommands are grouped under the TCPIPCS subcommand to share the TCP
(to select the stack) and TITLE options.

v The remaining TCP/IP IPCS subcommands do not require a TCP/IP stack, so
they are not under the TCPIPCS subcommand.

Table 14 lists all the IPCS subcommands.

Note: The TCP/IP IPCS commands are not supported for IPCS ″active″.

Table 14. TCP/IP IPCS Commands - showing the TCPIPCS commands first, followed by the
general commands.

Command Description Alias

TCPIPCS ALL Equivalent to TCPIPCS STATE
TSEB TSDB TSDX DUAF CONFIG
ROUTE SOCKET STREAM RAW
TCB UDP LOCK TIMER STORAGE

TCPIPCS API Display control blocks for Sockets
Extended Assembler Macro and
Pascal APIs

TCPIPCS CONFIG Display device configuration
information

TCPIPCS CNFG

TCPIPCS CONF

TCPIPCS
CONNECTION

Display active or all connections. TCPIPCS CONN

TCPIPCS DETAIL Equivalent to TCPIPCS TSEB TSDB
TSDX DUAF

TCPIPCS CBS

TCPIPCS DU Equivalent to TCPIPCS DUAF DUCB

TCPIPCS DUAF Summarize DUCBs TCPIPCS DUCBS

TCPIPCS DUCB Find and Format DUCBs

TCPIPCS FIREWALL Display information about Firewall
filters and tunnels

TCPIPCS FRCA Display state information about FRCA
connections and objects

TCPIPCS HASH Display TCP/IP data stored in hash
tables

TCPIPCS HEADER Display dump Header info TCPIPCS HDR

TCPIPCS HELP Display syntax help for TCPIPCS
command

TCPIPCS ?

TCPIPCS LOCK Display locks TCPIPCS LOCKSUM

TCPIPCS MAP Display storage map

TCPIPCS MTABLE Display module table

TCPIPCS POLICY Display service policy data

© Copyright IBM Corp. 1994, 2000 87

|

|

|
|
|

|

|
|
|

|
|

|

|

||
|

|||

||
|
|
|

|

||
|
|

|

||
|
|

|

|
|
||

||
|
|

|||

|||

|||

||
|
|

||
|
|

||
|
|

|||

||
|
|

|||

|||

|||

|||

Table 14. TCP/IP IPCS Commands - showing the TCPIPCS commands first, followed by the
general commands. (continued)

Command Description Alias

TCPIPCS PROFILE Display TCP/IP configuration data in
the format of a profile dataset

TCPIPCS PROF

TCPIPCS PROTOCOL Invokes RAW, TCB, UDP

TCPIPCS RAW Display Raw control blocks TCPIPCS MRCB

TCPIPCS RAWSUM

TCPIPCS RCB

TCPIPCS ROUTE Display routing information TCPIPCS RTE

TCPIPCS SOCKET Display socket information TCPIPCS SCB

TCPIPCS SOCKSUM

TCPIPCS STATE Display general stack information TCPIPCS

TCPIPCS STORAGE Display TCP/IP storage usage TCPIPCS STOR

TCPIPCS STREAM Display Streams information TCPIPCS SKSH

TCPIPCS STREAMS

TCPIPCS SUMMARY Equivalent to TCPIPCS DUAF
CONFIG SOCKET

TCPIPCS TCB Display TCP protocol control blocks TCPIPCS MTCB

TCPIPCS TCBSUM

TCPIPCS TELNET Display Telnet information

TCPIPCS TIMER Display information about Timers TCPIPCS TIMESUM

TCPIPCS TRACE Display TCP/IP CTrace information TCPIPCS TCA

TCPIPCS TREE Display information about data stored
in Patricia trees

TCPIPCS TREESUM

TCPIPCS TSDB Format TSDB

TCPIPCS TSDX Format TSDX

TCPIPCS TSEB Format TSEB

TCPIPCS UDP Display UDP control blocks TCPIPCS MUCB

TCPIPCS UCB

TCPIPCS UDPSUM

TCPIPCS VMCF Display information about VMCF and
IUCV users

TCPIPCS XCF Display information about XCF links
and dynamic VIPA

ERRNO Interpret error numbers

ICMPHDR Format an ICMP header

IPHDR Format an IP header

SETPRINT Set destination so the IPCS
subcommand output will be sent to a
user ID and/or the printer

SKMSG Format a stream message

88 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|||

||
|
|

|||

|||

|

|

|||

|||

|

|||

|||

|||

|

||
|
|

|||

|

|||

|||

|||

||
|
|

|||

|||

|||

|||

|

|

||
|
|

||
|
|

|||

|||

|||

||
|
|

|

|||

Table 14. TCP/IP IPCS Commands - showing the TCPIPCS commands first, followed by the
general commands. (continued)

Command Description Alias

TCPHDR Format a TCP header

TOD Convert a S/390 64-bit time-of-day
timestamp to a readable date and
time

UDPHDR Format UDP header

TCPIPCS
The following describes the TCPIPCS command.

Command Syntax
The command syntax for all TCPIPCS subcommands includes an option to specify
the TCP stack and whether the title will be displayed.

Note: For an explanation about syntax diagrams, see “Appendix E. How to Read a
Syntax Diagram” on page 547.

SS TCPIPCS W subcommand
(parameters)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
The command syntax parameters for the TCPIPCS command is described below.

subcommand
Default is STATE.

parameters
Each subcommand has its own parameters.

v If a command has variable parameters, they can be omitted, specified as a
single variable, or specified as a list. If no variable parameters are specified,
an asterisk must be used as a place-holder if any keyword parameters will be
specified. If two or more variable parameters are specified, they must be
enclosed in parentheses.

v To distinguish among the variable parameters, a parameter is assumed to be
one of the following:

– An index or small number if it is 4 digits or less, begins with 0–9, and
contains only hexadecimal digits (0–9, a–f, A–F). If a command accepts
multiple indices or small numbers, both are compared to the values and
the first matching field is used.

– An address if it is more than 4 digits, begins with 0–9, and contains only
hexadecimal digits. For example, for the TCPIPCS DUAF command, both

Chapter 6. IPCS Subcommands 89

|
|

|||

|||

||
|
|

|

|||
|

|
|

|

|

|
|

|
|

||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

the DUCB and ASCB addresses of each DUCB are compared to the
address parameter, and the first matching field is used to select the DUCB
to display.

– An IPCS symbol name can also be specified for an address.

– Otherwise, the parameter is assumed to be a character string variable
(such as TCP/IP procedure or job name, user ID, command name).

v Keyword parameters may be in any order.

v If there are both keyword and variable parameters, all variable parameters
must precede the keywords.

TCP
Specifies which TCP/IP stack will be processed. The stack can be specified
directly or indirectly. A stack can be specified directly by coding the TCP
parameter with either tcp_proc_name or tcp_index. If no stack is specified
directly, the output is reported for the stack with the lowest index which matches
the release of the TCPIPCS command. Once a particular stack is specified
(whether specified directly or indirectly), that stack becomes the default. The
stack index is saved as a symbol and is used as the default in future
invocations of the TCPIPCS command. An alias for the TCP option is PROC.

Note: All eight stack indices are available when TCP/IP starts, so any stack
index may be selected. The fact that an index exists does not
necessarily mean this stack index has ever been used. If you specify a
stack index that has not been used, the version and release fields for
this stack are zero, so you will get a message indicating the stack is not
the same version and release as the TCPIPCS command Selected
TCP/IP is not V2R10.

tcp_proc_name
TCP/IP procedure name.

tcp_index
TCP/IP stack index (1–8).

TITLE
The title contains information about the dump and about the TCPIPCS
command. By default, the title information is displayed. The title contains the
following information.

v TCPIPCS command input parameters.

v Dump dataset name.

v Dump title.

v TSAB address.

v Table listing all TCP/IP stacks used in the dump and their TSEB address,
stack index, procedure name, stack version, TSDB address, TSDX address,
ASID, trace option bits, and stack status.

v Count of the number of TCP/IP stacks defined (used).

v Count of the number of active TCP/IP stacks found.

v Count of the number of active TCP/IP stacks matching the TCPIPCS
command version and release.

v Procedure name and index of the stack being reported.

NOTITLE
Suppress the title lines. This is handy when you are processing lots of
commands on the same dump and don’t care to see the title information
repeated.

90 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|

|

|

|

|
|
|

|

|

|
|

|

|
|
|
|

Note: If you specify multiple keywords from the set {TITLE, NOTITLE}, only the
last one will be used.

Symbols Defined
TCPIPCS defines the following IPCS symbols.

TSEBPTR
The address of the first TSEB control block.

TSEBn
The address of the TSEB control block corresponding to the stack index n.

TCPIPCS Subcommands
This section describes the available TCPIPCS Subcommands.

TCPIPCS API
Display information about the connects in the Sockets Extended Assembler Macro
Application Programming Interface (Macro API) and the Pascal API.

Note: The Macro API is the base for the CALL Instruction API, the CICS C API,
and the CICS EZACICAL API. See the OS/390 IBM Communications Server:
IP Application Programming Interface Guide for more information about the
native TCP/IP APIs.

Some API control blocks are in the application address space, which may not be
available in the dump. If the application address space is available, the API control
blocks will be formatted.

Syntax
Following is the syntax of the TCPIPCS API subcommand:

SS TCPIPCS API S

S

W

MACRO SUMMARY
(*)

variable_item PASCAL DETAIL
ALL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, only information about the Macro API is
summarized. Following are the parameters for the TCPIPCS API subcommand:

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

Chapter 6. IPCS Subcommands 91

|
|

|

|

|
|

|
|

|
|

|

|

|
|

|
|
|
|
|
|
|

|
|

|||||||
|

|
|||
|

|
|||||||||||||||||||||||||||||||||

|

|
|
|

||

|
|

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

jobname
Displays only the API control blocks for this job name. The job name may
be a TCP/IP application name or a stack name. Must be from 1–8
characters.

ASCB_address
Displays the API control blocks with this address space control block
(ASCB) address. An IPCS symbol name may be specified for the address.
The address is specified as 1–8 hexadecimal digits. If an address begins
with digit A –F, prefix the address with a zero to avoid the address being
interpreted as a symbol name or as a character string.

ASID_number
Displays the API control blocks with this Address Space Identifier (ASID).
The ASID is a hexadecimal number containing 1–4 digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

MACRO
Only display information for Macro APIs. MACRO is the default.

PASCAL
Only display information for Pascal APIs.

ALL
Display information for both APIs.

SUMMARY
Displays the addresses of the control blocks and other data in tables.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows the contents of the
control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Notes:

1. If you specify multiple keywords from the set {MACRO, PASCAL, ALL}, only the
last one will be used.

2. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS API subcommand.
TCPIPCS API
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

92 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP API Analysis

Macro API Analysis:

CSVT at 13336120

TSCA at 13236A58

Macro API Analysis for TCPSVT Asid=07DE Tcb@=007E19D8:

SDST for ASID 07DE at 7F5B0798

Macro API Analysis for ASCHINT Asid=0032 Tcb@=007E1748:

SDST for ASID 07DE at 7F41C798

Macro API Analysis for ASCHINT Asid=0032 Tcb@=007E14B8:

SDST for ASID 07DE at 7F3AB798

Macro API Analysis for ASCHINT Asid=0032 Tcb@=007E1320:

SDST for ASID 07DE at 7F3A5798

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS CONFIG
Invocation of this subcommand displays each device interface, physical interface,
and logical interface. The configuration summary table shows each logical interface
with the name of its associated device and link.

Syntax
Following is the syntax of the TCPIPCS CONFIG subcommand:

SS TCPIPCS
(SUMMARY)

CONFIG
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following are the parameters for the TCPIPCS CONFIG subcommand:

Chapter 6. IPCS Subcommands 93

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

SUMMARY
Displays each device, physical interface, and logical interface, and summarizes
them all in one cross-reference table. SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows the interface
cross-reference reports.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS CONFIG subcommand.
TCPIPCS CONFIG
Dataset: IPCS.A594094.DUMPB
Title: TCPCS V2RA: Job(TCPCS) EZBIPLIF(HTCP380 99.137)+

001022 S0C4/00000010 SRB P=0024,S=0024,H=0024.

The address of the TSAB is: 08CEA280

Tseb SI Procedure Version Status Tsdb Tsdx Asid TraceOpts

08CEA2C0 1 TCPCS V2R10 Active 0885D000 0885D0C8 0024 9FFFFF7F

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 were found

==

Analysis of Tcp/Ip for TCPCS . Index:1

Configuration control block summary

IPMAIN found at 08759410

Dif@ DeviceName Next Prev DevR DevW Protocol
7F6DA888 LOOPBACK 7F577888 00000000 **** **** Loopback
7F577888 VDEV1 7F576888 7F6DA888 **** **** VIPA
7F576888 VDEV2 7F576108 7F577888 **** **** VIPA
7F576108 CTC093 7F55E888 7F576888 0AA1 0AA0 CTC
7F55E888 CTC092 7F55E108 7F576108 0D02 0D03 CTC
7F55E108 IUTSAMEH 00000000 7F55E888 **** **** MPC

Pif@ LinkName Next Prev DeviceName Protocol Dif@ Lif@
7F6E43A8 LOOPBACK 7F577608 00000000 LOOPBACK Loopback 7F6DA888 7F6E42A8
7F577608 VLINK1 7F577388 7F6E43A8 VDEV1 VIPA 7F577888 7F576008
7F577388 VLINK2 7F577108 7F577608 VDEV2 VIPA 7F576888 7F56D088
7F577108 CTCAA0 7F56D408 7F577388 CTC093 CTC 7F576108 7F55E008
7F56D408 CTCD2 7F56D188 7F577108 CTC092 CTC 7F55E888 7F55DF08
7F56D188 TOVTAM 00000000 7F56D408 IUTSAMEH MPC 7F55E108 7F55DE08

Lif@ LinkName Next Prev Pif@ IpAddr
7F576008 VLINK1 7F56D088 00000000 7F577608 009.067.116.094
7F56D088 VLINK2 7F55E008 7F576008 7F577388 009.067.113.094
7F55E008 CTCAA0 7F55DF08 7F56D088 7F577108 009.067.116.201
7F55DF08 CTCD2 7F55DE08 7F55E008 7F56D408 009.067.116.203
7F55DE08 TOVTAM 7F6E42A8 7F55DF08 7F56D188 009.067.116.240
7F6E42A8 LOOPBACK 00000000 7F55DE08 7F6E43A8 127.000.000.001

Configuration Summary

94 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Lif@ LinkName DeviceName DevR DevW IpAddr
7F576008 VLINK1 VDEV1 **** **** 009.067.116.094
7F56D088 VLINK2 VDEV2 **** **** 009.067.113.094
7F55E008 CTCAA0 CTC093 0AA1 0AA0 009.067.116.201
7F55DF08 CTCD2 CTC092 0D02 0D03 009.067.116.203
7F55DE08 TOVTAM IUTSAMEH **** **** 009.067.116.240
7F6E42A8 LOOPBACK LOOPBACK **** **** 127.000.000.001

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS CONNECTION
Invocation of this command displays information about TCP, UDP and raw
connections. The information includes the user ID, connection ID, local IP address,
foreign IP address, the connection state (for TCP connections only), and the
protocol name (for raw connections only).

Syntax
Following is the syntax of the TCPIPCS CONNECTION subcommand:

SS TCPIPCS
(ACTIVE)

CONNECTION
(ALL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following are the parameters for the TCPIPCS CONNECTION subcommand:

ACTIVE
Display only active connections. This is the default. Note that the number of
connections reported for each protocol includes both inactive and active
connections. So the total may be higher than the displayed (active) connections.

ALL
Display all connections, regardless of state.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {ACTIVE, ALL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS CONNECTION subcommand.

Note: For the sample output shown, the default option is ACTIVE, so only active
connections are shown. There are 10 total TCP connections, of which 8 are
active. There is one UDP connection which is not active. Both raw
connections are active.

TCPIPCS CONNECTION
Dataset: IPCS.A594094.DUMPK
Title: TCPCS V2R10: Job(USER15) EZBITRAC(HTCP50A 99.266)+

000304 S0C4/00000004 TCB P=0029,S=000E,H=0019

The address of the TSAB is: 08D138C0

Chapter 6. IPCS Subcommands 95

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08D13900 1 TCPCS V2R10 0885A000 0885A0C8 0029 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

TCP Connections:

Userid Conn Local Socket Foreign Socket State
FTPD1 0000000E 0.0.0.0..21 0.0.0.0..0 Listening
TCPCS 00000012 0.0.0.0..23 0.0.0.0..0 Listening
TCPCS 0000000B 0.0.0.0..1025 0.0.0.0..0 Listening
BPXOINIT 00000013 0.0.0.0..10007 0.0.0.0..0 Listening
TCPCS 00000011 127.0.0.1..1025 127.0.0.1..1026 Established
TCPCS 00000010 127.0.0.1..1026 127.0.0.1..1025 Established
USER15 00000019 127.0.0.1..1027 127.0.0.1..1028 Established
TCPCS 00000018 127.0.0.1..1028 127.0.0.1..1027 Established

10 TCP connections

1 UDP connections

RAW Connections:

Userid Conn Local Socket Foreign Socket Protocol
USER15 00000017 9.67.113.14 224.0.0.5 OSPFIGP
TCPCS 00000008 0.0.0.0 0.0.0.0 RAW

2 RAW connections

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS DUAF
Invocation of this command displays a summary of each dispatchable unit control
block (DUCB). Each entry in the dispatchable unit allocation table (DUAT) points to
a DUCB. The DUAT entry contains the status of the DUCB and identifies the ASID
with which the DUCB is associated. If no parameters are specified, the output
contains a summary of the DUAT, followed by a summary of each DUCB.

The status of each DUCB is abbreviated:
Ab The DUCB has ABENDed.
Iu The DUCB is in use.
Re The DUCB is in resume state.
Su The DUCB has been suspended.

The DUCB status may be followed by the recovery stack. There is one line for each
register save area (RSA) found in the DUCB (and its DUSA extension, if present).
The address of each RSA, its previous pointer, its next pointer, and the module
name are shown.

A register save area displayed as RSA* indicates that the RSA is not in the active
chain. If all RSAs are shown like this, the DUCB is not in use.

96 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
||
||
||
||

|
|
|
|

|
|

Syntax
Following is the syntax of the TCPIPCS DUAF subcommand:

SS TCPIPCS DUAF S

S

W

ALL
(*)

variable_item ABEND NORSA
INUSE
RESUME

(variable_list) SUSPEND

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all active DUCBs are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

jobname
Displays only the DUCBs with this job name. The job name may be a
TCP/IP application name or a stack name. Must be from 1–8
characters.

DUCB_address
Displays the DUCB with this address. An IPCS symbol name may be
specified for the address. The address is specified as 1–8 hexadecimal
digits. If an address begins with digit A through F, prefix the address
with a zero to avoid the address being interpreted as a symbol name or
as a character string.

DUCB_index
Displays this DUCB with this index. The index is a hexadecimal number
containing 1–4 digits. The lowest index is zero.

ASCB_address
Displays the DUCB with this address space control block (ASCB)
address. An IPCS symbol name may be specified for the address. The
address is specified as 1–8 hexadecimal digits. If an address begins
with digit A–F, prefix the address with a zero to avoid the address being
interpreted as a symbol name or as a character string.

ASID_number
Displays the DUCB with this ASID. The ASID is a hexadecimal number
containing 1–4 digits.

Chapter 6. IPCS Subcommands 97

|
|

|||||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

In addition to the variable parameters described above, the following keyword
parameters may be specified:

ALL
Display information for all active DUCBs. This is the default.

ABEND
Only display information for DUCBs that ABENDed.

INUSE
Only display information for DUCBs currently being used

RESUME
Only display information for DUCBs that are resumed.

SUSPEND
Only display information for DUCBs that are suspended.

NORSA
Do not display the contents of the DUCBs’ register save areas (RSA). By
default, the RSA contents are displayed.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {ALL, ABEND, INUSE,
RESUME, SUSPEND}, only the last one will be used.

Sample Output
The following is a sample output of the TCPIPCS DUAF subcommand.
TCPIPCS DUAF((0876C000 0B) INUSE)
Dataset: IPCS.A594094.DUMPK
Title: TCPCS V2R10: Job(USER15) EZBITRAC(HTCP50A 99.266)+

000304 S0C4/00000004 TCB P=0029,S=000E,H=0019

The address of the TSAB is: 08D138C0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08D13900 1 TCPCS V2R10 0885A000 0885A0C8 0029 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

Dispatchable Unit Summary

INDEX DUAE DUCB DUSA ASCB ASID JOBNAME ABEND STATUS

10000003 08859040 0876C000 0876C100 00FB7080 0029 TCPCS 00000000 Iu
RSA 0876C3F8 Prev 00005D98 Next 0876C8C0 Mod EZBIEOER
RSA* 0876C8C8 Prev 0876C3F8 Next 00000000 Mod EZBITSTO
1384 bytes were used

1000000B 08859080 08784000 08784100 00FB7980 0019 USER15 000C4000 Ab Iu
RSA 087843F8 Prev 09BB9798 Next 087846B8 Mod EZBPFSOC
RSA 087846C0 Prev 087843F8 Next 08784988 Mod EZBPFOPN
RSA 08784990 Prev 087846C0 Next 08784DB0 Mod EZBUDSTR
RSA 08784DB8 Prev 08784990 Next 087855A8 Mod EZBITRAC

98 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4536 bytes were used

82 DU control blocks were found
12 DU control blocks were in use
0 DU control blocks were suspended
0 DU control blocks were resumed
1 DU control blocks had abended
2 DU control blocks were formatted

The maximum DUCB size found is 4536 bytes

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS DUCB
Invocation of this command displays the contents of each dispatchable unit control
block (DUCB). Each entry in the dispatchable unit allocation table (DUAT) points to
a DUCB. The DUAT entry contains the status of the DUCB and identifies the ASID
with which the DUCB is associated. In the output, the DUAT is summarized. Then
the contents of each DUCB is displayed, followed by each DUSA for the DUCB.
The first dispatchable unit stack area (DUSA) is followed by information from each
register save area (RSA). Each register from the RSA is listed, showing its address
and offset from the other registers in the register save area. The address of the
parameter list (pointed to by R1) and the first five words at that address are also
given. Each RSA is formatted. The recovery stack is also displayed.

Syntax
Following is the syntax of the TCPIPCS DUCB subcommand:

SS TCPIPCS DUCB

W

(*)
variable_item

variable_list

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following are the parameters for the TCPIPCS DUCB subcommand:

If no parameters are specified, all DUCBs are displayed.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space:

jobname
Displays only the DUCBs with this job name. The job name may be a
TCP/IP application name or a stack name. Must be from 1–8
characters.

Chapter 6. IPCS Subcommands 99

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

|

||

|
|

|
|
|

|
|
|
|

DUCB_address
Displays the DUCB with this address. An IPCS symbol name may be
specified for the address. The address is specified as 1–8 hexadecimal
digits. If an address begins with digit A–F, prefix the address with a zero
to avoid the address being interpreted as a symbol name or as a
character string.

DUCB_index
Displays this DUCB with this index. The index is hexadecimal number
containing 1–4 digits. The lowest index is zero.

ASCB_address
Displays the DUCB with this address space control block address
(ASCB). An IPCS symbol name may be specified for the address. The
address is specified as 1–8 hexadecimal digits. If an address begins
with digit A–F, prefix the address with a zero to avoid the address being
interpreted as a symbol name or as a character string.

asid_number
Displays the DUCB with this ASID. The ASID is a hexadecimal number
containing 1–4 digits.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS DUCB subcommand.
TCPIPCS DUCB(2E)
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

DUCB Detail Analysis

Dispatchable Unit Control Block: DUCB46
EZBDUCB: 12762000
+0000 DUCB_EYE.................. DUCB
+0004 DUCB_LENGTH............... 0100
+0006 DUCB_VERSION.............. 0002
+0008 DUCB_TOKEN................ 12762000 2E1407DE 1000002E 00000000
+0018 DUCB_DUSA................. 12762100
+001C DUCB_AVAIL_CHAIN.......... 1128E000
+0020 DUCB_DUAEP................ 12FC1198
+0026 DUCB_ASID................. 07DE
+0028 DUCB_ASCB................. 00F7C280

100 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+002C DUCB_ATCB................. 00000000
+0030 DUCB_ITCVT................ 1323B3C8
+0034 DUCB_LOCKSHELDCOUNT....... 00000000
+0038 DUCB_LOCKS_TABLE.......... 12762184
+003C DUCB_LOCKS_SUSPENDED...... 00000000
+0040 DUCB_LOCKS_SUSPENDED_NEXT. 7FFAFAF1
+0044 DUCB_SUSPENDTOKEN......... 800014F1 0296D7B0
+004C DUCB_JOBNAME.............. WEBSTCP
+0054 DUCB_TSAB................. 13391BC0
+0058 DUCB_TSEB................. 13391C00
...
Register Save Area: RSA46@1
Module: EZBITDUM
EZBRSA: 127623E8
+0000 RSA_DUSA. 12762100 RSA_PREV. 00000000 RSA_NEXT. 12762448

RSA_R14.. 9320C62E RSA_R15.. 11B6B2B4

+0014 RSA_R0... 1333AFE0 RSA_R1... 12762430 RSA_R2... 1333AFE4
RSA_R3... 1333AFC0 RSA_R4... 00000000

+0028 RSA_R5... 00000008 RSA_R6... 12762000 RSA_R7... 00000000
RSA_R8... 80000000 RSA_R9... 9320DCA0

+003C RSA_R10.. 12762430 RSA_R11.. 1333AFD8 RSA_R12.. 9320C588
RSA_AR13. 1333AFDC RSA_AR14. 1333AFE0

+0058 RSA_AR15. 1333AFE4 RSA_AR0.. 11DA9D48 RSA_AR1.. C5E9C2E3
RSA_AR2.. C3D7E3D4 RSA_AR3.. 12762100

+006C RSA_AR4.. 127623E8 RSA_AR5.. 127627C0 RSA_AR6.. 91B6CE08
RSA_AR7.. 11B88CA6 RSA_AR8.. 1333AFDC

+0080 RSA_AR9.. 127626AC RSA_AR10. 00000000 RSA_AR11. 12762554
RSA_AR12. 00000000

Parm(12762430): 12762000 1333AFD8 1333AFDC 1333AFE0 1333AFE4

Dynamic Area of RSA46@1
Module: EZBITDUM
127623E8 12762100 00000000 12762448 9320C62E |l.F. |

+0010 11B6B2B4 1333AFE0 12762430 1333AFE4 |\.......U |
+0020 1333AFC0 00000000 00000008 12762000 | ...{............ |
+0030 00000000 80000000 9320DCA0 12762430 |l....... |
+0040 1333AFD8 9320C588 12762000 1333AFD8 | ...Ql.Eh.......Q |
+0050 1333AFDC 1333AFE0 1333AFE4 11DA9D48 |\...U.... |

...

TCPIPCS FIREWALL
Display information about Firewall filters or tunnels.

Syntax
Following is the syntax of the TCPIPCS FIREWALL subcommand:

SS TCPIPCS FIREWALL S

Chapter 6. IPCS Subcommands 101

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||||
|

||

S

W

ALL SUMMARY
(*)

variable_item FILTERS DETAIL
TUNNELS

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all Firewall filters and tunnels are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

filter_address
Displays the Firewall filter with this address. An address is specified as
1–8 hexadecimal digits. An IPCS symbol name may be specified for an
address. If an address begins with digit a–f or A–F, prefix the address
with a zero to avoid the address being interpreted as a symbol name or
as a character string.

tunnel_address
Displays the Firewall tunnel with this address. An address is specified
as 1–8 hexadecimal digits. An IPCS symbol name may be specified for
an address. If an address begins with digit a–f or A–F, prefix the
address with a zero to avoid the address being interpreted as a symbol
name or as a character string.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

ALL
Display information for all Firewall filters and tunnels. ALL is the default.

FILTERS
Only display information for Firewall filters.

TUNNELS
Only display information for Firewall tunnels.

SUMMARY
Displays the addresses of the control blocks and other data in tables.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows the contents of the
control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

102 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

Notes:

1. If you specify multiple keywords from the set {ALL, FILTERS, TUNNELS}, only
the last one will be used.

2. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS FIREWALL subcommand.
TCPIPCS FIREWALL ((*) SUMMARY ALL)
Dataset: IPCS.A594094.DUMPN
Title: FIREWALL DUMP

The address of the TSAB is: 08DE56F8

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08DE5738 1 TCPCS V2R10 0854B000 0854B0C8 01F6 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

TCPIP Firewall Analysis

Secure Adapters:
9.67.116.125
162.33.33.33
9.67.11.1
9.67.11.2
9.67.114.1

Pre-decap filtering : No

Filter Summary:

Action Src1@ Src2@ Dst1@ Dst2@
SPort DPort Protocol

Permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
=500 =500 17 (UDP)

Permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
0 0 51 (SIPP-AH)

Permit 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0
0 0 50 (SIPP-ESP)

Permit 0.0.0.0 0.0.0.0 9.67.113.36 255.255.255.255
0 =1014 6 (TCP)

Permit 9.67.113.36 255.255.255.255 0.0.0.0 0.0.0.0
=1014 0 6 (TCP)

Unknown 9.67.116.36 255.255.255.255 9.67.116.47 255.255.255.255
0 0 1 (ICMP)

Permit 9.67.116.36 255.255.255.255 9.67.116.47 255.255.255.255
0 0 1 (ICMP)

...
Permit 9.67.116.47 255.255.255.255 9.67.113.4 255.255.255.255

0 0 254 (254)
Deny 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0

0 0 254 (254)

Tunnel Summary:

Chapter 6. IPCS Subcommands 103

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Name Src@ Dst@ Policy Format
0000000510:0000000508:0000000507:0000000516:0000000517:0000000506:0000000003

9.67.116.36 9.67.116.47 00000021 00000033
0000000504:0000000508:0000000507:0000000504:0000000503:0000000506:0000000004

9.67.116.36 9.67.116.47 00000021 00000033
0000000510:0000000508:0000000507:0000000516:0000000518:0000000502:0000000005

9.67.116.36 9.67.116.47 00000042 000000CC
0000000510:0000000508:0000000507:0000000516:0000000518:0000000502:0000000006

9.67.116.36 9.67.116.47 00000042 000000CC

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS FRCA
Display information about the Fast Response Cache Accelerator (FRCA)
connections or about cached objects.

Syntax
Following is the syntax of the TCPIPCS FRCA subcommand:

SS TCPIPCS FRCA S

S

W

CONNECTIONS SUMMARY
(*)

variable_item OBJECTS DETAIL
ALL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, only FRCA connections are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

TCB_address
Displays the FRCA connection with this address. An address is
specified as 1–8 hexadecimal digits. An IPCS symbol name may be
specified for an address. If an address begins with digit a–f or A–F,
prefix the address with a zero to avoid the address being interpreted as
a symbol name or as a character string.

UWSX_address
Displays the FRCA server connection with this address. An address is
specified as 1–8 hexadecimal digits. An IPCS symbol name may be
specified for an address. If an address begins with digit a–f or A–F,

104 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|||||||
|

|
|||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

prefix the address with a zero to avoid the address being interpreted as
a symbol name or as a character string.

jobname
Displays only the FRCA information for this job name. The job name
may be a TCP/IP application name or a stack name. The jobname is
1–8 alphanumeric characters.

connection_id
Displays the FRCA information with this connection id. An id is specified
as 1–8 hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

CONNECTIONS
Only display information for FRCA connections. CONNECTIONS is the default.

OBJECTS
Only display information for FRCA cached objects.

ALL
Display information for all FRCA connections and cached objects.

SUMMARY
Displays the addresses of the control blocks and other data in tables.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows the contents of the
control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Notes:

1. If you specify multiple keywords from the set {CONNECTIONS, OBJECTS,
ALL}, only the last one will be used.

2. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS FRCA subcommand.
TCPIPCS FRCA
Dataset: IPCS.MV20372.DUMPA
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051

The address of the TSAB is: 12E89BB8

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

12E89BF8 1 TCPSVT V2R10 12B57000 12B570C8 0051 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

Chapter 6. IPCS Subcommands 105

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FRCA Server Connections

Uwsx@ Tcb@ Cache@ References Flags
12E6BA90 7F272D08 12E6AE98 10 60

FRCA Client Connections

Uwcx@ Tcb@ Server@ Object@ Flags
7F20E060 7F20DD08 12E6BA90 1299CB08 08
7F14D460 7F14D108 12E6BA90 1299BA88 48
7F1FAC60 7F1FA908 12E6BA90 12434488 48
7F4DD460 7F4DD108 12E6BA90 00000000 28
7F0A9060 7F0A8D08 12E6BA90 00000000 28
7F08F460 7F08F108 12E6BA90 00000000 28
7F066860 7F066508 12E6BA90 00000000 00

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS HASH
Display information about the structure of TCP/IP hash tables.

Syntax
Following is the syntax of the TCPIPCS HASH subcommand:

SS TCPIPCS S

S

W

HASH

ALL SUMMARY BOTH
(FIREWALL)

POLICY HEADER DETAIL ACTIVE
TCP DELETE

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
The following keyword parameters may be specified:

ALL
Display structure of all TCP/IP hash tables. ALL is the default.

FIREWALL
Only display structure of Firewall hash tables.

POLICY
Only display structure of Service Policy hash tables.

TCP
Only display structure of TCP hash tables.

HEADER
Display hash table header information. Not displayed by default.

SUMMARY
Displays the addresses of the control blocks and other data in tables.
SUMMARY is the default.

106 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

DETAIL
In addition to the SUMMARY display, DETAIL also shows the search key
values.

BOTH
Display both active and logically deleted table elements. BOTH is the default.

ACTIVE
Only display active table elements.

DELETE
Only display logically deleted table elements.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Notes:

1. If you specify multiple keywords from the set {ALL, FIREWALL, POLICY, TCP},
all of them will be used.

2. If you specify multiple keywords from the set {BOTH, ACTIVE, DELETE}, only
the last one will be used.

3. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS HASH subcommand.
TCPIPCS HASH (HEADER ACTIVE TCP)
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051

The address of the TSAB is: 12E89BB8

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

12E89BF8 1 TCPSVT V2R10 12B57000 12B570C8 0051 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Hash Table Analysis

TCP Index Table

Hash Table Header at 7F61AB88
Instance : 2
Active entries : 6,131
Hash buckets : 62,533
User free routine : 92D2E7A6
Element queue : 12B57D90

Bucket# Bucket@ Element@ Status User@
0 7F61AB88 7F5FC020 Active 7F604108

530 7F61CCA8 7F5FC0A0 Active 7F605108
6536 7F634408 7F5FC2E0 Active 7F612508
7080 7F636608 7F5FC0C0 Active 7F605908
10083 7F6421B8 7F5FC100 Active 7F606108
13086 7F64DD68 7F5FC120 Active 7F606508

Chapter 6. IPCS Subcommands 107

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

...
62263 7F70DEF8 7F324E60 Active 7F0BE508
62264 7F70DF08 7F324E80 Active 7F263108
62265 7F70DF18 7F602820 Active 7F47F108
62266 7F70DF28 7F324EC0 Active 7F0FD108

6131 elements in TCB Index Table

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS HEADER
The TCPIPCS HEADER command displays information from the system dump
header and, in some cases, if a DUCB has ABENDed, the DUCB will be displayed.
The IPCS command ″STATUS System Cpu Registers Worksheet Faildata″ is used
to display the system dump header.

Depending on the error recovery routine, the DUCB address may or may not be
available. If the DUCB address is available, the DUCB will be displayed. To find
DUCBs that ABENDed, use the TCPIPCS DUAF (* ABEND) command.

Syntax
Following is the syntax of the TCPIPCS HEADER subcommand:

SS TCPIPCS HEADER
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
The following keyword parameters may be specified:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS HEADER subcommand.
TCPIPCS HEADER
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

STATUS SUBCOMMAND

108 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MVS Diagnostic Worksheet

Dump Title: SLIP DUMP ID=TC

CPU Model 9672 Version AC Serial no. 041018 Address 00
Date: 03/22/2000 Time: 07:36:57.297123 Local

Original dump dataset: SYS1.DUMP93

Information at time of entry to SVCDUMP:

HASID 000B PASID 000B SASID 000B PSW 440C0000 81584B1C

CML ASCB address 00000000 Trace Table Control Header address 7F45D000

Dump ID: 007
Error ID: N/A

SDWA address N/A

....

CPU STATUS:

PSW=440C0000 81584B1C (RUNNING IN PRIMARY, KEY 0, AMODE 31, DAT ON)
DISABLED FOR I/O EXT

ASID(X'000B') 01584B1C. IEANUC09.IEAVEDS0+1C IN READ ONLY NUCLEUS
ASCB11 at FBD700, JOB(WLM), for the home ASID
ASXB11 at 7FDFA0 and TCB11M at 7FB440 for the home ASID
HOME ASID: 000B PRIMARY ASID: 000B SECONDARY ASID: 000B

GPR VALUES
0-3 00000001 0288E01C 00000C38 00000008
4-7 007FB440 007FFC10 007F6A68 00FBD700
8-11 00000000 01584B00 015AD820 007FEE48
12-15 00000000 00000000 80FDE336 81584B18

...

TCPIPCS HELP
Display TCPIPCS usage and syntax information.

Syntax
Following is the syntax of the TCPIPCS HELP subcommand:

SS TCPIPCS HELP

W
ALL

(*)
variable_item FUNCTIONS

OPERANDS
SYNTAX

ST

Parameters
If no parameters are specified, the function, operand, and syntax information is
displayed for all TCPIPCS commands.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the TCPIPCS subcommand names.

Chapter 6. IPCS Subcommands 109

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||

|

|
|
|

||

|
|

In addition to the variable parameters described above, the following keyword
parameters may be specified:

ALL
Display information for all TCPIPCS commands. ALL is the default.

FUNCTIONS
Only display function information.

OPERANDS
Only display operand information.

SYNTAX
Only display syntax information.

Note: If you specify multiple keywords from the set {ALL, FUNCTION,
OPERANDS, SYNTAX}, all of them will be used.

Sample Output
The following is a sample output of the TCPIPCS HELP subcommand.
tcpipcs help (config function)

Function:

The TCPIPCS command displays selected information about a specific
TCP/IP address space.

CONFIG - Produce device configuration report.

Function:

Display information about device, physical, and logical interfaces

Syntax:

TCPIPCS CONFIG(<{SUMMARY|DETAIL}>)

Operands:

SUMMARY - Display summary report.

DETAIL - Display summary and interface cross-reference reports.

TCPIPCS LOCK
The TCPIPCS LOCK command scans the dump for information about the current
locks that are defined and held.

Only non-zero statistics are reported.

Note: The DUCB lock table entries may conflict with the lockword counters. This is
because DUCB lock table entries and lockword counters are not updated in
one operation, therefore they can be out of sync.. At the moment the dump
was obtained, the lockword counters may have been updated but the DUCB
has not yet been updated.

110 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

Syntax
Following is the syntax of the TCPIPCS LOCK subcommand:

SS TCPIPCS
(SUMMARY)

LOCK
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS LOCK subcommand:

SUMMARY
Displays each level of each class of lock, the total number of DUCBs found,
and a cross-reference for each lock being used. SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows lock information for
each DUCB.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS LOCK subcommand.
TCPIPCS LOCK (DETAIL)
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V3R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051
...
ItCvt: 12B573C8, Class_Count: 12, Level_Count: 34, Table_Size: 616

Lock statistics at 12E7B208

Class 2 at 12E7B2E8 for 2 levels
Level 0201 ITSTOR_QUE

Suspension - Srb : 1,601
Delays - : 239

...
Class 6 at 12E7B478 for 4 levels

Level 0602 TCB
Suspension - Srb : 146
Suspension - Tcb : 33

...

Ix Ducb@ Lktb@ Susp@ Next@ DucbIx Status
0002 12A62000 12A62184 00000000 00000000 10000001 Iu

Lock Class 02: 00000001 00000002 12A62278 00000000
Lock Level 01: 12B57CB8 C0010201 00010000 Held Excl ITSTOR_QUE

Ix Ducb@ Lktb@ Susp@ Next@ DucbIx Status
072E 12B19000 12B19184 00000000 7FFAFAF1 1000003E Iu

Lock Class 06: 00000002 00000004 12B192F0 00000000
Lock Level 02: 7F272D38 80010602 00020100 Held Shr TCB

Chapter 6. IPCS Subcommands 111

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

50 DUCBs found
2 DUCBs held locks
0 DUCBs were waiting for locks

Lockword Cross Reference

Lock@ Ducb@ Status Name
12B57CB8 Not Held ITSTOR_QUE
7F272D38 12B19000 Held Shr TCB

2 locks were referenced

Lock Class/Level Multiple Usage:

Class Level Names
03 02 REASM

PTREE
MCGRP

...
0C 06 SKITSSL

TCFG_CLEANUP

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS MAP
Invocation of this command displays a mapping of TCP/IP storage. This command
is useful for finding overlays and abandoned storage.

Each control block referenced is listed in order by its address. Each control block
eye-catcher is shown; if none is found, a mnemonic name is given in quotes. The
size is the number of bytes (in decimal) in the control block. The key is the storage
key. The base and offset are the address of a TCP/IP control block and the offset
within it that contains the CbAddr in the far left column. There may be multiple
references, so additional references are continued on a separate line.

Note: Large dumps with many control blocks can take considerable time to
process.

Syntax
Following is the syntax of the TCPIPCS MAP subcommand:

SS TCPIPCS MAP
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS MAP subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS MAP subcommand.
TCPIPCS MAP
Dataset: IPCS.MV20767.DUMPA
Title: VERIFY MV20758

The address of the TSAB is: 08DD36F8

112 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08DD3738 1 TCPCS V2R10 0876E000 0876E0C8 01F7 92208100 Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

CbIds enclosed in quotes e.g. "CBID" are not true eyecatchers.

Found 847 References and 1037 Cross-references

CbAddr CbId Size Key Base +Offset
00FCC6A0 CVT 1,280 6
01663450 ECVT 576 6 00FCC6A0+008C
0876B000 "ALCCSA" 96 6 08DD9328+0004

08DD9368+0000
0876B388 "CACSMM" 120 6 0876B408+0004
0876B408 "CACSMM" 120 6 0876E5C8+0560
0876B488 "CACSMM" 120 6 0876B688+0004
0876B500 "CACSA " 120 6 0876B600+000C
0876B580 "CACSA " 120 6 0876B500+000C
0876B600 "CACSA " 120 6 0876E5C8+0218
0876B688 "CACSMM" 120 6 0876E5C8+0568
0876B700 "CACSA " 120 6 0876D700+000C
0876B780 "CACSA " 120 6 0876B700+000C
...
7F6E8B78 SKQU 64 6 7F6E8748+00E8
7F6E8BB8 SKQU 64 6 7F6E8AA8+0004
7F6E8BF8 SKQP 16 6 7F6E8B78+0018

7F6E8BB8+0018
7F6E8C08 SKBD 32 6 7F6E8B78+002C
7F6E8C28 SKBD 32 6 7F6E8C08+0004
7F6E8C48 SKBD 32 6 7F6E8BB8+002C
7F6E8C68 SKBD 32 6 7F6E8C48+0004
7F6E8CC8 SKSC 176 6 7F6E8008+0004

7F6E8748+0060
7F6E8D88 SKRT 128 6 0876E0C8+0130

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS MTABLE
Invocation of this subcommand accesses the module tables and displays the
module entry point address, name, compile date and time, PTF number, and load
module name. The entries are listed first in entry-point-address order and then
listed again in module-name order.

Syntax
Following is the syntax of the TCPIPCS MTABLE subcommand:

SS TCPIPCS MTABLE

W

(*)
variable_item

(variable_list)

S

Chapter 6. IPCS Subcommands 113

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

||||||||||||||||||||||||||||||||||
|

||

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following are the parameters for the TCPIPCS MTABLE subcommand. If no
parameters are specified, all displayable modules are displayed.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1-32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

address
Locates the TCP/IP module where this address appears and displays
the name and offset. An address is specified as 1–8 hexadecimal digits.
An IPCS symbol name may be specified for an address. If an address
begins with digit a–f or A–F, prefix the address with a zero to avoid the
address being interpreted as a symbol name or as a character string.

name Locates the TCP/IP module with this name. A name is specified as 1-8
characters.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS MTABLE subcommand.
TCPIPCS MTABLE (12DE3800 12D9B858)
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051

The address of the TSAB is: 12E89BB8

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

12E89BF8 1 TCPSVT V2R10 12B57000 12B570C8 0051 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Module Table Analysis

TCMT 12B590E8 EZBITCOM Size: 00D8 Cnt: 47
MTBL 12C23F28 EZBTIINI Size: 0CD4 Cnt: 272
MTBL 948ACA50 EZBTZMST Size: 0134 Cnt: 24
MTBL 94FE8470 EZBTTMST Size: 0704 Cnt: 148
MTBL 94AA0B00 EZBTMCTL Size: 0380 Cnt: 73

Module Epa Date Time PTF Lmod Asid

EZBIFARP 12DE35D8 1999/10/15 07:01:58 HTCP50A EZBTIINI 0051

114 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|||||||||||||||||||||||||||||||||

|

|
|
|

||

|
|

|
|
|

|
|
|
|
|
|

||
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EZBXFINI 12D9B808 1999/10/08 00:37:29 HTCP50A EZBTIINI 0051

Address 12DE3800 is EZBIFARP+0228
Address 12D9B858 is EZBXFINI+0050

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS POLICY
Display information about service policies.

Syntax
Following is the syntax of the TCPIPCS POLICY subcommand:

SS TCPIPCS
(SUMMARY)

POLICY
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS POLICY subcommand:

SUMMARY
Displays the policy table addresses. SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows control block
contents.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS POLICY subcommand.
TCPIPCS POLICY TCP(1)
Dataset: IPCS.MV21046.DUMPA
Title: BOTSWANA HUNG RUNNING PAGENT DIFFSERV SETTINGS.

The address of the TSAB is: 12EFD818

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

12EFD858 1 TCPSVT V2R10 12EAB000 12EAB0C8 0058 9CFF755F Active
12EFD8D8 2 TCPSVT1 V2R10 12A0F000 12A0F0C8 0069 9CFF755F Active
12EFD958 3 TCPSVT2 V2R10 127C9000 127C90C8 07DE 9CFF755F Active
12EFD9D8 4 TCPSVT3 V2R10 126FB000 126FB0C8 0054 9CFF755F Active
12EFDA58 5 TCPSVT4 V2R10 12646000 126460C8 004C 9CFF755F Active
12EFDAD8 6 TCPSVT5 V2R10 1260E000 1260E0C8 07DD 9CFF755F Active
12EFDB58 7 TCPSVT6 V2R10 12383000 123830C8 007A 9CFF755F Active
12EFDBD8 8 TCPSVT7 V2R10 11ECE000 11ECE0C8 07DC 9CFF755F Active

8 defined TCP/IP(s) were found
8 active TCP/IP(s) were found

Chapter 6. IPCS Subcommands 115

|
|
|
|
|
|

|

|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

8 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

Policy Control Table at 12F54210

Intrusion Detection Main Table at 13AA6088

Service Classes:

Scentry@ Scope Tos Pri Permission Name
129455F0 Both 60 00 Allowed paPRD-GenImp5
129454F0 Both 00 00 Allowed padefault
129453F0 Both E0 00 Allowed paOSPF-1
129452F0 Both E0 00 Allowed paTST-1-GenImp1
129451F0 Both C0 00 Allowed paTST-1-GenImp2
12942B10 Both A0 00 Allowed paTST-1-GenImp3
12942A10 Both 80 00 Allowed paTST-1-GenImp4
12942910 Both 60 00 Allowed paTST-1-GenImp5
12942810 Both 40 00 Allowed paTST-1-GenImp6
12942710 Both 20 00 Allowed paTST-1-GenImp7
...

Policy Rules:

Prentry@ Permission Cond Level@ Cond@ Name
126C04F0 Allowed DNF 00000000 00000000 prPRD-CBS-30001
128F2A90 Allowed CNF 126EB590 00000000 prTST-WEB-4-80-BO

126C0B10 00000000
126C0790 126C0950

...

TCPIPCS PROFILE
Invocation of this subcommand shows the active configuration information at the
time of the dump, in the form of profile dataset statements. This profile will not
necessarily match the profile used to start TCP/IP because the start-up profile
would not include the dynamic changes, additions, or deletions made via
commands. All the defaults that are in effect are displayed in addition to explicit
settings.

Syntax
Following is the syntax of the TCPIPCS PROFILE subcommand:

SS TCPIPCS PROFILE
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS PROFILE subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS PROFILE subcommand.

116 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

TCPIPCS PROFILE NOTITLE

;
; Profile generated on 2000/03/13 at 20:23:54
;
; Dump Dataset : IPCS.MV21018.DUMPA
; Dump Time : 2000/02/02 22:45:56.893646
; TCP/IP Jobname: TCPSVT
;

;
; For informational purposes, both GATEWAY and
; BEGINRoutes statements may be generated in this
; reconstructed profile.
;
; GATEWAY and BEGINRoutes statements cannot both
; be specified in a real profile/obeyfile dataset.
;

ARPAGE 20

ASSORTedparms IGNORERedirect VARSUBNETTING SOURCEVIPA
ENDASSORTedparms

AUTOLog 5
FTPMVS JOBNAME FTPMVS1
FTPUNIX JOBNAME FTPUNIX1
OSNMPD JOBNAME OSNMPD
CBSAMPLE JOBNAME CBSAMPLE
PORTMAP JOBNAME PORTMAP
WEBSTCP JOBNAME WEBSTCP
REXECD JOBNAME REXECD
OMPROUTE JOBNAME OMPROUTE
NAMED JOBNAME NAMED

ENDAUTOLog

BEGINRoutes
ROUTE 202.51.52.153 HOST 155.155.155.2 LBRSAMEHOST MTU 1500

MAXImumretransmittime 120 MINImumretransmittime 0.5
ROUNDTRIPGain 0.125 VARIANCEGain 0.25 VARIANCEMultiplier 2
NODELAYAcks

ROUTE 202.51.52.0 255.255.255.0 155.155.155.2 LBRSAMEHOST MTU 1500
MAXImumretransmittime 120 MINImumretransmittime 0.5
ROUNDTRIPGain 0.125 VARIANCEGain 0.25 VARIANCEMultiplier 2
NODELAYAcks

...
ROUTE 155.155.155.3 HOST 155.155.155.2 LBRSAMEHOST MTU 1500

MAXImumretransmittime 120 MINImumretransmittime 0.5
ROUNDTRIPGain 0.125 VARIANCEGain 0.25 VARIANCEMultiplier 2
NODELAYAcks

ENDRoutes

BSDRoutingparms TRUE
LMBR2EC53 8096 20 255.255.240.0 0.0.0.0
LEBRZ1355 8096 20 255.255.255.0 0.0.0.0
LBRVIPA1 DEFAULTSize 1 255.255.255.0 0.0.0.0
LBRSAMEHOST DEFAULTSize 1 255.255.0.0 0.0.0.0

ENDBSDRoutingparms

DEVice MBR2EC53 MPCPTP NOAUTORESTART
LINK LMBR2EC53 MPCPTP MBR2EC53 IFSPEED 4500000 CHECKSUM

DEVice EBRZ1355 MPCPTP NOAUTORESTART
LINK LEBRZ1355 MPCPTP EBRZ1355 IFSPEED 4500000 CHECKSUM

DEVice BRVIPA1 VIRTual 0000 NOAUTORESTART
LINK LBRVIPA1 VIRTual 0 BRVIPA1

Chapter 6. IPCS Subcommands 117

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DEVice IUTSAMEH MPCPTP NOAUTORESTART
LINK LBRSAMEHOST MPCPTP IUTSAMEH IFSPEED 4500000 CHECKSUM

GATEWAY
202.51.52.153 155.155.155.2 LBRSAMEHOST 1500 HOST

MAXImumretransmittime 120 MINImumretransmittime 0.5
ROUNDTRIPGain 0.125 VARIANCEGain 0.25
VARIANCEMultiplier 2 NODELAYAcks

202.51.52.0 155.155.155.2 LBRSAMEHOST 1500 0 MAXImumretransmittime
120 MINImumretransmittime 0.5 ROUNDTRIPGain 0.125
VARIANCEGain 0.25 VARIANCEMultiplier 2 NODELAYAcks

...
155.155.155.3 155.155.155.2 LBRSAMEHOST 1500 HOST

MAXImumretransmittime 120 MINImumretransmittime 0.5
ROUNDTRIPGain 0.125 VARIANCEGain 0.25
VARIANCEMultiplier 2 NODELAYAcks

GLOBALCONFig NOTCPStatistics

HOME
197.51.155.1 LBRVIPA1
155.155.155.1 LBRSAMEHOST
201.51.53.155 LMBR2EC53
216.51.55.155 LEBRZ1355

IPCONFig ARPTO 1200 DATAGRamfwd(NOFWDMULTipath) FIREWALL SOURCEVIPA
VARSUBNETTING NOSYSPLEXRouting IGNORERedirect
REASSEMBLytimeout 60 TTL 64 PATHMTUDISCovery NOMULTIPATH
NODYNAMICXCF

ITRACE OFF AUTODAEMON
ITRACE OFF COMMAND
ITRACE OFF CONFig
ITRACE OFF SUBAGENt

KEEPAliveoptions INTerval 120 SENDGarbage FALSE
ENDKEEPaliveoptions

PKTTRACE FULL LINKNAME=LOOPBACK PROT=* IP=* SRCPort=* DESTport=*
PKTTRACE ON LINKNAME=LOOPBACK
...
PKTTRACE FULL LINKNAME=LBRSAMEHOST PROT=* IP=* SRCPort=* DESTport=*
PKTTRACE ON LINKNAME=LBRSAMEHOST

PORT 31010 TCP XTISRV NODELAYAcks
PORT 31000 UDP EZAIMS34 NODELAYAcks
...
PORT 7 TCP MISCSRV NODELAYAcks
PORT 7 UDP MISCSRV NODELAYAcks

SACONFig COMMUNity public AGENT 161 ENABLED SETSENAbled

SMFCONFIG NOTCPINIT NOTCPTERM NOFTPCLIENT NOTN3270CLIENT NOTCPStatistics

SMFPARMS 0 0 0

SOMAXCONN 10

STOP MBR2EC53
START EBRZ1355
START IUTSAMEH

TCPCONFIG INTerval 120 UNRESTRICTLowports TCPRCVBufrsize 16384
TCPSENDBufrsize 16384 TCPMAXRCVBufrsize 262144 SENDGarbage
FALSE

118 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

UDPCONFIG UNRESTRICTLowports UDPCHKsum UDPRCVBufrsize 65535
UDPSENDBufrsize 65535 UDPQueuelimit

TELNETPARMS
PORT 623
CLIENTAUTH NONE
MAXRECEIVE 65536
MAXVTAMSENDQ 50
SCANINTERVAL 1800
SSLTIMEOUT 5
TIMEMARK 10800
TKOSPECLU 30

ENDTELNETPARMS

BEGINVTAM
PORT 623
ALLOWAPPL TSO* DISCONNECTABLE
ALLOWAPPL * DISCONNECTABLE
DEFAULTLUS

TN000000..TN060000
ENDDEFAULTLUS
LUGROUP LUGRP1

B10000..B19999
ENDLUGROUP
LUGROUP LUGRP2

B20000..B29999
ENDLUGROUP
TELNETDEVICE 3278-3-E NSX32703
TELNETDEVICE 3278-4-E NSX32704
TELNETDEVICE 3278-5-E NSX32705
TELNETDEVICE 3279-3-E NSX32703
TELNETDEVICE 3279-4-E NSX32704
TELNETDEVICE 3279-5-E NSX32705
HNGROUP AHNGROUP

A.A
ENDHNGROUP

ENDVTAM

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS PROTOCOL
Display information from TCP, UDP, and raw protocol control blocks.

Syntax
Following is the syntax of the TCPIPCS PROTOCOL subcommand:

SS TCPIPCS
(SUMMARY)

PROTOCOL
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS PROTOCOL subcommand:

SUMMARY
Formats the MTCB, MUDP and MRCB contents. Lists all the TCBs, UDPs and
RCBs in separate cross-referenced tables. SUMMARY is the default.

Chapter 6. IPCS Subcommands 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|
|

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
TCB(s), UDP(s), and RCB(s).

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS PROTOCOL subcommand.
TCPIPCS PROTOCOL
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Raw Control Block Analysis
Master Raw Control Block (MRCB)
MRAWCB: 7F75B048
+0000 RMRCBEYE. MRCB MRCMUTEX. 00000000 00000000 00000000
D7D60501 RSTKDOWN. 00
+0021 RSTKLNKD. 01 RDRVSTAT. 01 RSBCAST.. 00000000
RSDNTRTE. 00000000 RSRCVBUF. 0000FFFF
+0030 RSSNDBUF. 0000FFFF RDIPTOS.. 00 RDIPTTL.. 00
RIPWRQ@.. 7F61D3E8 RIPRDQ@.. 7F61D3A8
+0040 RHASH@... 7F75B08C

....

Raw Hash Table Entries

ID First Last
9 7F5513C8 7F5513C8
15 7F712088 7F712088

RCB ResrcID ResrcNm TpiState DestAddr ProtocolId
7F5513C8 00000062 OMPROUTE WLOIDLE 129.11.208.108 89
7F712088 00000008 TCPSVT WLOIDLE 0.0.0.0 255

2 RCB(s) FOUND
2 RCB(s) FORMATTED

--

120 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TCP/IP Analysis
TCPIP Main TCP Control Block (MTCB)
MTCB: 1338E350
+0000 M_MAIN_EYE......... TCP MAIN
+0008 M_TCP_LWRITE_Q..... 7F781868
+000C M_TCP_LREAD_Q...... 7F781828
+0014 M_TCP_DRIVER_STATE. 01
+0018 MTCPMTX............ 00000000 00000000 00000000 D7D60601
+0028 MTCPAQMX........... 00000000 00000000 00000000 D7D60604
+0038 MTCB_LIST_LOCK..... 00000000 00000000 00000000 D7D60604
+0048 M_PORT_CEILING..... 00000FFF
+004C M_TPI_SEQ#......... 0001C62B
+0050 M_PORT_ARRAY....... 7F712FC8
+0054 M_LAST_PORT_NUM.... 00000445
.....

TCB ResrcID ResrcNm TcpState TpiState Flag1234 UseCount IPAddr
Port LuName ApplName UserID

7F607108 00000002 TCPSVT Closed WLOUNBND 00040000 00000001 0.0.0.0
0

7F60A908 000083D7 FTPUNIX1 Listening WLOIDLE 00200080 00000001 0.0.0.0
0

7F608D08 00000013 TCPSVT Listening WLOIDLE 00000080 00000001 0.0.0.0
0

7F617508 0000019B CICSRU Listening WLOIDLE 08200080 00000001 0.0.0.0
0

7F615108 00000144 INETD5 Listening WLOIDLE 00200080 00000001 0.0.0.0
0

...
7F610108 0000878F NAMED4 TimeWait WLOWIORL 80800C00 00000002 198.11.22.103

53
7F60C508 0000005C DHCP1 Established WLOXFER 01800000 00000001 198.11.25.104

6000
7F609D08 00000049 MISCSRV Listening WLOIDLE 00200000 00000001 0.0.0.0

0
7F608908 00000012 TCPSVT Listening WLOIDLE 00000080 00000001 0.0.0.0

0
7F60E108 00000063 TCPSVT Established WLOXFER 80800000 00000001 127.0.0.1

1030
30 TCB(s) FOUND
30 TCB(s) FORMATTED
--

User Datagram Protocol Control Block Summary
MUCB: 7F7812A8
+0000 UMUCBEYE. MUCB USTKDOWN. 00 USTKLNKD. 01
UAPAR.... 00 UDRVSTAT. 00
+0008 UOPENPRT. 00000000 UFREEPRT. 0408 MCBMUTEX. 00000000
00000000 00000000 D7D60402
+0020 UDPCFG... 00000001 0000FFFF 0000FFFF 00000001 80000000
00000000
+0038 UDPCFG2.. 00000001 0000FFFF 0000FFFF 00000001 80000000
00000000
+0050 UDPMIB... 00001D1F 0000531F 00000000 0000166B
USBCAST.. 00000000 USLPBACK. 00000000
+0068 USDNTRTE. 00000000 USRCVBUF. 0000FFFF USSNDBUF. 0000FFFF
UFGPRC... 00 USERIALV. 0000065F
+007C USERIAL1. 0000065F ULASTADR. 810B2068 ULASTPRT. 0043
ULASTUCB. 7F5FD508 USERIAL2. 0000065F
...

UCB ResrcID ResrcNm TpiState IPAddr Port
7F5F6108 00000004 TCPSVT WLOUNBND 0.0.0.0
7F5FCD08 00000086 OSNMPD WLOIDLE 127.0.0.1 161
7F5FD508 0000005E DHCP1 WLOIDLE 129.11.32.1 67
7F5FCF08 00000055 DHCP1 WLOIDLE 198.11.25.104 1027
7F5FD308 0000005B NAMED WLOIDLE 129.11.176.87 53

Chapter 6. IPCS Subcommands 121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7F5FD108 00000059 DHCP3 WLOIDLE 0.0.0.0 6001
7F5FCB08 0000004B CBSAMPLE WLOIDLE 0.0.0.0 30001
7F5FC908 00000048 MISCSRV WLOIDLE 0.0.0.0 19
7F5FC708 00000047 MISCSRV WLOIDLE 0.0.0.0 19
....
7F5F6B08 00000017 MISCSRV WLOIDLE 0.0.0.0 7
7F5F6908 00000014 PORTMAP WLOIDLE 0.0.0.0 111
56 UCB(s) FOUND
56 UCB(s) FORMATTED

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS RAW
Invocation of this command displays the Master Raw Control Block (MRCB) and
any Raw protocol Control Blocks (RCBs) defined in the MRCB hash table.

Syntax
Following is the syntax of the TCPIPCS RAW subcommand:

SS TCPIPCS RAW

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all raw connections are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

jobname
Displays only the API control blocks for this job name. The job name may
be a TCP/IP application name or a stack name. Must be from 1–8
characters.

RCB_address
Displays only the RCB with this address. An address is specified as 1–8
hexadecimal digits. An IPCS symbol name may be specified for an address.
If an address begins with digit a–f or A–F, prefix the address with a zero to
avoid the address being interpreted as a symbol name or as a character
string.

122 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

connection_id
Displays the RCB with this connection id. A connection ID is specified as
1–hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Formats the MRCB contents and lists all the RCBs in one cross-reference table.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
RCB(s).

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS RAW subcommand.
TCPIPCS RAW
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Raw Control Block Analysis
Master Raw Control Block (MRCB)
MRAWCB: 7F75B048
+0000 RMRCBEYE. MRCB MRCMUTEX. 00000000 00000000 00000000
D7D60501 RSTKDOWN. 00
+0021 RSTKLNKD. 01 RDRVSTAT. 01 RSBCAST.. 00000000
RSDNTRTE. 00000000 RSRCVBUF. 0000FFFF
+0030 RSSNDBUF. 0000FFFF RDIPTOS.. 00 RDIPTTL.. 00
RIPWRQ@.. 7F61D3E8 RIPRDQ@.. 7F61D3A8
+0040 RHASH@... 7F75B08C
...
Raw Hash Table Entries

ID First Last
9 7F5513C8 7F5513C8
15 7F712088 7F712088

Chapter 6. IPCS Subcommands 123

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RCB ResrcID ResrcNm TpiState DestAddr ProtocolId
7F5513C8 00000062 OMPROUTE WLOIDLE 129.11.208.108 89
7F712088 00000008 TCPSVT WLOIDLE 0.0.0.0 255

2 RCB(s) FOUND
2 RCB(s) FORMATTED

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS ROUTE
Invocation of this subcommand displays the routing control blocks. Each routing
table entry is formatted to display the address device name, type, protocol,
destination IP address, gateway IP address, and the physical interface control block
address.

Syntax
Following is the syntax of the TCPIPCS ROUTE subcommand:

SS TCPIPCS ROUTE
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS ROUTE subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS ROUTE subcommand.
TCPIPCS ROUTE
Dataset: IPCS.MV21018.DUMPA
Title: STORAGE SHORTAGE

The address of the TSAB is: 130B2560

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

130B25A0 1 TCPSVT V2R10 12250000 122500C8 003E 9CFF755F Active
130B2620 2 TCPSVT1 V2R10 11A15000 11A150C8 004D 9CFF755F Active
130B26A0 3 TCPSVT2 V2R10 11A0D000 11A0D0C8 004A 9CFF755F Active

3 defined TCP/IP(s) were found
3 active TCP/IP(s) were found

3 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Route Analysis

Routes in Search Table

Rte@ DeviceName Type Protocol DestinationAddr
GatewayAddr Pif@

124 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

7F55D1A8 LEBRZ1355 Host OSPF 216.51.56.113
216.51.55.202 7F5DD188
7F4C95E8 LEBRZ1355 Host OSPF 216.51.56.202
216.51.55.202 7F5DD188
7F5CA208 LEBRZ1355 Host Configuration 216.51.55.155
0.0.0.0 7F5DD188
7F55A548 LEBRZ1355 Host OSPF 216.51.55.202
0.0.0.0 7F5DD188
7F55A6A8 LEBRZ1355 Direct OSPF 216.51.55.0
0.0.0.0 7F5DD188
7F5CC228 LBRSAMEHOST Host Configuration 202.51.52.153
155.155.155.2 7F5DB188
7F5CB848 LBRSAMEHOST Network Configuration 202.51.52.0
155.155.155.2 7F5DB188
7F5CBEA8 LBRSAMEHOST Network Configuration 202.51.50.0
155.155.155.2 7F5DB188
7F5CBB88 LBRSAMEHOST Network Configuration 202.51.51.0
155.155.155.2 7F5DB188
7F4C9488 LEBRZ1355 Host OSPF 202.202.202.202
216.51.55.202 7F5DD188
7F4BE248 LEBRZ1355 Host OSPF 201.201.201.201
216.51.55.202 7F5DD188
7F5CC928 LBRSAMEHOST Host Configuration 200.51.155.2
155.155.155.2 7F5DB188
7F5CCEA8 LBRSAMEHOST Host Configuration 200.51.153.1
155.155.155.2 7F5DB188
7F5CCC48 LBRSAMEHOST Host Configuration 200.51.156.1
155.155.155.2 7F5DB188
7F5CC568 LBRSAMEHOST Host Configuration 200.51.155.3
155.155.155.2 7F5DB188
7F4E3A88 LEBRZ1355 Host OSPF 200.51.113.2
216.51.55.202 7F5DD188
7F4BC0E8 LEBRZ1355 Network OSPF 200.22.64.0
216.51.55.202 7F5DD188
7F5CB488 LBRSAMEHOST Network Configuration 202.51.54.0
155.155.155.2 7F5DB188
7F4B3D08 LEBRZ1355 Host OSPF 199.11.87.164
216.51.55.202 7F5DD188

7F4BF668 LEBRZ1355 Host OSPF 198.66.20.49
216.51.55.202 7F5DD188
...
7F55A128 LEBRZ1355 Network OSPF 113.0.0.0
216.51.55.202 7F5DD188
7F4E2D48 LEBRZ1355 Network OSPF 129.66.0.0
216.51.55.202 7F5DD188

Routes in Update Table

Rte@ DeviceName Type Protocol DestinationAddr
GatewayAddr Pif@
7F55D1A8 LEBRZ1355 Host OSPF 216.51.56.113
216.51.55.202 7F5DD188
7F4C95E8 LEBRZ1355 Host OSPF 216.51.56.202
216.51.55.202 7F5DD188
7F5CA208 LEBRZ1355 Host Configuration 216.51.55.155
0.0.0.0 7F5DD188
7F55A548 LEBRZ1355 Host OSPF 216.51.55.202
0.0.0.0 7F5DD188
7F55A6A8 LEBRZ1355 Direct OSPF 216.51.55.0
0.0.0.0 7F5DD188
7F5CC228 LBRSAMEHOST Host Configuration 202.51.52.153
155.155.155.2 7F5DB188
7F5CB848 LBRSAMEHOST Network Configuration 202.51.52.0
155.155.155.2 7F5DB188
7F5CBEA8 LBRSAMEHOST Network Configuration 202.51.50.0
155.155.155.2 7F5DB188

Chapter 6. IPCS Subcommands 125

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

...
7F5ADD48 LEBRZ1355 Subnetwork OSPF 51.51.128.0
216.51.55.202 7F5DD188
7F55A128 LEBRZ1355 Network OSPF 113.0.0.0
216.51.55.202 7F5DD188
7F4E2D48 LEBRZ1355 Network OSPF 129.66.0.0
216.51.55.202 7F5DD188

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS SOCKET
Invocation of this command displays information from AF_UNIX socket control
blocks.

Syntax
Following is the syntax of the TCPIPCS SOCKET subcommand:

SS TCPIPCS SOCKET S

S

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all sockets are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

SCB_address
Displays only the socket control block (SCB) with this address. An address
is specified as 1–8 hexadecimal digits. An IPCS symbol name may be
specified for an address. If an address begins with digit a–f or A–F, prefix
the address with a zero to avoid the address being interpreted as a symbol
name or as a character string.

connection_id
Displays the SCB with this connection id. A connection ID is specified as
1–8 hexadecimal digits.

126 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|||||||
|

|
||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Summarizes the sockets. SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
SCB(s).

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS SOCKET subcommand.
TCPIPCS SOCKET
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Socket Analysis

SCB CID Protocol SockOpts ScbFlags ResrcNm
12D40108 00000008 RAW 00000000 00280000 TCPSVT
12D40208 0000000B UDP 00000000 00280000 TCPSVT
12D40308 0000000C TCP 00020000 C0280000 TCPSVT
12D40408 0000000E UDP 00000000 00280000 TCPSVT
12D40508 0000000F TCP 00000000 B0280000 TCPSVT
12D40608 00000010 TCP 00020000 90280000 TCPSVT
12D40708 00000067 TCP 08000000 90280000 OMPROUTE
12D40808 00000012 TCP 00400000 C0000000 TCPSVT
12D40908 00000013 TCP 00400000 C0000000 TCPSVT
12D40A08 00000014 UDP 00000000 80280000 PORTMAP
12D40B08 00000015 TCP 00000000 C0280000 PORTMAP
...
12D44C08 00000058 TCP 00000000 C0000000 DHCP3
12D44D08 00000059 UDP 00000000 80280000 DHCP3
12D44E08 0000005A TCP 00400000 C0280000 NAMED
12D44F08 0000005B UDP 00400000 80280000 NAMED

79 Socket control blocks were found
79 Socket control blocks were formatted

Chapter 6. IPCS Subcommands 127

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS STATE
Invocation of this subcommand provides an overall view of TCP/IP. Major control
block addresses, subtasks, storage usage, dispatchable units, trace and
configuration are displayed.

Syntax
Following is the syntax of the TCPIPCS STATE subcommand:

SS TCPIPCS STATE

W
ALL

()
CONFIG
DUCB
SNMP
TRACE

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
The following keyword parameters may be specified:

ALL
Display all state information. ALL is the default.

CONFIG
Only display configuration state information.

DUCB
Only display DUCB state information.

SNMP
Only display SNMP and CONFIG information. (SNMP information makes sense
only in the context of the configuration, so the configuration information will also
be displayed.)

TRACE
Only display trace state information.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {ALL, CONFIG, DUCB, SNMP,
TRACE}, all of them will be used.

Sample Output
The following is a sample output of the TCPIPCS STATE subcommand.
TCPIPCS STATE (DUCB TRACE)
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051
...

128 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|

|
|
|

|
|

|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

TCPIP State

TCPIP Status:
Procedure: TCPSVT
Version: V2R10
Status: Active
Asid: 0051
Started: 1999/10/23 21:19:31
Ended: 1999/10/24 00:08:07
Active: 2.80 hours

Major Control Blocks
TSEB: 12E89BF8 TSDB: 12B57000
TSDX: 12B570C8 TCA: 12A2FE50
ITCVT: 12B573C8 ITSTOR: 12B575C8
DUAF: 12B56010 MRCB: 7F77EEA8
MTCB: 12E6D290 MUCB: 7F70F268
IPMAIN: 12A26410 Streams_root: 7F78BD88
TosMains: 12E6CE70 MIB2: 12E6A448
CdCb: 12E6A408 User: 13D092D0
Conf: 12E6C8F0 Stks: 137CB0B0
==
TCPIP Subtasks
Task Tcb FirstRB EotECB StopEcb CmpCode RsnCode RTWA
EZBTCPIP 006EC928 006FD0C8 806FDDC0 00000000 00000000 00000000
EPWPITSK 006EC698 006ECB30 00000000 00000000 00000000 00000000
EZBITTUB 006EC408 006EC870 00000000 806EC870 00000000 00000000 00000000
........ 006EC270 006D56F8 00000000 806EC178 00000000 00000000 00000000
EZACDMSM 006D5520 006D5A08 00000000 806D5A08 00000000 00000000 00000000
EZBTTMST 006E0E88 006D5488 006E40E0 00000000 00000000 00000000
==
Storage Cache Information

Total CSA Allocated: 177,579K
Total CSA Elements: 21,469
Cache Delay: 0 seconds
Scan Delay: 120 seconds
Total cache allocated: 48,416
Total cache elements: 11
Total freed elements: 2
Last cache scan time: 1999/10/24 04:06:12

CSM Status
ECSA Storage: OK
Data Space Storage: OK
Fixed Storage: OK

Alet: 01FF000B Dspname: 00000CSM

==
Dispatchable Unit Status

DUCB Initializations: 10,375K
DUCB Expansions: 2,180,028
Percent DUCB expansions: 21 %
Last DUCB scan time: 1999/10/24 04:04:20

DU 1000001C at 12AB3000 for TCPSVT indicates abend: S4C5 74BE2500.
DU 10000020 at 12ABF000 for TCPSVT indicates abend: S4C5 74BE2500.
DU 10000029 at 12ADA000 for TCPSVT indicates abend: S878 00000008.
DU 10000035 at 12AFE000 for TCPSVT indicates abend: S4C5 74BE2500.
DU 10000039 at 12B0A000 for TCPSVT indicates abend: S4C5 74BE2500.

1 DUAT control block(s) were found in the DUAF at 12B56010
82 Dispatchable units were found.
5 DU(s) indicate abend

==

CTrace Status:
Member Name : CTIEZB01
Buffer Size : 104,858K

Chapter 6. IPCS Subcommands 129

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Options : Init Socket AFP XCF Access PFS API Engine RAW
UDP TCP ICMP ARP Route CLAW LCS Internet
Message WorkUnit SockAPI Config SNMP IOCTL
FireWall VtamData Telnet Vtam

Asid List : ()
JobNameList : ()
Xwriter : Disconnected
Trace Count : 513,412K
Lost Count : 0
Lost Time : 1900/01/01 00:00:00
Wrap Count : 2,256
Wrap Time : 1999/10/24 04:07:51

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS STORAGE
Invocation of the command displays the TCP/IP storage summary referenced in
common cached storage.

Under the heading Storage Summary, a ″c″ in column ″c″ indicates the address is
on the cache queue. A ″p″ in column ″p″ indicates that the control block is part of a
pool.

Cache storage has twelve bytes from offset 4 overlaid with a chain pointer and time
stamp. This may show incorrect data for cached control blocks.

Note: The TCPIPCS STORAGE command only reports storage found in caches in
common storage. Use the TCPIPCS MAP command to report both common
and TCP/IP private storage usage.

Syntax
Following is the syntax of the TCPIPCS STORAGE subcommand:

SS TCPIPCS STORAGE
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS PROFILE subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS STORAGE subcommand.
TCPIPCS STORAGE
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051
...
TCPIP Storage Analysis

Storage Statistics
cache_delay 0 seconds before cache is freed
com_totstor 177,578,656 total storage for CSA elements
com_totelem 21,469 total number of CSA elements
scan_delay 120 seconds between full scans
stor_cache 48,416 storage in cache after scan
num_cache 11 elements in cache after scan

130 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

num_freed 2 elements freed during last scan
scan_time 1999/10/24 04:06:12 time of last scan
dsa_init 10,375,262 # of DUCB initializations
dsa_exp 2,180,028 # of DUCB expansions
The control block at 008AC010 (Prev: 00000000) has already been added
...
The control block at 12A26410 (Prev: 137CB0A0) has already been added

21,907 storage elements found
177,228K bytes of storage allocated

Cached Storage
Addr Size Key Sp Cblk Time Stamp Index

Common non-fetch protected storage
12E6DCB0 304 6 241 CFGM B30A8EDF19BD18C3 10
12774310 3056 6 241 CFGM B30A8E3DDBBB1943 10 Index was 29
The control block at 0E289010 (prev: 12B57650) was not available
Unable to locate storage at 0E289010
Cache pointers are in a loop at 12774310 for index 29
The control block at 0E289010 (prev: 12B57730) was not available
Unable to locate storage at 0E289010

2 control blocks found for Common non-fetch protected storage
3376 bytes allocated in Common non-fetch

4366931 total allocations
...
Storage Summary Statistics

All Cache
Type Count Size Count Size
Common Non-fetch protected 21460 177489K 2 3392
Common Fetch protected 369 68488 141 36936
Common persistent 3 192 3 192
Common SCB pool 80 21128 32 8448
Private Non-fetch protected 492 395848 156 65192
Total 22571 178149K 334 114160

22599 blocks of storage for 1807728 bytes were obtained to create this report

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS STREAM
Invocation of this command displays the stream control blocks.

Syntax
Following is the syntax of the TCPIPCS STREAM subcommand:

SS TCPIPCS STREAM S

S

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

Chapter 6. IPCS Subcommands 131

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||||
|

|
||||||||||||||||||||||||||||||||||||||
|

||

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all stream control blocks are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

CB_address
An address is specified as 1–8 hexadecimal digits. An IPCS symbol name
may be specified for an address. If an address begins with digit a–f or A–F,
prefix the address with a zero to avoid the address being interpreted as a
symbol name or as a character string. Displays only the Stream control
block associated with one of the following:

SKCB Stream context control block address.

SKQI Stream Queue Initialization control block address.

SKQP Stream Queue Pair control block address.

SKQU Stream Queue control block address.

SKSC Stream Access Control control block address.

SKSH Stream header control block address.

connection_id
Displays the Stream control block with this connection id. A connection ID is
specified as 1– 8 hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Formats the Stream control blocks in one cross-reference table. SUMMARY is
the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
Stream control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS STREAM subcommand.

132 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|

|
|
|
|
|
|

||

||

||

||

||

||

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

TCPIPCS STREAM
Dataset: IPCS.A594094.DUMPM
Title: TCPSVT V2R10: Job(TCPSVT) EZBITSTO(HTCP50A 99.281)+

00077A S4C5/74BE2500 SRB P=0051,S=0051,H=0051

The address of the TSAB is: 12E89BB8

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

12E89BF8 1 TCPSVT V2R10 12B57000 12B570C8 0051 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Stream Analysis

SKRT at 7F78BD88

Sksc@ Sksh@ CID Driver Api@ Skcb@ Ascb@ Tcb@
7F77E6C8 7F77E7C8 00000007 IP/NAM 00000000 00000000 00000000 00000000
7F70F088 7F61A088 00000006 RAW 00000000 00000000 00000000 00000000
7F70F148 7F61A608 00000005 IP/NAM 00000000 00000000 00000000 00000000
7F70F8C8 7F70F348 00000004 UDP 00000000 00000000 00000000 00000000
7F70F988 7F70FA48 00000003 IP/NAM 00000000 00000000 00000000 00000000
7F78B008 7F7580E8 00000002 TCP 00000000 00000000 00000000 00000000
7F78BCC8 7F78B748 00000001 IP/NAM 00000000 00000000 00000000 00000000

7 Stream(s) found
7 Stream(s) formatted

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TCB
Invocation of this command displays the Master Transmission Control Block (MTCB)
and any Transmission protocol Control Blocks (TCBs) defined in the TCP hash
table.

Syntax
Following is the syntax of the TCPIPCS TCB subcommand:

SS TCPIPCS TCB

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all TCP control blocks are summarized.

Chapter 6. IPCS Subcommands 133

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

jobname
Displays only the TCBs with this job name. The job name may be a TCP/IP
application name or a stack name. A jobname is 1–8 alphanumeric
characters.

TCB_address
Displays only the TCB with this address. An address is specified as 1–8
hexadecimal digits. An IPCS symbol name may be specified for an address.
If an address begins with digit a–f or A–F, prefix the address with a zero to
avoid the address being interpreted as a symbol name or as a character
string.

connection_id
Displays the TCB with this connection id. A connection ID is specified as
1–8 hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Formats the MTCB contents and lists all the TCBs in one cross-reference table.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
TCB(s).

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS TCB subcommand.
TCPIPCS TCB
Dataset: IPCS.MV21372.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 131B8120

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

131B8160 1 TCPSVT V2R10 13C9F000 13C9F0C8 07D3 94FF755F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

134 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCP/IP Analysis
TCPIP Main TCP Control Block (MTCB)
MTCB: 13C9E890
+0000 M_MAIN_EYE......... TCP MAIN
+0008 M_TCP_LWRITE_Q..... 7F782868
+000C M_TCP_LREAD_Q...... 7F782828
+0014 M_TCP_DRIVER_STATE. 01
+0018 MTCPMTX............ 00000000 00000000 00000000 D7D60601
+0028 MTCPAQMX........... 00000000 00000000 00000000 D7D60604
+0038 MTCB_LIST_LOCK..... 00000000 00000000 00000000 D7D60604
+0048 M_PORT_CEILING..... 00000FFF
+004C M_TPI_SEQ#......... 00000008
+0050 M_PORT_ARRAY....... 7F711FC8
+0054 M_LAST_PORT_NUM.... 0000040C
...

TCB ResrcID ResrcNm TcpState TpiState Local IPAddr/Port Remote IPAddr/Port LuNa
7F603108 00000002 TCPSVT Closed WLOUNBND 0.0.0.0..0 0.0.0.0..0
7F605D08 00000017 FTPUNIX1 Listening WLOIDLE 0.0.0.0..21 0.0.0.0..0
7F605108 00000013 TCPSVT Listening WLOIDLE 0.0.0.0..625 0.0.0.0..0
7F603508 0000000A TCPSVT Listening WLOIDLE 0.0.0.0..1025 0.0.0.0..0
7F604508 000000EA TCPSVT Established WLOXFER 197.66.103.1..23 197.11.108.1..1032
...
7F607108 0000003E TCPSVT Established WLOXFER 127.0.0.1..1029 127.0.0.1..1028
7F60A508 000000E8 TCPSVT Listening WLOIDLE 0.0.0.0..623 0.0.0.0..0
25 TCB(s) FOUND
25 TCB(s) FORMATTED

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TELNET
Invocation of this subcommand displays either the address or address and contents
of Telnet control blocks. These include the TCMA, TCFG, TPDB, and, optionally, the
TKCB and CVB for a selected session. A partial TCFG that is being built is also
displayed, if found.

Syntax
Following is the syntax of the TCPIPCS TELNET subcommand:

SS TCPIPCS TELNET S

S

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all TCP control blocks are summarized.

Chapter 6. IPCS Subcommands 135

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|||||||
|

|
||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

LUname
Displays only the session control blocks for the eight-character logical unit
name. If the name is less than eight characters, it is padded on the right
with blanks.

token Displays only the session control blocks for the token. The token is a
16-digit hexadecimal value. If the token is less than sixteen digits, it is
padded on the right with zeros.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Displays the address of the control blocks. SUMMARY is the default.

DETAIL
Displays the contents of the control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS TELNET subcommand.
TCPIPCS TELNET
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TCPIP Telnet Analysis

TMCA at 7F5B1188

136 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

|
|

|
|
|

|

|
|
|
|

||
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Tpdb@ Port Tcfg@ Prof Tkcb@ Token Cvb@ LUname
7F59D8A0 623 7F5A6068 CURR 00000000 00000000 00000000 00000000
7F59D4E0 625 7F59D620 CURR 00000000 00000000 00000000 00000000

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TIMER
Invocation of this command displays the timer control blocks.

Syntax
Following is the syntax of the TCPIPCS TIMER subcommand:

SS TCPIPCS
(SUMMARY)

TIMER
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS TIMER subcommand:

SUMMARY
Displays the contents of the timer control blocks. The timer queue elements
(TQE’s) and timer id’s (TID’s) are presented in tabular form.

DETAIL
The timer control blocks are displayed as in the SUMMARY form of the
command. In addition, each TQE and each TID are fully displayed.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS TIMER subcommand.

TCPIPCS TIMER
Dataset: IPCS.A594094.DUMPF
Title: CHECK NOT ADDR

The address of the TSAB is: 08CE28C0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08CE2900 1 TCPCS V2R10 086D8000 086D80C8 01F8 10000100 Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

Chapter 6. IPCS Subcommands 137

|
|
|
|
|

|

|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Timer tables at 086D8F80

ItTmr Pass Slot Delta Max PopCount Array@
086D8F80 64 62 100 12800 8253 086D9000

Global TQE Queue for Slot 63:

Tqe Tid Ecb Mod Parm Msec TqeFlag TidFLag

08EDDD58 08EDDD44 00000000 EZBIFIU2 08EDDD40 100 00 20

1 TQE(s) for slot 63 with 0 msec timer offset

ItTmr Pass Slot Delta Max PopCount Array@
086D8FA0 6 58 1000 128000 825 086D9400

ItTmr Pass Slot Delta Max PopCount Array@
086D8FC0 0 83 10000 1280000 82 086D9800

Global TQE Queue for Slot 122:

Tqe Tid Ecb Mod Parm Msec TqeFlag TidFLag

086C9020 7F4CEBD0 7F4CEBCC 00000000 00000000 1200000 40 20

1 TQE(s) for slot 122 with 128000 msec timer offset

ItTmr Pass Slot Delta Max PopCount Array@
086D8FE0 0 9 100000 4294967295 8 086D9C00

2 TQE(s) were found

No cancelled TQE(s) were found

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS TRACE
Invocation of this command displays information about CTrace.

Syntax
Following is the syntax of the TCPIPCS TRACE subcommand:

SS TCPIPCS
(SUMMARY)

TRACE
(DETAIL) TCP (tcp_proc_name)

tcp_index

S

S
TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS TRACE subcommand:

SUMMARY
Displays a summary of the CTrace status.

DETAIL
In addition to the SUMMARY information, lists the individual trace buffer entries.

138 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|
|

|
|

|
|

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS TRACE subcommand.
TCPIPCS TRACE
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

Trace Control Area
TCA: 11469E50
+0000 TCAACRONYM.......... TCA
+0006 TCAVERSION.......... 0005
+0008 TCASIZE............. 0002F188
+000C TCAFTBE............. 1146A1D8
+0010 TCACURTBE........... 11471B40
+0014 TCACURENT........... 030A044E
+0018 TCATABSZ............ 06400000
+001C TCANUMBF............ 00000640

...

Event Trace Statistics for SYSTCPIP
Size of the Trace Control Area 192904
Size of the trace buffer 102400K
Size of a trace segment. 64K
Number of trace segments 1600
Maximum trace record size. 14,336
Number of trace records requested. . . 854,878,442
Number of trace records recorded . . . 710,809,778
Number of trace segments filled. . . . 3,928,777
Average records per segment. 180
Average records per table. 288,000
Trace status Active
XWriter status Disconnected
Number of buffers written. 846
Lost record count. 0
Lost record time 1900/01/01 00:00:00.000000
Trace table wrap count 2,456
Trace table wrap time. 2000/03/22 12:33:48.626806
Average records per wrap 289,417

Data Trace Statistics for SYSTCPDA
Size of the trace buffer 204800K
Size of a trace segment. 64K

Chapter 6. IPCS Subcommands 139

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Number of trace segments 3200
Number of trace records requested. . . 21,596,667
Number of trace records recorded . . . 21,515,003
Number of trace segments filled. . . . 68,826
Number of lost records 0
XWriter status Disconnected

Tseb_Trace_Opts: 04041405
Options: XCF TCP Internet Message VtamData Vtam

1600 SYSTCPIP Trace Buffer Elements were found
0 SYSTCPIP Trace Buffer Elements were formatted

3200 SYSTCPDA Trace Buffer Elements were found
0 SYSTCPDA Trace Buffer Elements were formatted

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TREE
Invocation of this command displays the structure of TCP/IP Patricia trees.

Syntax
Following is the syntax of the TCPIPCS TREE subcommand:

SS TCPIPCS S

S

W

TREE

ALL SUMMARY BOTH
(ARP)

FIREWALL HEADER DETAIL ACTIVE
NETACC DELETE
ROUTE
TCP
TELNET
UDP

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
The following keyword parameters may be specified:

ALL
Display structure of all TCP/IP trees. ALL is the default.

ARP
Only display structure of ARP trees.

FIREWALL
Only display structure of Firewall trees.

NETACC
Only display structure of NetAccess trees.

ROUTE
Only display structure of route trees.

140 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||
|

|
||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|

|
|

|
|

TCP
Only display structure of TCP trees.

TELNET
Only display structure of Telnet trees.

UDP
Only display structure of UDP trees.

HEADER
Display tree header information. Not displayed by default.

SUMMARY
Displays the addresses of the control blocks and other data in trees.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL also shows the search key
values.

BOTH
Display both active and logically deleted tree nodes. BOTH is the default.

ACTIVE
Only display active tree nodes.

DELETE
Only display logically deleted tree nodes

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Notes:

1. If you specify multiple keywords from the set {ALL ARP, FIREWALL, NETACC,
ROUTE, TCP, TELNET, UDP}, all of them will be used.

2. If you specify multiple keywords from the set {BOTH, ACTIVE, DELETE}, only
the last one will be used.

3. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS TREE subcommand.
TCPIPCS TREE (UDP TELNET HEADER)
Dataset: IPCS.A594094.DUMPL
Title: TCPIPR10 V2R10: Job(RUNNV16S) ()+

?????? S0E0/00000028 SRB P=0048,S=0048,H=0048
...
TCPIP Tree Analysis

Telnet LU Name Tree

Tree root Header at 7F7B4A68
Instance : 13
Total elements : 1
Deleted elements : 1
Rebuild count : 0
Maximum key length : 8 bytes
Rebuild threshold : 50
Rebuild time : 1900/01/01 00:00:00.000000

Node@ Bit Parent LChild RChild Key Element Status
7F7B4A98 0 00000000 7F7B4A98 7F7B4A98 16644D48 00000000 Deleted

0 active elements in Telnet LU Name Tree

Chapter 6. IPCS Subcommands 141

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

UDP DMUX Tree

Tree root Header at 7F7BE208
Instance : 2
Total elements : 1
Deleted elements : 0
Rebuild count : 0
Maximum key length : 6 bytes
Rebuild threshold : 20
Rebuild time : 1900/01/01 00:00:00.000000

Node@ Bit Parent LChild RChild Key Element Status
7F7BE238 0 00000000 7F7BE238 7F7BE238 16644D48 7F630108 Active

1 active elements in UDP DMUX Tree

UDP SNMP Tree

Tree root Header at 7F7BE1A8
Instance : 3
Total elements : 1
Deleted elements : 0
Rebuild count : 0
Maximum key length : 6 bytes
Rebuild threshold : 20
Rebuild time : 1900/01/01 00:00:00.000000

Node@ Bit Parent LChild RChild Key Element Status
7F7BE1D8 0 00000000 7F7BE1D8 7F7BE1D8 16644D48 7F630108 Active

1 active elements in UDP SNMP Tree

Analysis of Tcp/Ip for TCPIPR10 completed

TCPIPCS TSDB
Invocation of this subcommand displays the TSDB server data block.

Syntax
Following is the syntax of the TCPIPCS TSDB subcommand:

SS TCPIPCS TSDB
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS TSDB subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS TSDB subcommand.
TCPIPCS TSDB
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

142 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TSDB control block summary

TSDB: 1323B000
+0000 TSDB_ACRONYM............. TSDB
+0004 TSDB_LENGTH.............. 00C8
+0006 TSDB_VERSION............. 0003
+0008 TSDB_STATE............... 0015
+000A TSDB_ASID................ 07DE

-- Array elements --
+0010 TSDB_MT.................. 11A7E870
+0014 TSDB_MT.................. 962F5E00
....
+0060 TSDB_CTRACE_PARMLIB_NAME. CTIEZB02
+006C TSDB_SMCA................ 00000000
+0070 TSDB_TSRMT............... 00000000
+0074 TSDB_FLAGS............... 00000000
+0078 TSDB_CONFIG_PORT......... 00000401
+007C TSDB_OSASF_PORT.......... FFFFFFFF
+0080 TSDB_EZBITMSN@........... 91A8BF90
+0084 TSDB_TERMINATING_ECB..... 807EC758
+0088 TSDB_DUAF................ 00000000
+008C TSDB_TSCA................ 13236A58
+0090 TSDB_SOCIFPTR............ 91BC3E78
+0094 TSDB_SOMIFPTR............ 91BCA050
+0098 TSDB_RXGLUPTR............ 91BF6308
+009C TSDB_FFSTADDR............ 80B46E18
+00A0 TSDB_FFST_PHMSGTIME...... 00000000 00000000
+00A8 TSDB_LEPARMS............. 14B01BBA
+00AC TSDB_OE_AS_STOKEN........ 00000038 00000001
+00B4 TSDB_SOMT2............... 91C3FE60

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TSDX
Invocation of this subcommand displays the TSDX server data extension.

Syntax
Following is the syntax of the TCPIPCS TSDX subcommand:

SS TCPIPCS TSDX
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS TSDX subcommand:

Chapter 6. IPCS Subcommands 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS TSDX subcommand.
TCPIPCS TSDX
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TSDX control block summary

TSDX: 1323B0C8
+0000 TSDX_ACRONYM............... TSDX
+0004 TSDX_LENGTH................ 0300
+0006 TSDX_VERSION............... 0003
+0008 TSDX_FLAGS................. 60000001
+000C TSDX_ASCB.................. 00F7C280
+0010 TSDX_PROCNAME.............. TCPSVT
+0018 TSDX_CART.................. 00000000 00000000
+0020 TSDX_CONSID................ 00000001
+0024 TSDX_TCB................... 007EC9A8
+0028 TSDX_TCB_TOKEN............. 00001F78 00000008 00000003 007EC9A8
+0038 TSDX_TCPIP_DS_ALET......... 01FF0011
+003C TSDX_TCPIP_DS_ADDR......... 00001000
+0040 TSDX_TCPIP_DS_END.......... 19001000
+0044 TSDX_ET_TOKEN.............. 7FFD9D10
...
+026C TSDX_CSMSTATAREA........... 141C7A88
+0270 TSDX_CSMDUMPINFO........... 141C7A90
+0288 TSDX_AUTOLOG_TASK_ECB...... 807EC758
+028C TSDX_AUTOLOG_CB............ 1333C0A8
+0290 TSDX_SASTRT_ECB............ 807EC758
+0294 TSDX_XFCVT................. 13096410
+0298 TSDX_XCFLOCK............... 00000000 00000000 00000000 D7D60901

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS TSEB
Invocation of this subcommand displays the TSEB server anchor block.

144 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Syntax
Following is the syntax of the TCPIPCS TSEB subcommand:

SS TCPIPCS TSEB
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
Following is the parameter for the TCPIPCS TSEB subcommand:

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Sample Output
The following is a sample output of the TCPIPCS TSEB subcommand.
TCPIPCS TSEB
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

TSEB control block summary

TSEB: 13391C00
+0000 TSEB_ACRONYM.......... TSEB
+0004 TSEB_LENGTH........... 0080
+0006 TSEB_VERSION.......... 0003
+0008 TSEB_FLAGS............ 82000000
+0008 TSEB_STATUS........... 82
+000C TSEB_REQUESTORS....... 00000000
+0010 TSEB_TCPIP_NAME....... TCPSVT
+0018 TSEB_SI............... 01
+0019 TSEB_IID.............. 04
+001A TSEB_TCPIP_VERSION.... 0510
+001C TSEB_TSDB............. 1323B000
+0020 TSEB_LX............... 00002E00
+0024 TSEB_TCA.............. 11469E50
+0028 TSEB_TRACE_OPTS....... 04041405
+002C TSEB_TRACE_OPT2....... 00000000
+0034 TSEB_SCHEDULED_EVENTS. 00000000
+0038 TSEB_ASID............. 07DE
+003C TSEB_LPA_SADDR........ 11A719E0
+0040 TSEB_LPA_EADDR........ 11C62FFF
+0044 TSEB_QDIO_BGRP_Q@..... 1320A648
+0048 TSEB_EZBITDCR......... 9320ACF8
+004C TSEB_ITCVT............ 1323B3C8

Chapter 6. IPCS Subcommands 145

|
|

|||||||||||||||||||||||||||||||||||||

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+0050 TSEB_BGRP_Q@.......... 1320A608
+0054 TSEB_DUAF............. 130A4010
+0059 TSEB_TOKENID.......... 000015
+005C TSEB_TCMTPTR.......... 132072F0
+0060 TSEB_EZBITCOM_LEN..... 00007D28
+0064 TSEB_CS390_VERSION.... 020A
+0068 TSEB_CSMFREE.......... 1320A548
+006C TSEB_TCPIP_STOKEN..... 00001F78 00000008
+0074 TSEB_CSMPACK.......... 1320A588
+0078 TSEB_SOCA............. 140BAEB8
+007C TSEB_CSMPACKQDIO...... 1320A5C8

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS UDP
Invocation of this command displays the Master UDP Control Block (MUCB) and
any UDP Control Blocks (UCBs) defined in the UDP Patricia tree.

Syntax
Following is the syntax of the TCPIPCS UDP subcommand:

SS TCPIPCS UDP

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all UDP control blocks are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

jobname
Displays only the UDP control blocks with this job name. The job name may
be a TCP/IP application name or a stack name. A jobname is 1–8
alphanumeric characters.

UCB_address
Displays only the UDP control block with this address. An address is
specified as 1–8 hexadecimal digits. An IPCS symbol name may be
specified for an address. If an address begins with digit a–f or A–F, prefix
the address with a zero to avoid the address being interpreted as a symbol
name or as a character string.

146 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

connection_id
Displays the UDP control block with this connection id. A connection ID is
specified as 1–8 hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Formats the MUCB contents and lists all the UDPs in one cross-reference table.
SUMMARY is the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of the
UCB(s).

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS UDP subcommand.
TCPIPCS UDP
Dataset: IPCS.MV21381.DUMPA
Title: SLIP DUMP ID=TC

The address of the TSAB is: 13391BC0

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

13391C00 1 TCPSVT V2R10 1323B000 1323B0C8 07DE 04041405 Active
13391C80 2 TCPSVT2 V2R10 00000000 00000000 07E8 00000000 Down Stopping
13391D00 3 TCPSVT1 V2R10 12FC3000 12FC30C8 0080 94FF755F Active
13391D80 4 TCPSVT3 V2R10 00000000 00000000 0059 00000000 Down Stopping

4 defined TCP/IP(s) were found
2 active TCP/IP(s) were found

4 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPSVT. Index: 1

User Datagram Protocol Control Block Summary
MUCB: 7F7812A8
+0000 UMUCBEYE. MUCB USTKDOWN. 00 USTKLNKD. 01
UAPAR.... 00 UDRVSTAT. 00
+0008 UOPENPRT. 00000000 UFREEPRT. 0408 MCBMUTEX. 00000000
00000000 00000000 D7D60402
+0020 UDPCFG... 00000001 0000FFFF 0000FFFF 00000001 80000000
00000000
+0038 UDPCFG2.. 00000001 0000FFFF 0000FFFF 00000001 80000000
00000000
+0050 UDPMIB... 00001D1F 0000531F 00000000 0000166B
USBCAST.. 00000000 USLPBACK. 00000000
+0068 USDNTRTE. 00000000 USRCVBUF. 0000FFFF USSNDBUF. 0000FFFF
UFGPRC... 00 USERIALV. 0000065F
+007C USERIAL1. 0000065F ULASTADR. 810B2068 ULASTPRT. 0043
ULASTUCB. 7F5FD508 USERIAL2. 0000065F
+0090 UIPWRQ@.. 7F712828 UIPRDQ@.. 7F7127E8 UMI@..... 00000000

Chapter 6. IPCS Subcommands 147

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

USMI@.... 00000000 UUCBSID@. 00000000
+00A4 UPAUTLL@. 00000000 USNAWRQ@. 00000000 USNARDQ@. 00000000
+00B0 UDMUX_TOKEN. 7F781248 00000002
+00B8 USNMP_TOKEN. 7F7811E8 00000003
+00C0 UDMULTI@. 00000000

UCB ResrcID ResrcNm TpiState IPAddr Port
7F5F6108 00000004 TCPSVT WLOUNBND 0.0.0.0
7F5FCD08 00000086 OSNMPD WLOIDLE 127.0.0.1 161
7F5FD508 0000005E DHCP1 WLOIDLE 129.11.32.1 67
7F5FCF08 00000055 DHCP1 WLOIDLE 198.11.25.104 1027
7F5FD308 0000005B NAMED WLOIDLE 129.11.176.87 53
7F5FD108 00000059 DHCP3 WLOIDLE 0.0.0.0 6001
7F5FCB08 0000004B CBSAMPLE WLOIDLE 0.0.0.0 30001
...
7F5F6B08 00000017 MISCSRV WLOIDLE 0.0.0.0 7
7F5F6908 00000014 PORTMAP WLOIDLE 0.0.0.0 111
56 UCB(s) FOUND
56 UCB(s) FORMATTED

Analysis of Tcp/Ip for TCPSVT completed

TCPIPCS VMCF
Invocation of this command displays information about VMCF (Virtual Machine
Communication Facility) and IUCV (Inter-User Communication Vehicle) users.

Syntax
Following is the syntax of the TCPIPCS VMCF subcommand:

SS TCPIPCS VMCF

W

SUMMARY
(*)

variable_item DETAIL

(variable_list)

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, all VMCF control blocks are summarized.

* An asterisk is used as a place-holder if no variable parameters will be specified.

variable_item
Any one of the following variable parameters.

variable_list
From 1–32 of the following variable parameters may be repeated, separated by
a blank space, within parentheses:

Variable parameters are:

user_id
Displays only the VMCF control block associated with this user ID. Specifed
as 1–8 alphanumeric characters.

148 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|||||||||||||||||||||||||||||||||

|

|
|

||

|
|

|
|
|

|

|
|
|

ASCB_address
Displays only the VMCF control blocks associated with this address space
control block address. An address is specified as 1–8 hexadecimal digits.
An IPCS symbol name may be specified for an address. If an address
begins with digit a–f or A–F, prefix the address with a zero to avoid the
address being interpreted as a symbol name or as a character string.

ASID_number
Displays only the VMCF control blocks associated with this address space
identifier. An ASID is specified as 1–4 hexadecimal digits.

In addition to the variable parameters described above, the following keyword
parameters may be specified:

SUMMARY
Formats the VMCF control blocks in one cross-reference table. SUMMARY is
the default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of selected
VMCF USER control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

Note: If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the
last one will be used.

Sample Output
The following is a sample output of the TCPIPCS VMCF subcommand.
TCPIPCS VMCF ((*) SUMMARY)
Dataset: IPCS.JW11111.DUMPA
Title: IPCS VMCF DUMP

The address of the TSAB is: 08EBC180

Tseb SI Procedure Version Tsdb Tsdx Asid TraceOpts Status

08EBC1C0 1 TCPCS V2R10 089DC000 089DC0C8 01F7 9FFFFF7F Active

1 defined TCP/IP(s) were found
1 active TCP/IP(s) were found

1 TCP/IP(s) for CS V2R10 found

==

Analysis of Tcp/Ip for TCPCS. Index: 1

TCPIP VMCF Analysis

XINF at 09813000
VMCF CVT : 00A44078
User Array : 09813090
Userid Count : 1
Userid Array : 09817050
Userid : VMCF
MSGBUILD : 89802838
MVPMSGS : 8981A290
Ecb : 00000000
TNF CVT : 00A63808
VMCF QD : 00000000
VMCF QD Count : 0

Chapter 6. IPCS Subcommands 149

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TNF Manager Area : 00008FE0
SMSG Id : 0

USER at 09813C50
Userid : USER18
Asid : 005D
No UserData

Analysis of Tcp/Ip for TCPCS completed

TCPIPCS XCF
Invocation of this command produces a cross-system coupling facility (XCF)
analysis report.

Syntax
Following is the syntax of the TCPIPCS XCF subcommand:

SS TCPIPCS

W

XCF

SUMMARY
(CONN)

DEST DETAIL
WLM
ALL

S

S
TCP (tcp_proc_name)

tcp_index

TITLE

NOTITLE
ST

Parameters
If no parameters are specified, the dynamic VIPA hash table and partner tables are
summarized.

The following keyword parameters may be specified:

ALL
Display all optional information.

CONN
Only display connection hash table optional information. CONN is the default.

DEST
Only display destination hash table optional information.

WLM
Only display workload manager optional information.

SUMMARY
Formats the XCF control blocks in one cross-reference table. SUMMARY is the
default.

DETAIL
In addition to the SUMMARY display, DETAIL formats the contents of XCF
control blocks.

TCP, TITLE, NOTITLE
See “Parameters” on page 89 for a description of these parameters.

150 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|||||||||||||||||||||||||||||||||

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

Notes:

1. If you specify multiple keywords from the set {ALL, CONN, DEST, WLM}, all of
them will be used.

2. If you specify multiple keywords from the set {SUMMARY, DETAIL}, only the last
one will be used.

Sample Output
The following is a sample output of the TCPIPCS XCF subcommand.
TCPIPCS XCF
Dataset: IPCS.MV20603.DUMPA
...
----XFCVT information----

XFCVT@ 12CC7410 Member Name RUSSIATCPSVT
Local PTB 12CC752C PTB Chain 1276A410
DVIPAHashT@ 13239408 IPHashT@ 12A9C010
ConnRteHashT@ 12A9B010 DPTHashT@ 1277D010
WLMData@ 00000000
==
----DVIPA Hash Table----
DVIPA Hash Table at 13239408
Hash table has size 2056 bytes

DVIPA address 197.11.200.2 index 3
MVSName/TCPName Status/Rank

RUSSIA/TCPSVT 32/255
GERMANY/TCPSVT 12/0

...
Found 9 entries in the DVIPA Hash Table.
==
===

Local Partner Table
===
----Partner Table Control Block----
Partner Table at 12CC752C
NextPtr: 00000000
MVSName: RUSSIA CPName: RUSSIA
TCPname: TCPSVT IPTable: 12D6F140
IPCount: 21 IPEntries@: 1322D0E8
...
----Dynamic VIPA Table----
Sending Partner@: 128E1410 GERMANY/TCPSVT

Current Dynamic Home Address: 199.11.87.104
Table Address: 12A98C10 Table Length: 8208
Number of Table Entries: 7
...
DVIPA entry at 12A98C40
DVIPA origin: DEFINE Dist Status: Unknown:0
DVIPA Flags: MoveImmed
DVIPA Flag2: ()
IP address: 197.11.104.10 Mask: 255.255.255.0

...
===

Next Partner Table
===
----Partner Table Control Block----
Partner Table at 1276A410
NextPtr: 12659410
MVSName: SPAIN CPName: SPAIN
TCPname: TCPSVT IPTable: 13BA63A0
...

Chapter 6. IPCS Subcommands 151

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ERRNO
The ERRNO command searches for the name and description of constants used for
ERRNO, ErrnoJr, module ID, reason code, and ABEND reason code.

Syntax
Following is the syntax of the ERRNO command:

SS ERRNO
value

type
name

ST

Parameters
Following are the parameters of the ERRNO command:

type
The optional type of value provided:

A Abend code

E Errno

J ErrnoJr

M Module ID

R Reason code (default)

value
The decimal or hexadecimal value to be converted. By default, the value is
assumed to be a hexadecimal number. If the value is less than the maximum
size for its type, the value is padded on the left with zeros. Choices are:

hhhhhhhh
An address in one to eight hexadecimal digits ending with a period. The
value at that address will be interpreted.

hhhhhhhh
An ERRNO, ERRNO junior, reason code, ABEND code, or module ID in
one to eight hexadecimal digits.

hhhhhhhhx
An ERRNO, ERRNO junior, or a module ID in one to eight hexadecimal
digits followed by the letter x.

ddddddddn
An ERRNO, ERRNO junior, or a module ID in one to eight decimal
digits followed by the letter n.

name
The name of a module, an ERRNO, an ErrnoJr, or an ABEND reason code.

Note: If the name is not found, ERRNO will try to interpret the name as a
hexadecimal value.

152 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|
|

|

|

||||||||||||||||||||||

|

|

|

|
|

||

||

||

||

||

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

Sample Output
Following are some sample outputs of the ERRNO command.

v Example 1: Reason code by hexadecimal value.
Command ===> errno r 74be72e9

ReasonCode: 74BE72E9
Module: EZBITSTO ErrnoJr: 29417 JRCMNOCSM
Description: Cache Manager encountered a CSM storage shortage

v Example 2: Reason code by address, where the value at address 07093F98 is
74717273. Note that type R (reason code) is the default.

Command ===> errno 7093f98.

ReasonCode: 74717273
Module: EZBPFWRT ErrnoJr: 29299 JRARPSVNOTDEFINED
Description: The ATMARPSV name specified is not defined

v Example 3: Errno in decimal.

Command ===> errno e 129n

Errno: 00000081(129) : ENOENT
Description: No such file, directory, or IPC member exists

v Example 4: ErrnoJr in hexadecimal.

Command ===> errno j 6c

ErrnoJr: 0000006C(108) : JRFILENOTTHERE
Description: The requested file does not exist

v Example 5: Abend code in decimal.
Command ===> errno a 9473n

Abend Reason Code: 00002501
Module: Unknown Reason: TcpitStorNoCSMstorage
Description: No CSM storage available

v Example 6: Module ID in hexadecimal.
Command ===> errno m 74be

ModuleId: 74BE(29886) : EZBITSTO EZBTIINI

v Example 7: Module name.
Command ===> errno ezbifinb

ModuleId: 7418(29720) : EZBIFINB EZBTIINI

v Example 8: ERRNO name.
Command ===> errno ebadf

Errno: 00000071(113) : EBADF
Description: The file descriptor is incorrect

v Example 9: ErrnoJr name.

Command ===> errno jrmaxuids

ErrnoJr: 00000013(19) : JRMAXUIDS
Description: The maximum number of OpenMVS user IDs is exceeded

v Example 10: ABEND reason name.

Chapter 6. IPCS Subcommands 153

|

|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

Command ===> errno tcpbadentrycode

Abend Reason Code: 00000401
Module: Unknown Reason: TcpBadEntryCode
Description: Bad Entry code to module

ICMPHDR
Invocation of the ICMPHDR command displays the ICMP header fields.

Syntax
Following is the syntax of the ICMPHDR command:

SS ICMPHDR icmp_address
skdb_address
skmb_address

size
ST

Parameters
Following are the parameters of the ICMPHDR subcommand:

icmp_address
The address of an ICMP header or the symbol for the address.

skdb_address
The address of an SKDB control block or the symbol for the address.

skmb_address
The address of an SKMB control block or the symbol for the address.

size
The amount of data to display. If the size is greater than the size of the header,
the variable portion of the header is displayed if it exists. Must be 1–3
hexadecimal digits.

Sample Output
Following is a sample output of the ICMPHDR command.
ICMPHDR 08D0A0D0

ICMP Header at 08D0A0D0

08D0A0D0 03032AFE 00000000 45000047 00600000 |-.. |
+0010 401180DB 7F000001 09437127 040700A1 | ..."..........x |
+0020 0033CD23 00000000 00000000 4500003C | |
+0030 00010000 40067CB9 7F000001 |@."... |

Type : UNREACH
Code : PORT
Checksum : 2AFE
Misc. Header : 0
Misc. Data : 45000047 00600000 401180DB 7F000001

IPHDR
Invocation of the IPHDR command displays the IP header fields.

154 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|

|
|

|

|

|

||||||||||||||||||||||||||

|

|

|

|
|

|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

Syntax
Following is the syntax of the IPHDR subcommand:

SS IPHDR ip_header_address
rcb_address
tcb_address
ucb_address
skmb_address
skdb_address

size
ST

Parameters
Following are the parameters of the IPHDR subcommand:

ip_header_address
The address of an IP header or the symbol for the address.

rcb_address
The address of a raw control block or the symbol for the address.

tcb_address
The address of a TCP/IP TCB control block or the symbol for the address.

ucb_address
The address of a UDP control block or the symbol for the address.

skmb_address
The address of an SKMB control block or the symbol for the address.

skdb_address
The address of an SKDB control block or the symbol for the address.

size
The amount of data to display. If the size is greater than the size of the header,
additional protocol headers (if any) are displayed. Must be 1–3 hexadecimal
digits.

Sample Output
The following is a sample output of the IPHDR command.
IPHDR 8D0A0D8

IPv4 Header at 08D0A0D8

08D0A0D8 45000047 00600000 401180DB 7F000001 |-.. ..."... |
+0010 09437127 | |

IP Version : 4
Header Size : 20
Precedence : Routine
TOS : NormalService
Packet Size : 71
ID Number : 96
Fragment : |DontFragment |MoreFragment
Offset : 0
TTL : 64
Protocol : UDP
Checksum : 80DB
Source : 127.0.0.1
Destination : 9.67.113.39

UDP Header at 08D0A0EC

Chapter 6. IPCS Subcommands 155

|

|

|||||||||||||||||||||||||||||||||||

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

08D0A0EC 040700A1 0033CD23 | ...x.... |

Source port : 1031
Destination port : 161
Datagram Length : 51
Checksum : CD23

SETPRINT
Invocation of the SETPRINT command may change the destination of subsequent
IPCS command output. If the IPCSPRNT data set is allocated and being sent to a
node, the output of future IPCS commands will be accumulated (not displayed at
the terminal) until you exit IPCS. When you exit IPCS, the IPCSPRNT data set will
be sent to the specified node.

Syntax
Following is the syntax of the SETPRINT command:

SS SETPRINT ON
OFF

node_name . user_id

ST

Parameters
Following are the parameters of the SETPRINT command:

ON
Allocates the IPCSPRNT data set and issues the IPCS command SETDEF
PRINT.

OFF
Frees the IPCSPRNT data set and issues the IPCS command SETDEF
NOPRINT.

node_name
The name of a TSO or VM system to which the output will be sent.

user_id
The user ID on the TSO or VM system to which the output will be sent.

Note: If user_id is specified, there must be a period but no space between
node_name and user_id.

Sample Output
If the command completes successfully, there is no output for the SETPRINT
command. The following examples are invalid invocations of the SETPRINT
command:

v Example 1: Allocating IPCSPRNT when it is already allocated.
setprint on ralvms.testid
IKJ56861I FILE IPCSPRNT NOT UNALLOCATED, DATA SET IS OPEN

v Example 2: Freeing IPCSPRNT when it is already freed.

setprint off
BLS21060I PRINT file not open
IKJ56247I FILE IPCSPRNT NOT FREED, IS NOT ALLOCATED

156 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|||||||||||||||||||||||||||||||||

|

|

|

|
|
|

|
|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

SKMSG
Invocation of the SKMSG command displays the SKMSG fields.

Syntax
Following is the syntax of the SKMSG command:

SS SKMSG skmb_address
skdb_address
skbd_address
skqu_address
raw_control_block_address
tcb_control_block_address
udp_control_block_address

ST

Parameters
Following are the parameters of the SKMSG command:

skmb_address
The address of an SKMB control block or the symbol for the address.

skdb_address
The address of an SKDB control block or the symbol for the address.

skbd_address
The address of an SKBD control block or the symbol for the address.

skqu_address
The address of an SKQU control block or the symbol for the address.

raw_control_block_address
The address of a RAW control block or the symbol for the address.

tcb_control_block_address
The address of a TCB control block or the symbol for the address.

udp_control_block_address
The address of a UDP control block or the symbol for the address.

Sample Output
The following is a sample output of the SKMSG command.
SKMSG 15D4D5B8

SKDB at 15D4D5B8

Message 1

SKMB: 15D4D588
+0000 id....... SKMB next..... 00000000 prev..... 00000000
+0008 tail..... 00000000 cont..... 15D55B08 flag..... 4000
+0012 band..... 00 strx..... 16 hold..... 00000000
+0018 datb..... 15D4D5B8 atch..... 00000000 rptr..... 15DE5A60
+0024 wptr..... 15DE5AA8

SKDB: 15D4D5B8
+0000 id....... SKDB msgb..... 15D4D588 cver..... 00
+0009 csrc..... 80 ctyp..... 40
+000C tokn..... 15E3F040 15E3F3E0 00001358 alet..... 00000000

Chapter 6. IPCS Subcommands 157

|
|

|

|

|

|||||||||||||||||||||||||||||||

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+001C base..... 15DE5000 size..... 00001000 flag..... 00000000
+0028 ref...... 00000005

Buffer: 15DE5000
+0000 450005DC 24760000 4006DBF0 09433116 |0.... |
+0010 0943311A 0AB70866 481080F3 450C8271 |3..b. |
+0020 8010FFFE DA3B0000 0101080A 3E456F23 |?. |
+0030 3E450C82 91A38897 D3C7E5D6 C297E8E3 | ...bjthpLGVOBpYT |
+0040 D9F0E596 F2C989D9 | R0Vo2IiR |

SKMB: 15D55B08
+0000 id....... SKMB next..... 00000000 prev..... 00000000
+0008 tail..... 00000000 cont..... 00000000 flag..... 0000
+0012 band..... 00 strx..... 00 hold..... 00000000
+0018 datb..... 15D55B38 atch..... 00000000 rptr..... 13ECA758
+0024 wptr..... 13ECACB8

SKDB: 15D55B38
+0000 id....... SKDB msgb..... 15D55B08 cver..... 00
+0009 csrc..... 40 ctyp..... 80
+000C tokn..... 15D41040 15D417F0 000003C7 alet..... 01FF0007
+001C base..... 13ECA000 size..... 00000CB8 flag..... 00800000
+0028 ref...... 00000003

TCPHDR
Invocation of the TCPHDR command displays the TCP header fields.

Syntax
Following is the syntax of the TCPHDR command:

SS TCPHDR tcp_header_address
tcp_control_block_address
skdb_address
skmb_address

size
ST

Parameters
Following are the parameters of the TCPHDR subcommand:

tcp_header_address
The address of the TCP header or an IPCS symbol.

tcp_control_block_address
The address of a TCP/IP TCP control block or an IPCS symbol.

skdb_address
The address of an SKDB control block or an IPCS symbol.

skmb_address
The address of an SKMB control block or an IPCS symbol.

size
The amount of data to display. If the size is greater than the size of the header,
the variable portion of the header (if it exists) is displayed. Must be 1–3
hexadecimal digits.

Sample Output
The following is a sample output of the TCPHDR command.

158 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|||||||||||||||||||||||||||||

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|

|

|

TCPHDR 7F522108

TCB at 7F522108

TCP Header at 7F5222D8

7F5222D8 04010402 7228DD16 7228DB82 50107FD8 |b&."Q |
+0010 00000000 | |

Source Port : 1025
Destination Port : 1026
Sequence Number : 1,915,280,662
Ack Number : 1,915,280,258
Header Length : 20
Flags : Ack
Window Size : 32728
Checksum : 0000
Urgent Data Pointer : 0000

TOD
Invocation of the TOD command formats a hexadecimal time-of-day value into a
readable date and time.

Syntax
Following is the syntax of the TOD command:

SS TOD time_value
, time_zone

ST

Parameters
Following are the parameters of the TOD subcommand:

time_value
The time to be converted. The time_value can be specified as either 16
hexadecimal digits or as an address in a dump of an eight-byte STCK value. If
less than 16 digits are specified, the value is padded on the right with zeros. If
an address is specified, it must be followed by a period. If an address is less
than 8 hexadecimal digits, it is padded on the left with zeros.

time_zone
An offset for the time (the difference between local time and GMT). The
time_zone can be specified either as a word or as an positive or negative
decimal value. The recognized words are:

LOCAL
Time zone value of zero is used. This is the default.

GMT Greenwich Mean Time

EDT U.S. Eastern Daylight Time zone

EST U.S. Eastern Standard Time zone

CDT U.S. Central Daylight Time zone

CST U.S. Central Standard Time zone

MDT U.S. Mountain Daylight Time zone

MST U.S. Mountain Standard Time zone

Chapter 6. IPCS Subcommands 159

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

||||||||||||||||||

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

||

||

||

||

||

||

||

PDT U.S. Pacific Daylight Time zone

PST U.S. Pacific Standard Time zone

Sample Output
The following are sample outputs of the TOD command.

v Example 1: STCK time-of-day with a time zone word.
Command ===> ip tod b214030791f3a92c,est

B2140307 91F3A92C : 1999/04/10 20:51:58.684986 TIMEZONE: 0000430E23400000

v Example 2: An address in the dump where an STCK time-of-day value is located
with a negative time zone offset.
Command ===> ip tod 11275d4.,-4

B24000E0 51900000 : 1999/05/16 05:36:37.632256 TIMEZONE: FFFFCA5B17000000

UDPHDR
Invocation of the UDPHDR command displays the UDP header fields.

Syntax
Following is the syntax of the UDPHDR command:

SS UDPHDR UDP_header_address
skdb_address
skmb_address

ST

Parameters
Following are the parameters of the UDPHDR subcommand:

UDP_header_address
The address of a UDP header or the symbol for the address.

Note: The UDP header has no version or identifier, so it is not possible to
definitively recognize a UDP header given an address in storage.
Therefore, this command will format the storage assuming it is a UDP
header.

skdb_address
The address of an SKDB control block or the symbol for the address.

skmb_address
The address of an SKMB control block or the symbol for the address.

Sample Output
The following is a sample output of the UDPHDR command.
UDPHDR 08D0A0D8

UDP Header at 08D0A0EC

08D0A0EC 040700A1 0033CD23 | ...x.... |

160 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

||

|

|

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|||||||||||||||||||

|

|

|

|
|

|
|
|
|

|
|

|
|

|

|

|
|
|
|
|
|

Source port : 1031
Destination port : 161
Datagram Length : 51
Checksum : CD23

Installing TCP/IP IPCS Subcommands
Installation has two parts:

1. Install the members of the target data sets.

2. Optionally, connect the TCP/IP panels to your existing ISPF panels.

Table 15 shows the target data sets that contain the data necessary to set up the
TCP/IP IPCS subcommands. You need to copy the members to another data set or
concatenate the target data sets into the DDNAME statements shown. Note that the
target data sets contain other members, so you may not want to simply concatenate
the target dataset. A simple installation method is to change the TSO logon
procedure to concatenate these data sets.

Table 15. Target Data Sets for TCP/IP IPCS Subcommands

Target Data Set Members DD Name Description

SYS1.SEZAHELP EZBIPCSH SYSHELP TCPIPCS HELP
command text

SYS1.PARMLIB EZAIPCSP PARMLIB IPCS verbexit
mappings

SYS1.SEZAINST EZATFTHD (alias
TCPHDR)

EZATSPRI (alias
SETPRINT)

EZBTCPEX

EZBTDENO (alias
ERRNO)

EZBTFICH (alias
ICMPHDR)

EZBTFIPH (alias
IPHDR)

EZBTFSKM (alias
SKMSG)

EZBTFTOD (alias
TOD)

EZBTFUPH (alias
UDPHDR)

EZBTIPCS (alias
TCPIPCS)

SYSEXEC REXX execs

SYS1.SEZAMIG EZBDGIPC STEPLIB or IPCS
TASKLIB

Load module

SYS1.SEZAPENU EZBD*
(approximately 170
members)

ISPPLIB ISPF panels

SYS1.SEZAPENU EZBDKEYS ISPTLIB ISPF key lists

Chapter 6. IPCS Subcommands 161

|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

||

||||

||||
|

||||
|

||
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

||

|||
|
|

||
|
|

||

||||

Table 15. Target Data Sets for TCP/IP IPCS Subcommands (continued)

Target Data Set Members DD Name Description

SYS1.SEZAMNU EZBF* (6 members) ISPMLIB ISPF messages

To use the panel interface to the TCP/IP IPCS subcommands, you can either invoke
the panels via an IPCS command or connect the TCP/IP ISPF panels to an existing
ISPF panel. No additional installation steps are required to invoke the panels via an
IPCS command. To connect the TCP/IP ISPF panels to an existing panel, find an
existing panel where you wish to add TCP/IP as an option and modify the panel.
Modify the panel by adding the TCP/IP option which will invoke the following
command:
PGM(BLSGSCMD) PARM(%EZBTCPEX) NEWAPPL(EZBD)

where BLSGSCMD is the IPCS command, EZBTCPEX is the TCP/IP REXX exec, and
EZBD is the TCP/IP key list prefix.

Entering TCP/IP IPCS Subcommands
The TCP/IP IPCS subcommands can be entered as an IPCS command or by using
the panels provided by TCP/IP. Follow these steps to enter a TCP/IP IPCS
subcommand (you can use the IPCS Subcommand Entry panel).

1. Log on to TSO.

2. Access IPCS to display the IPCS Primary Option Menu. Figure 13 shows an
example of an IPCS Primary Option Menu.

3. Select option 4, COMMAND.

4. Type the TCP/IP IPCS subcommand. Figure 14 on page 163 shows the IPCS
Subcommand Entry panel with a subcommand entered.

------------------------ IPCS PRIMARY OPTION MENU --------
OPTION ===>

0 DEFAULTS - Specify default dump and options
1 BROWSE - Browse dump data set
2 ANALYSIS - Analyze dump contents
3 UTILITY - Perform utility functions
4 COMMAND - Enter IPCS subcommand or CLIST
5 CS/OS390 - VTAM & TCP/IP analysis commands
6 NCP - NCP analysis commands
7 NMP - NMP analysis commands
8 INVENTORY - Inventory of problem data
9 SUBMIT - Submit problem analysis job to batch
T TUTORIAL - Learn how to use the IPCS dialog
X EXIT - Terminate using log and list defaults

Enter END command to terminate IPCS dialog

Figure 13. IPCS Primary Option Menu

162 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

||||

||||
|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

There are two ways to invoke the TCP/IP IPCS panels.

v One way is to invoke the panel REXX exec as an IPCS Subcommand. Follow
the steps above for entering a TCP/IP IPCS subcommand using the IPCS
Subcommand Entry panel and enter the command:
EZBTCPEX

v The second way to invoke the TCP/IP IPCS panels is to select the option
provided in the installation section above.

Either way you invoke the panels, you should see the main menu for the TCP/IP
IPCS commands shown in Figure 15. Select an option and the panels will prompt
you for additional menu choices or input for the specific TCP/IP IPCS subcommand
you select. After all input has been selected, the TCP/IP IPCS subcommand will be
invoked using the current default dump data set.

------------------------- IPCS Subcommand Entry -------------------------------
Enter a free-form IPCS subcommand or a CLIST or REXX exec invocation below:

===> tcpipcs help

----------------------- IPCS Subcommands and Abbreviations ---------------------
ADDDUMP | DROPDUMP, DROP D | LISTMAP, LMAP | RUNCHAIN, RUN C
ANALYZE | DROPMAP, DROP M | LISTSYM, LSYM | SCAN
ARCHECK | DROPSYM, DROP S | LISTUCB, LIST U | SELECT
ASCBEXIT, ASCBX | EQUATE, EQU, EQ | LITERAL | SETDEF, SET D
ASMCHECK, ASMX | FIND, F | LPAMAP | STACK
CBFORMAT, CBF | FINDMOD, FMOD | MERGE | STATUS, ST
CBSTAT | FINDUCB, FIND U | NAME | SUMMARY, SUMM
CLOSE | GTFTRACE, GTF | NAMETOKN | SYSTRACE
COPYDDIR | INTEGER | NOTE, N | TCBEXIT, TCBX
COPYDUMP | IPCS HELP, H | OPEN | WEBBEXIT, WEBBX
COPYTRC | LIST, L | PROFILE, PROF | WHERE, W
CTRACE | LISTDUMP, LDMP | RENUM, REN |

Figure 14. IPCS Subcommand Entry panel with a TCP/IP IPCS subcommand entered.

TCP/IP Analysis Menu
Command ===>
(C) Copyright IBM Corporation 1998,2000. All rights reserved.
Select one of the following. Then press Enter.

1. General . . . - HEADER, MTABLE, STATE, TSDB, TSDX, TSEB
2. Protocol . . - PROTOCOL, RAW, TCB, UDP
3. Configuration - CONFIG, CONNECTION, PROFILE, ROUTE
4. Resources . - LOCK, MAP, STORAGE, TIMER
5. Execution . . - DUAF, DUCB, TRACE
6. Interfaces . - API, SOCKET, STREAM
7. Structures . - HASH, TREE
8. Functions . . - FIREWALL, FRCA, POLICY, TELNET, VMCF, XCF
9. Headers . . . - ICMPHDR, IPHDR, SKMSG, TCPHDR, UPDHDR
10. Converters . - ERRNO, SETPRINT, TOD

F1=Help F2=Select F3=Exit F9=Swap F12=Cancel

Figure 15. Main menu for TCP/IP IPCS Subcommands.

Chapter 6. IPCS Subcommands 163

|

|
|
|

|

|
|

|
|
|
|
|
|

164 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Part 3. Diagnosing CS for OS/390 Components

© Copyright IBM Corp. 1994, 2000 165

|

166 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR
and LPD) Problems

Line print requester (LPR) and line printer daemon (LPD) compose a functional unit
in which the LPR client sends data files to a printer controlled by an LPD server.
These files can be in ASCII form or extended binary-coded decimal interchange
code (EBCDIC) form.

In most environments, customers have different types of LPR clients and LPD
servers, running on platforms, such as MVS, OS/2, AIX, and UNIX. However, all
print client and servers must follow the standards contained in RFC1179. Some
clients and servers provide more than what is required by the RFC, while some
clients and servers are restricted or limited, which may cause errors or require more
configuration to work.

On platforms, such as MVS, UNIX, and AIX, you can start the LPR client program
with command prompts, through batch (in MVS), or through shell scripts (in
UNIX/AIX®). The MVS LPD server allocates temporary data sets to process
incoming print requests from various clients. These data sets use the TCP/IP high
level qualifiers (HLQs) or the prefix defined in the LPD server cataloged procedure.

The MVS LPD server can also act as a client when a remote print server is defined
in the LPD configuration file as a service. In this case, when the LPD server
receives an incoming print job, it opens a new connection through a client port, and
sends the data to the remote print server. When a remote print server is used, LPD
specifications, such as line size and page size, do not apply. Instead, the
specifications of the remote server apply.

For information on configuring your LPD server, refer to the OS/390 IBM
Communications Server: IP Configuration Reference. For information on using the
client-related LPR, LPQ, and LPRM commands, refer to the OS/390 IBM
Communications Server: IP User’s Guide.

Problems with the print function are usually easy to diagnosis if the problem is
within the LPR client or the LPD server. More difficult problems may be
encountered in the TCP/IP layer or in sockets. In addition, incorrectly built or
defined translation tables can produce unpredictable results, such as abends,
misprinted characters, and hang conditions (usually caused by delayed
acknowledgments).

Diagnosing LPR Client and LPD Server Problems
Problems with LPR and LPD generally fall into one of the following categories:
v Abends
v Timeouts, hangs, and waits
v Incorrect output

These categories are described in the following sections.

Abends
When an abend occurs during LPD processing, messages and other error-related
information are sent to the MVS system console. If this information is insufficient to
solve the problem, use the information provided in a dump. To produce a dump,
code a SYSMDUMP DD or SYSABEND DD statement in the LPD cataloged

© Copyright IBM Corp. 1994, 2000 167

procedure. If you do not do the coding before the abend occurs, code the statement
after the abend, recreate the abend or wait for it to occur again. For information
about analyzing dumps produced during LPD processing, refer to OS/390 MVS
Diagnosis: Procedures.

It can also be helpful to obtain and analyze information from the following sources:
v LPD trace in the SYSPRINT data set
v Output of LPD started task
v System log (syslog)

Timeouts, Hangs, and Waits
Timeouts, hangs, and waits occur when the LPD server does not respond to client
requests for a data packet, an acknowledgment that a data packet was received, or
a reply to a command. Similarly, the LPD server can time out a connection if the
LPR client does not respond.

One or more of the following problems can cause a timeout, hang, or wait:
v Incorrect host name or IP address specified on the LPR command
v Malfunctioning remote server or remote host
v Problems with the network (for example, network congestion), bridge, gateway, or

router in the routing path
v Problems with the device or channel attached to the host
v Corrupted TCP/IP address space
v Incorrectly built or defined translation tables
v Malfunctioning LPR client

If a timeout, hang, or wait occurs, do one or more of the following.

1. Check to see if the target LPD print server is running, has enough paper, and is
not jammed.

2. Check the LPR and LPD traces for possible error messages, or for the last
activity performed by LPR or LPD (for example, waiting for a connection, port
availability, or an acknowledgment). Be aware that when sending a print request
to a remote printer through the LPD server, the LPR client can show a
successful data transfer even though there may be a problem connecting to the
remote printer.

3. Check the IP address or host name used with the LPR command.

4. Check the LPR, LPD, and packet traces. If the packet trace shows a problem
during binding or connecting, then check the socket trace.

5. Verify that the translation tables are built correctly. Test them using the
hlq.STANDARD.TCPXLBIN table supplied with TCP/IP.

Be aware that waits can occur because some LPD servers do not send
acknowledgments until data is actually printed. In this situation, the LPR client does
not show successful data transfer until it actually receives the acknowledgment.

Incorrect Output
LPR problems with incorrect output usually fall into one of the following categories:
v Garbled data sent from the LPR client or received by the LPD server
v Truncated or missing print data
v LPR works with some options, but not others

These categories are described in the following sections.

168 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Garbled Data
If garbled data is the problem, do one or more of the following:

1. Check whether the binary option or the default EBCDIC was used when the
data file was printed. If the binary option was used, the LPR client did not
translate the data. If EBCDIC was used, check for erroneous control characters
or conflicting combinations of options.

2. Check to see if other files print correctly from the same client and to the same
server. Check to see if the problem file prints correctly to other servers.

3. Verify that the translate tables for the sender and receiver are reciprocals of
each other. Determine which characters are consistently garbled and examine
those entries in the tables. To determine the name of the translation table used
by the LPR client, check the LPR messages issued at startup.

4. Check the IP packet trace to determine exactly what data was sent from the
client and acknowledged by the LPD server.

Truncated Or Missing Print Data
If truncated or missing print data is the problem, do one of the following:

1. Check to see if the value for the record length is valid. The value is specified
using the WIDTH option and variable on the LPR command.

2. If MVS displays truncated records, check the value of the LINESIZE option on
the SERVICE statement in the LPD configuration file.

3. If you use the FILTER L or FILTER R options on the LPR command, check to
see if the control characters on the first column of the source file are valid. LPR
issues a message indicating whether a record of data has been ignored.

4. Using a packet trace and the file size listed in the LPR trace control record,
verify that the correct number of bytes were sent by the LPR client and received
by the LPD server.

5. Check the LPD trace for error messages. Verify that the Job xxx Received and
Job xxx Finish Printing messages were received.

6. If sending a print request to a remote printer through the LPD server, check the
LPD trace to determine if all data were sent successfully to the remote printer. If
not or if data are incorrect, check the printer for errors or restrictions on the type
of data it supports (for example, postscript only, text only, and so on).

7. Check for partial temporary data sets and either rename them or delete them.
The LPD server creates temporary data sets when connections are broken, and
the server does not completely process a print job. (Depending on the LPR
client, the server can requeue the job for printing at a later time.) When the
connection is restored, the daemon checks for temporary data sets and
processes them. After processing, they are erased.

The temporary data sets are stored on a volume with a data set prefix you
define in the LPD cataloged procedure. Following are samples of these data
sets:
TCPUSR4.PRT1.QUEUE WRKLB2
TCPUSR4.RALVM12.CFnnn BROWSED WRKLB2
TCPUSR4.RALVM12.DFAnnnLU BROWSED TCPWRK
TCPUSR4.RALVM12.JFnnn WRKLB2

The QUEUE... represents, in this sample PRT1's print
queue file. It will contain the name of
the JOB files that have not been completely
processed yet.

The CF... represents the CONTROL FILE.
Contains the control data/commands sent to LPD.

The DF... represents the DATA FILE.

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 169

The actual data sent to be printed.
The JF... represents the JOB FILE.

Contains names of the above files that have
not been processed yet.

where nnn is the three digit job number.

Occasionally, depending on the precipitating incident and the time the
connection was broken, the LPD server creates only a portion of one or more
data sets. When partial temporary data sets are created, the server issues
allocation or failure-to-erase messages. If you receive any of these messages,
search for the partial data sets and either rename or delete them. After doing
this, you may need to reissue the print request or requests.

The LPD trace and the system log at the time a connection is broken show the
status of all print jobs (and the status of some data sets) and identify the
owners of the print requests.

LPR Works with Some Options Only
If the LPR command works with some options, but not with others, do one or more
of the following:

v If some print requests do not work with certain LPR options, check the LPR trace
for error messages.

v If the LPR command from batch fails, but works under TSO, check for possible
errors in the batch-job output and for error messages in the LPR trace.

For information about the LPR command, refer to the OS/390 IBM Communications
Server: IP User’s Guide.

LPR Client Traces
This section provides information about activating LPR client traces. It also provides
samples of trace output with explanations of selected messages.

Activating LPR Client Traces
You can activate LPR client traces by specifying the TRACE option in addition to
the usual processing parameters on the LPR command.

For example, to start the LPR client with trace on, enter the following command:
LPR filename (Printer p1 Host h1 TRACE

Client Trace Output
LPR trace output is sent to SYSOUT and can be displayed on the LPR client
console. Figure 16 on page 171 is a sample of an LPR trace created by way of
TSO with the following command:
LPR soto.files(lpconfig) (p prt1 h 9.67.113.60 TRACE

170 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZB0915I Begin "LPR" to printer "prt1" at host "9.67.113.60"
�1�
EZB1057I Loaded translation table from "TCP31S.STANDARD.TC PXLBIN".
EZB0920I Requesting TCP/IP service at 96155 18:52:53
EZB0921I Granted TCP/IP service at 96155 18:52:53
EZB0922I Resolving 9.67.113.60 at 96155 18:52:53
EZB0924I Host 9.67.113.60 name resolved to 9.67.113.60 at 96155 18:52:53
EZB0925I TCP/IP turned on.
EZB0926I Host "MVSA" Domain "TCP.RALEIGH.IBM.COM" TCPIP Service Machine TCP31S
EZB0927I Trying to open with local port 721 to foreign host address 9.67.113.60
�2�
EZB0928I Connection open from local port 721 to foreign host address 9.67.113.60
EZB0961I Control file name is cfA827MVSA
EZB0962I Data file name is dfA827MVSA Port Number=721. Remote IP Addr=9.7.113.60
�3�
EZB0916I Sending command 2 argument: prt1 Port Number=721. Remote IP Addr=9.67.113.60
EZB0917I Command successfully sent Port Number=721. Remote IP Addr=9.67.113.60
EZB1012I Receiving ACK Port Number=721. Remote IP Addr=9.6 7.113.60
EZB1013I ReceiveACK: TRUE for byte value 00 Port Number=721. Remote IP Addr=9.67.113.60
EZB0997I Byte size check starts at 96155 18:52:54
EZB0998I Byte size check ends at 96155 18:52:54
EZB0999I Send command starts at 96155 18:52:54 Port Number=721. Remote IP Addr=9.67.113.60
�4�
EZB0916I Sending command 3 argument:7434 dfA827MVSA Port Number=721. Remote IP Addr=9.67.113.60
EZB0917I Command successfully sent Port Number=721. Remote IP Addr=9.67.113.60
�5�
EZB1012I Receiving ACK Port Number=721. Remote IP Addr=9.67.113.60
�5�
EZB1013I ReceiveACK: TRUE for byte value 00 Port Number=721. Remote IP Addr=9.67.113.60
EZB1000I Send command ends at 96155 18:52:55 Port Number=721. Remote IP Addr=9.67.113.60
�6�
EZB1001I Send data starts at 96155 18:52:55 Port Number=721. Remote IP Addr=9.67.113.60
�6�
EZB1002I Send data ends at 96155 18:52:56 Port Number=721. Remote IP Addr=9.67.113.60
EZB1003I Send ACK starts at 96155 18:52:56 Port Number=721. Remote IP Addr=9.67.113.60
EZB1014I Sending ACK Port Number=721. Remote IP Addr=9.67. 113.60
�7�
EZB1015I ACK successfully sent Port Number=721. Remote IP Addr=9.67.113.60
EZB1004I Send ACK ends at 96155 18:52:56 Port Number=721. Remote IP Addr=9.67.113.60
EZB1012I Receiving ACK Port Number=721. Remote IP Addr=9.6 7.113.60
�8�
EZB1013I ReceiveACK: TRUE for byte value 00 Port Number=721. Remote IP Addr=9.67.113.60
�9�
EZB1009I Data file sent. Port Number=721. Remote IP Addr=9.67.113.60
EZB1011I Queuing control line "HMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "PTCPUSR4"
EZB1011I Queuing control line "JTCPUSR4.SOTO.FILES(LPCONFIG)"
EZB1011I Queuing control line "CMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "LTCPUSR4"

Figure 16. Example of LPR Trace Output (Part 1 of 2)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 171

Following are short descriptions of the numbered items in the trace:

�1� Indicates the translation table used by the LPR client. In this print request,
no translation tables were defined by the person submitting the request.

�2� Indicates LPR port used to connect to the LPD server with the IP address
9.67.113.60. The LPR port range is from 721 through 731.

�3� Indicates the LPR command sent to the LPD server identifying the name of
the print queue where the output was sent. Refer to RFC1179 for details on
commands and subcommands issued between LPR and LPD.

�4� Indicates the command that provided the LPD print server with the byte size
(7434) and name of the data file (dfA827MVSA) that was sent.

v The character string dfA indicates that this was a data file.

v The number 827 was the three-digit job number that was randomly
generated by the LPR client or specified in the LPR command using the
JNUM option.

v MVSA was the name of the host from which the print request came.

�5� Indicates the client is waiting for the LPD server to acknowledge the
sending command in item �4�. The message on the following line (TRUE
(00)) indicates that the client received an acknowledgment. A FALSE
message or any value other than zero terminates the LPR print request.

�6� Indicates that the LPR client started and then stopped sending the data file.

�7� Indicates that the LPR client notified the LPD server, by way of an
acknowledgment, that the complete file was sent. The LPR client waits for
the server to acknowledge receipt of the entire data file.

�8� Indicates that the client received an acknowledgment from the server that
the entire data field was received.

�9� Confirms that the data file was sent to the LPD server.

�10� Specifies one of the several control records sent by the LPR client. (The
records are described in detail in RFC1179.) This control record is
mandatory and represents the name of the data file created by the LPD
server. The name is preceded by the filter specified on the LPR command.
The letter f denotes the default filter.

�10�
EZB1011I Queuing control line "fdfA827MVSA"
EZB1011I Queuing control line "UdfA827MVSA"
EZB1011I Queuing control line "NTCPUSR4.SOTO.FILES/LPCONFIG"
�11�
EZB0916I Sending command 2 argument: 153 cfA827MVSA Port Number=721. Remote IP Addr=9.67.113.60
EZB0917I Command successfully sent Port Number=721. Remote IP Addr =9.67.113.60
EZB1012I Receiving ACK Port Number=721. Remote IP Addr=9.6 7.113.60
�12�
EZB1013I ReceiveACK: TRUE for byte value 00 Port Number=721. Remote IP Addr=9.67.113.60
�13�
EZB1017I Control data sent Port Number=721. Remote IP Addr=9.67.113.60
EZB1014I Sending ACK Port Number=721. Remote IP Addr=9.67. 113.60
EZB1015I ACK successfully sent Port Number=721. Remote IP Addr=9.67.113.60
EZB1012I Receiving ACK Port Number=721. Remote IP Addr=9.6 7.113.60
�14�
EZB1013I ReceiveACK: TRUE for byte value 00 Port Number=721. Remote IP Addr=9.67.113.60
�15�
EZB1018I Control file sent Port Number=721. Remote IP Addr=9.67.113.60

Figure 16. Example of LPR Trace Output (Part 2 of 2)

172 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�11� Specifies the byte size (153) and the name of the control file (cfA827MVSA)
that was sent.

�12� Indicates that the LPD server received the command and expected the
control file to be sent.

�13� Indicates that the LPR client sent the control file and an acknowledgment
that it finished sending the entire file. The last line in the block indicates that
the client was waiting for an acknowledgment from the server.

�14� TRUE (00) indicates that the client received an acknowledgment from the
LPD server that the control file was received.

�15� Confirms that the control file was sent to the LPD server. The job was then
terminated.

Figure 17 is a sample LPR trace showing a print request in which the FILTER X
option was specified on the LPR command. Since the LPD server does not support
this type of filter, it rejects the print request. (For an example of an LPD trace which
shows that this job was rejected, see Figure 22 on page 183.) The LPR trace does
not show an error because it can send a print request to non-IBM LPDs that
support other filters (for example, FILTER X). For detailed information about filters,
refer to RFC1179 and to the OS/390 IBM Communications Server: IP Configuration
Reference.

The trace was produced using the following command:
LPR test (p TIANNA h 9.67.113.60 filter x TRACE

issued through TSO by user ID TCPUSR4.

�1�
EZB0915I Begin "LPR" to printer "TIANNA" at host "9.67.113.6 0"
EZB1057I Loaded translation table from "TCP31S.STANDARD.TCPXLBIN".
EZB0920I Requesting TCP/IP service at 96155 19:22:15
EZB0921I Granted TCP/IP service at 96155 19:22:15
EZB0922I Resolving 9.67.113.60 at 96155 19:22:15
EZB0924I Host 9.67.113.60 name resolved to 9.67.113.60 at 96155 19:22:15
EZB0925I TCP/IP turned on.
EZB0926I Host "MVSA" Domain "TCP.RALEIGH.IBM.COM" TCPIP Service Machine TCP31S
EZB0927I Trying to open with local port 721 to foreign host address 9.67.113.60
EZB0928I Connection open from local port 721 to foreign host address 9.67.113.60...
�2�
EZB1009I Data file sent. Port Number = 721. Remote IP Addr = 9.67.113.60
�3�
EZB1011I Queuing control line "HMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "PTCPUSR4"
EZB1011I Queuing control line "JTCPUSR4.TEST"
EZB1011I Queuing control line "CMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "LTCPUSR4"
�4�
EZB1011I Queuing control line "xdfA947MVSA"
EZB1011I Queuing control line "UdfA947MVSA"
EZB1011I Queuing control line "NTCPUSR4.TEST"
EZB0916I Sending command 2 argument: 122 cfA947MVSA Port Number = 721. Remote IP Addr = 9.67.113.60
EZB0917I Command successfully sent Port Number = 721. Remote IP Addr = 9.67.113.60...
�5�
EZB1018I Control file sent Port Number = 721. Remote IP Ad dr = 9.67.113.60

Figure 17. Example of LPR Trace with Filter x Option

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 173

Following are short descriptions of the numbered items in the trace:

�1� Indicates that the print request was issued to a printer named TIANNA at IP
address 9.67.113.60.

�2� Indicates that the data file was sent. The error was not recognized until the
LPD server tried to process the print job. (See Figure 22 on page 183.)

�3� Indicates control commands sent to the LPD server. For details about these
commands, refer to RFC1179.

�4� Represents the name of the data file. The character string xdf indicates that
the x filter was used.

�5� Indicates that the control file was sent to the LPD server. The job was then
terminated.

Figure 18 is a sample showing a print request using the following command lpr
test (p njeSOTO host MVSA without the TRACE option. The output shows an error
because the printer name was not entered entirely in capital letters.

Following are short descriptions of the numbered items in the trace.

�1� Indicates that a SERVICE statement for a printer named njeSOTO did not
exist in the LPD server configuration file.

�2� Indicates that the LPD server did not send a positive response to the LPR
client. The job was then terminated.

Figure 19 on page 175 is a sample LPR trace output produced with the following
command the JNUM option and variable along with the LANDSCAPE and TRACE
options:
lpr test (p TIANNA host 9.67.113.60 JNUM 111 LANDSCAPE TRACE

The trace output shows the scanning that occurred to identify the first available port.

�1�
EZB1006E Host MVSA did not accept printer name njeSOTO.

Port Number = 721 Remote IP Addr = 9.67.113.60
�2�
EZB1049E Send printer command did not receive ACK. ACK message = .

Port = 721. Remote IP Addr = 9.67.113.60

Figure 18. Example of LPR Output with Unknown Printer

174 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�1� Indicates that the LPR client inserted a landscape header, written in
postscript, at the beginning of the data file.

�2� Indicates that the LPR client was attempting to use the first available client
port. The port range for the LPR client is 721 through 731. If no ports are
available, an error message is displayed.

�3� Indicates that a connection was opened using port 724.

�4� Indicates that the value specified for JNUM (111) was used to build the
control and data file names.

�5� Indicates the name of the file containing the three-digit job number that was
used with the file name sent to the print server.

Following is a clipping of the header that was inserted into the data file. For more
information about header files, refer to OS/390 IBM Communications Server: SNA
Customization .
%!PS-Adobe-2.0

614 25 translate 90 rotate .88 .76 scale /n 1 def /fs 10 def /ls 11. 2 def /ld l

Figure 20 on page 176 is a sample of LPR trace output for the following command
with the XLATE option:
LPR test (p TIANNA h MVSA trace xlate GXS

�1�
EZB0988I PostScript program is 635 bytes
EZB0915I Begin "LPR" to printer "TIANNA" at host "9.67.113.60"
EZB1057I Loaded translation table from "TCP31S.STANDARD.TCPXLBIN".
EZB0920I Requesting TCP/IP service at 96155 19:35:12
EZB0921I Granted TCP/IP service at 96155 19:35:12
EZB0922I Resolving 9.67.113.60 at 96155 19:35:12
EZB0924I Host 9.67.113.60 name resolved to 9.67.113.60 at 96155 19:35:12
EZB0925I TCP/IP turned on.
EZB0926I Host "MVSA" Domain "TCP.RALEIGH.IBM.COM" TCPIP Service Machine TCP31S
�2�
EZB0927I Trying to open with local port 721 to foreign host a ddress 9.67.113.60
EZB0927I Trying to open with local port 722 to foreign host address 9.67.113.60
EZB0927I Trying to open with local port 723 to foreign host address 9.67.113.60
EZB0927I Trying to open with local port 724 to foreign host address 9.67.113.60
�3�
EZB0928I Connection open from local port 724 to foreign host address 9.67.113.60
�4�
EZB0961I Control file name is cfA111MVSA
EZB0962I Data file name is dfA111MVSA Port Number = 724. Remote I P Addr = 9.67.113.60
EZB0916I Sending command 2 argument: TIANNA Port Number = 724. Remote IP Addr = 9.67.113.60...
EZB1009I Data file sent. Port Number = 724. Remote IP Addr = 9.67 .113.60
EZB1011I Queuing control line "HMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "PTCPUSR4"
EZB1011I Queuing control line "JTCPUSR4.TEST"
EZB1011I Queuing control line "CMVSA.TCP.RALEIGH.IBM.COM"
EZB1011I Queuing control line "LTCPUSR4"
�5�
EZB1011I Queuing control line "fdfA111MVSA"
EZB1011I Queuing control line "UdfA111MVSA"
EZB1011I Queuing control line "NTCPUSR4.TEST"
EZB0916I Sending command 2 argument: 122 cfA111MVSA Port Number = 7 24.

Figure 19. Example of LPR Trace with JNUM, LANDSCAPE, and TRACE Options

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 175

In this sample, the server was not running, so the connection was not established.
For detailed information about using and creating your own translate tables, refer to
OS/390 IBM Communications Server: SNA Customization.

Following are short descriptions of the numbered items in the trace.

�1� Indicates the name of the translation table used by the LPR client. To avoid
errors, data corruption, and so on, be sure that the LPD server is using the
equivalent code pages.

�2� Indicates the time the LPR client started trying to resolve the specified host
name. The LPR client checks the name server table and the site and
address information files to resolve the host name.

�3� Indicates the amount of time the LPR client took to resolve the specified
host name. To reduce the amount of time, use the host IP address instead
of the host name.

�4� Indicates that the connection was not established. (In this sample, the LPD
server was not running.) For a list of error numbers and their definitions,
refer to OS/390 IBM Communications Server: SNA Messages.

LPD Server Traces
This section includes information on activating LPD server traces. It also provides
samples of LPD trace output with explanations of selected messages.

Activating Server Traces
You can activate the tracing facilities within the LPD server in any of the following
ways:

v Include the TRACE parameter in the LPSERVE PROC statement in the LPD
server cataloged procedure.

Be sure that a slash (/) precedes the first parameter and that each parameter is
separated by a blank. For example:
//LPSERVE PROC MODULE='LPD',PARMS='/TRACE'

v Enter the command SMSG procname, where procname is the name of the
procedure used to start the LPD server.

v Specify the DEBUG statement in the LPD configuration file, LPDDATA.

EZB0915I Begin "LPR" to printer "TIANNA" at host "MVSA"
�1�
EZB1057I Loaded translation table from "TCPUSR4.GXS.TCPXLBIN" .
EZB0920I Requesting TCP/IP service at 96155 20:04:14
EZB0921I Granted TCP/IP service at 96155 20:04:15
�2�
EZB0922I Resolving MVSA at 96155 20:04:15
�3�
EZB0924I Host MVSA name resolved to 9.67.113.60 at 96155 20:0 4:17
EZB0925I TCP/IP turned on.
EZB0926I Host "MVSA" Domain "TCP.RALEIGH.IBM.COM" TCPIP Service Machine TCP31S
EZB0927I Trying to open with local port 721 to foreign host address 9.67.113.60
�4�
EZB1051E Failed to Open connection to Port Number = 515. Return

Code = -1. Error Number = 61. Port Number = 721.
Remote IP Addr = 9.67.113.60

Figure 20. Example of LPR Trace with XLATE option

176 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Server Trace Output
LPD server traces go to the SYSPRINT data set. You can also define a DD card in
the LPD cataloged procedure to write output to another data set. This section
contains some samples of LPD server trace output.

Figure 21 is a sample of an LPD trace invoked by specifying the DEBUG option in
the LPD configuration file, LPDDATA.

EZB0832I
EZB0621I LPD starting with port 515
EZB0679I Allocated ObeyBlock at 00005B70
EZB0679I Allocated ObeyBlock at 00005B60
EZB0679I Allocated ObeyBlock at 00005B50
EZB0628I Allocated PrinterBlock at 000058C0
EZB0629I prt1 added.
EZB0641I Service prt1 defined with address
EZB0628I Allocated PrinterBlock at 00005630
EZB0629I PRT1 added.
EZB0641I Service PRT1 defined with address
�1�
EZB0628I Allocated PrinterBlock at 000053A0
EZB0629I TIANNA added.
EZB0641I Service TIANNA defined with address
EZB0628I Allocated PrinterBlock at 00005110
EZB0629I PRT2 added.
EZB0641I Service PRT2 defined with address
EZB0628I Allocated PrinterBlock at 000B1D40
EZB0629I njesoto added.
EZB0641I Service njesoto defined with address
EZB0628I Allocated PrinterBlock at 000B1AB0
EZB0629I rda added.
EZB0686I Host "9.37.33.159" resolved to 9.37.33.159. Printer name is "lpt1".
EZB0641I Service rda defined with address
EZB0628I Allocated PrinterBlock at 000B1820
EZB0629I POST added.

Figure 21. Example of LPD Trace Specified with the DEBUG Option (Part 1 of 5)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 177

�2�
EZB0686I Host "9.67.105.55" resolved to 9.67.105. 55. Printer name is "LPT2".
�2�
EZB0641I Service POST defined with address
EZB0697I ...End of Printer chain...
EZB0626I Allocated ConnectionBlock at 00147E08
�3�
EZB0627I Passive open on port 515
EZB0705I 06/03/96 18:49:15
EZB0834I Ready
�4�
EZB0789I GetNextNote with ShouldWait of TRUE...
�5�
EZB0790I GetNextNote returns. Connection 1 NotificationConnection state changed (8681)
�5�
EZB0779I New connection state Open (8673) on connection 1 with reason OK.
�5�
EZB0782I Connection open. Reading command.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0711I New command 2 data "2".
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
�6�
EZB0754I New subcommand 3 operands "7434 dfA827MV SA".
EZB0723I Allocated StepBlock at 000B1320
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Trying to open (8676) on connection 2 with reason OK.
EZB0626I Allocated ConnectionBlock at 0015BE08
�7�
EZB0627I Passive open on port 515
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Open (8673) on connection 2 with reason OK.
EZB0782I Connection open. Reading command.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 2
EZB0711I New command 4 data "4".
EZB0708I FSend of response sent
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification FSend response (8692)
EZB0763I Closing connection 2
EZB0789I GetNextNote with ShouldWait of TRUE

Figure 21. Example of LPD Trace Specified with the DEBUG Option (Part 2 of 5)

178 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Receiving only (8674) on connection 2 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
�8�
EZB0754I New subcommand 2 operands "153 cfA827MVS A".
EZB0723I Allocated StepBlock at 000B1168
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Connection closing (8670) on connection 2 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Connection state changed (8681)
EZB0779I New connection state Sending only (8675) on connection 1 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification FSend response (8692)
EZB0763I Closing connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Connection state changed (8681)
EZB0779I New connection state Connection closing (8670) on connection 1 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Connection state changed (8681)
EZB0779I New connection state Nonexistent (8672) on connection 1 with reason OK.
EZB0772I End Connection 1 for OK.

Figure 21. Example of LPD Trace Specified with the DEBUG Option (Part 3 of 5)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 179

�9�
EZB0776I Released StepBlock at 000B1320
�9�
EZB0719I Allocated JobBlock at 00147798
�9�
EZB0723I Allocated StepBlock at 000B1320
�10�
EZB0716I Job 827 received prt1 MVSA
�11�
EZB0734I Job 827 added to work queue
�12�
EZB0716I Job 827 scheduled prt1 MVSA
EZB0776I Released StepBlock at 000B1168
EZB0777I Released ConnectionBlock at 0014AE08
EZB0824I ProcessWork starting on job queue
�13�
EZB0731I Work Queue start
�13�
EZB0732I $ 827 JOBstartPRINTING
EZB0733I Work Queue end
EZB0825I Job 827 for prt1 dispatched in state JOBstartPRINTING
EZB0716I Job 827 printing prt1 MVSA
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
�14�
EZB0732I $ 827 JOBcontinuePRINTING
EZB0733I Work Queue end
EZB0789I GetNextNote with ShouldWait of FALSE
EZB0824I ProcessWork starting on job queue
EZB0731I Work Queue start
EZB0732I $ 827 JOBcontinuePRINTING
EZB0733I Work Queue end
EZB0825I Job 827 for prt1 dispatched in state JOBcontinuePRINTING

flpNewBlock: State first call IsAtEof FALSE
�15�

flpNewBlock: State build IsAtEof FALSE
flpNewBlock: State check last IsAtEof FALSE...
flpNewBlock: State check last IsAtEof FALSE
flpNewBlock: State build IsAtEof FALSE...

EZB0825I Job 827 for prt1 dispatched in state JOBcontinuePRINTING...
flpNewBlock: State build IsAtEof TRUE
flpNewBlock: State check last IsAtEof TRUE

EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0732I $ 827 JOBcontinuePRINTING
EZB0733I Work Queue end
EZB0789I GetNextNote with ShouldWait of FALSE
EZB0824I ProcessWork starting on job queue

Figure 21. Example of LPD Trace Specified with the DEBUG Option (Part 4 of 5)

180 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�1� Indicates that a control block was allocated for each service defined in the
LPD configuration file. TIANNA is the name of one of the local printers.

�2� Indicates that the remote printer, LPT2, was defined in a SERVICE
statement with the name POST. LPT2 has the IP address 9.67.105.55.

�3� Indicates that the LPD server listened on port 515 and that port 515 was
opened.

�4� Indicates that the LPD server waited for work.

EZB0731I Work Queue start
EZB0732I $ 827 JOBcontinuePRINTING
EZB0733I Work Queue end
EZB0825I Job 827 for prt1 dispatched in state JOBcontinuePRINTING
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0732I $ 827 JOBfinishPRINTING
EZB0733I Work Queue end
EZB0789I GetNextNote with ShouldWait of FALSE
EZB0824I ProcessWork starting on job queue
EZB0731I Work Queue start
�16�
EZB0732I $ 827 JOBfinishPRINTING
EZB0733I Work Queue end
EZB0825I Job 827 for prt1 dispatched in state JOBfinishPRINTING
�17�
EZB0716I Job 827 sent prt1 MVSA
�17�
EZB0769I Job 827 removed from work queue
EZB0751I Released StepBlock at 000B1320
�17�
EZB0716I Job 827 purged prt1 MVSA
EZB0771I Released JobBlock at 00147798
�18�
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0733I Work Queue end
�19�
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification Connection state changed (8681)
�20�
EZB0779I New connection state Nonexistent (8672) on connection 0 with reason OK.
�20�
EZB0772I End Connection 0 for OK.
EZB0777I Released ConnectionBlock at 00147E08
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Nonexistent (8672) on connection 2 with reason OK.
EZB0772I End Connection 2 for OK.
EZB0777I Released ConnectionBlock at 0014DE08
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 3 Notification Connection state changed (8681)
EZB0779I New connection state Trying to open (8676) on connection 3 with reason OK.
EZB0626I Allocated ConnectionBlock at 00147E08
EZB0627I Passive open on port 515
EZB0789I GetNextNote with ShouldWait of TRUE...
�21�
EZB0790I GetNextNote returns. Connection -48 Not ification Other external interrupt received (8688)
�21�
EZB0622I Terminated by external interrupt

Figure 21. Example of LPD Trace Specified with the DEBUG Option (Part 5 of 5)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 181

�5� Indicates that a connection was opened for an incoming LPR client and that
the LPD server was receiving a command from that client.

�6� Indicates that a subcommand was received from an LPR client. The
subcommand indicates LPD was receiving a data file named dfA827MVSA,
containing 7434 bytes of data. For details on commands and
subcommands, refer to RFC117.

�7� Indicates that the LPD server had a passive open connection on the
restricted LPD port, 515.

�8� Indicates that the LPD server was receiving a control file named
cfA827MVSA, containing 153 bytes of data.

Note: Data files use the naming convention of dfx. Control files use the
naming convention cfx.

�9� Indicates the control blocks that were allocated and released as files were
received and processed. Control blocks are used primarily by IBM support
for debugging purposes, in coordination with dumps.

�10� Indicates that all data files for a particular job were received.

Note: Job number 827 is a three-digit job number generated by the LPR
client.

�11� Indicates that job 827 was added to this print queue. The LPD server
maintains a work queue of jobs.

�12� Indicates that job 827 was scheduled to be spooled to the output queue.

�13� Indicates that the LPD server was processing print jobs from the work
queue, and started sending print data to the JES output queue. The
message JOBstartPRINTING does not mean that the file is physically
printing.

�14� Indicates that data was being sent for output. Depending on the size of the
file, you may see this status many times for a single job.

�15� Indicates checking for the end of the file as it is being processed. The
number of IsAtEof entries depends on the data and size of the file.

�16� Indicates that all data was processed and placed in the output queue.

�17� Indicates that job 827 was completely processed by the LPD server and
removed from the print queue, prt1, on host MVSA. Temporary data sets
and control blocks for this job were also erased or released.

�18� Indicates that the LPD server completed the jobs in that queue, and will
scan the work queue again.

�19� Indicates that the LPD server was waiting for more work to do.

�20� Indicates that the LPR-to-LPD connection was closed normally.

�21� Indicates that someone stopped the LPD server normally.

Figure 22 on page 183 is a sample of LPD trace output showing that job 947 failed
to print because the client passed a filter that was not supported by the LPD server.
In cases such as these, you can lose printouts. In this case, the LPD trace showed
why, but the LPR trace did not show an error. (See Figure 17 on page 173 for the
corresponding LPR trace output.)

182 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZB0831I IBM MVS LPD Version V2R10 on 05/05/98 at 19:21:46
EZB0832I
EZB0621I LPD starting with port 515...
EZB0628I Allocated PrinterBlock at 000053A0
EZB0629I TIANNA added.
EZB0641I Service TIANNA defined with address...
EZB0627I Passive open on port 515
EZB0705I 06/03/96 19:21:47
EZB0834I Ready
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns.Connection 0 Notification Connection state changed(8681)
EZB0779I New connection state Trying to open (8676) on connection 0 with reason OK.
EZB0626I Allocated ConnectionBlock at 0014AE08
EZB0627I Passive open on port 515
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns.Connection 0 Notification Connection state changed(8681)
EZB0779I New connection state Open (8673) on connection 0 with reason OK.
EZB0782I Connection open. Reading command.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0627I Passive open on port 515...
�1�
EZB0754I New subcommand 3 operands "333819 dfA947MV SA"....
�2�
EZB0754I New subcommand 2 operands "122 cfA947MVSA"
EZB0776I Released StepBlock at 000B1438
EZB0719I Allocated JobBlock at 00147798
EZB0723I Allocated StepBlock at 000B1438
�3�
EZB0716I Job 947 received TIANNA MVSA
�3�
EZB0734I Job 947 added to work queue
�3�
EZB0716I Job 947 scheduled TIANNA MVSA
EZB0776I Released StepBlock at 000B1280
EZB0777I Released ConnectionBlock at 0014AE08
EZB0824I ProcessWork starting on job queue
EZB0731I Work Queue start
EZB0732I $ 947 JOBstartPRINTING
EZB0733I Work Queue end
EZB0825I Job 947 for TIANNA dispatched in state JOBstartPRINTING
EZB0716I Job 947 printing TIANNA MVSA

Figure 22. Example of a LPD Server Trace of a Failing Job (Part 1 of 2)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 183

Following are short descriptions of the numbered items in the trace.

�1� Indicates that LPD server received a command indicating the byte size and
name of a data file sent by an LPR client.

�2� Indicates that the LPD server received a command indicating the byte size
and name of a control file sent by an LPR client.

�3� Indicates that print job 947 was received, placed in the print queue named
TIANNA on host MVSA, and was scheduled to be processed.

�4� Indicates that the LPD server did not support filter x and discarded the print
job.

�5� Indicates that job was finished. The flag JOBfinishPRINTING indicates the
job is to be removed from the work queue and purged.

�6� Indicates that the job was removed from the work queue and that the
control blocks were released.

�7� Indicates that the job was purged.

Figure 23 on page 186 is a sample of an LPD trace output generated by specifying
the DEBUG statement in the LPD configuration file (LPDDATA). This sample shows
that an LPR client issued a request, through an LPD server, to a printer defined as
a remote server. (The LPD server acted as an LPR client by sending the request to
a remote server.) Since the remote server was not running, the print job was
purged.

Initially, the LPR client was unaware that the server was not running because the
LPD server correctly acknowledged receipt of the data files and control files.
Furthermore, the LPR trace did not indicate any problems. However, if you specify

�4�
EZB0801I Filter "x" not supported. Job abandoned.
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0732I $ 947 JOBfinishPRINTING
EZB0733I Work Queue end
EZB0789I GetNextNote with ShouldWait of FALSE
EZB0790I GetNextNote returns.Connection 0 Notification Connection state changed(8681)
EZB0779I New connection state Connection closing (8670) on connection 0 with reason OK.
EZB0824I ProcessWork starting on job queue
EZB0731I Work Queue start
EZB0732I $ 947 JOBfinishPRINTING
EZB0733I Work Queue end
�5�
EZB0825I Job 947 for TIANNA dispatched in state JOBfinishPRINTING
EZB0716I Job 947 sent TIANNA MVSA
�6�
EZB0769I Job 947 removed from work queue
EZB0751I Released StepBlock at 000B1438
�7�
EZB0716I Job 947 purged TIANNA MVSA
EZB0771I Released JobBlock at 00147798
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0733I Work Queue end...
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection -48 Notification Other external interrupt received (8688)
EZB0622I Terminated by external interrupt

Figure 22. Example of a LPD Server Trace of a Failing Job (Part 2 of 2)

184 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

the option FAILEDJOB MAIL on the SERVICE statement for the remote printer,
notification is sent to the user ID of the LPR client. For notification to be sent,
Simple Mail Transfer Protocol (SMTP) must be running.

Note: The FAILEDJOB DISCARD option is the default.

The command LPR lpd.config (p SOTO h MVS7 was used to generate the trace
output. SOTO is the name of the printer specified on the SERVICE statement, and
MVS7 is the host on which the LPD server is running.

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 185

�1�
EZB0831I IBM MVS LPD Version V2R10
on 05/05/98 at 19 :50:58

EZB0832I
EZB0621I LPD starting with port 515
EZB0679I Allocated ObeyBlock at 00005B70
EZB0679I Allocated ObeyBlock at 00005B60
EZB0679I Allocated ObeyBlock at 00005B50
EZB0628I Allocated PrinterBlock at 000058C0
EZB0629I prt1 added.
EZB0641I Service prt1 defined with address
EZB0628I Allocated PrinterBlock at 00005630
EZB0629I PRT1 added.
EZB0641I Service PRT1 defined with address
EZB0628I Allocated PrinterBlock at 000053A0
EZB0629I TIANNA added.
EZB0641I Service TIANNA defined with address
EZB0628I Allocated PrinterBlock at 00005110
EZB0629I PRT2 added.
EZB0641I Service PRT2 defined with address
EZB0628I Allocated PrinterBlock at 000B1D40
EZB0629I njesoto added.
EZB0641I Service njesoto defined with address
EZB0628I Allocated PrinterBlock at 000B1AB0
EZB0629I SOTO added.
�2�
EZB0686I Host "9.37.34.39" resolved to 9.37.34.39. Printer name is "lpt1".
�3�
EZB0641I Service SOTO defined with address
EZB0628I Allocated PrinterBlock at 000B1820
EZB0629I POST added.
EZB0686I Host "9.67.105.55" resolved to 9.67.105.55. Printer name is "LPT2".
EZB0641I Service POST defined with address
EZB0697I ...End of Printer chain...
EZB0626I Allocated ConnectionBlock at 00147E08
EZB0627I Passive open on port 515
EZB0705I 06/05/96 19:50:00
EZB0834I Ready
EZB0789I GetNextNote with ShouldWait of TRUE...
EZB0782I Connection open. Reading command.
EZB0799I Reading additional data on 1...
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1
�4�
EZB0754I New subcommand 3 operands "14221 dfA502MVS 7".
EZB0723I Allocated StepBlock at 000B1438
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0789I GetNextNote with ShouldWait of TRUE...
EZB0799I Reading additional data on 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 1

Figure 23. Example of a LPD Server Trace for a Remote Print Request (Part 1 of 3)

186 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�5�
19:50:48 EZB0754I New subcommand 2 operands "134 cfA502MVS7" .

19:50:48 EZB0723I Allocated StepBlock at 000B1280
19:50:49 EZB0789I GetNextNote with ShouldWait of TRUE...

�6�
EZB0763I Closing connection 1
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Connection state changed (8681)
EZB0779I New connection state Connection closing (8670) on connection 1 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 1 Notification Connection state changed (8681)
EZB0779I New connection state Nonexistent (8672) on connection 1 with reason OK.
EZB0772I End Connection 1 for OK.
EZB0719I Allocated JobBlock at 00147798
�7�
EZB0716I Job 502 received SOTO MVS7
�7�
EZB0734I Job 502 added to work queue
�7�
EZB0716I Job 502 scheduled SOTO MVS7
EZB0777I Released ConnectionBlock at 0014AE08
EZB0824I ProcessWork starting on job queue
EZB0731I Work Queue start
�8�
EZB0732I $502 JOBstartSENDING
EZB0733I Work Queue end
EZB0825I Job 502 for SOTO dispatched in state JOBstartSENDING
EZB0626I Allocated ConnectionBlock at 0014AE08
�9�
EZB0820I Trying to open with local port 721
�9�
EZB0716I Job 502 opening SOTO MVS7
�10�
EZB0769I Job 502 removed from work queue
EZB0827I ProcessWork end with queue
EZB0731I Work Queue start
EZB0733I Work Queue end
EZB0789I GetNextNote with ShouldWait of TRUE

...
EZB0790I GetNextNote returns.Connection 1 Notification Connection state changed(8681)
�11�
EZB0779I New connection state Nonexistent(8672) on connection 1 with reason

Foreign host did not respond within OPEN
�11�
EZB0772I End Connection 1 for Foreign host
did not respond within OPEN timeout (8560).
EZB0705I 06/05/96 19:52:22
�12�
EZB0773I Connection 1 terminated because "Foreign host did not respond within OPEN timeout (8560)"

Figure 23. Example of a LPD Server Trace for a Remote Print Request (Part 2 of 3)

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 187

Following are short descriptions of the numbered items in the trace:

�1� Indicates the date and time the LPD server was activated. This information
can be compared to the date and time on an LPR trace to assure that both
traces were generated for same incident.

�13�
EZB0744I 748656 HELO MVS7.tcp.raleigh.ibm.com
�13�
EZB0744I 748656 MAIL FROM:<LPDSRV3@MVSA>
�13�
EZB0744I 748656 RCPT TO:<TCPUSR4@MVS7.tcp.raleigh. ibm.com>
�13�
EZB0744I 748656 DATA
�13�
EZB0744I 748656 To:<TCPUSR4@MVS7.tcp.raleigh.ibm.com>
�13�
EZB0744I 748656
�13�
EZB0744I 748656 Your job to print the files "TCPUSR 4.LPD.CONFIG" on SOTO at MVSA has failed for
�13�
EZB0744I 748656 this reason: Remote connection
terminated (Foreign host did not respond within
�13�
EZB0744I 748656 OPEN timeout (8560)).
�13�
EZB0744I 748656 .
EZB0751I Released StepBlock at 000B1438
EZB0751I Released StepBlock at 000B1280
�14�
EZB0716I Job 502 purged SOTO MVS7
EZB0771I Released JobBlock at 00147798
EZB0777I Released ConnectionBlock at 0014AE08
EZB0789I GetNextNote with ShouldWait of TRUE
�15�
EZB0790I GetNextNote returns. Connection 2 Notification Connection state changed (8681)
EZB0779I New connection state Nonexistent (8672) on connection2 with reason OK.
EZB0772I End Connection 2 for OK.
EZB0777I Released ConnectionBlock at 0014DE08
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification Connection
state changed (8681)
EZB0779I New connection state Trying to open (8676) on connection0 with reason OK.
EZB0626I Allocated ConnectionBlock at 00147E08
EZB0627I Passive open on port 515
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification Connection state changed (8681)
EZB0779I New connection state Open (8673) on connection 0 with reason OK.
EZB0782I Connection open. Reading command.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification Data delivered (8682)
EZB0767I Timer cleared for connection 0
EZB0711I New command 4 data "4".
EZB0708I FSend of response sent
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification FSend response (8692)
EZB0763I Closing connection 0
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection 0 Notification Connection state changed (8681)
EZB0779I New connection state Receiving only (8674) on connection0 with reason OK.
EZB0789I GetNextNote with ShouldWait of TRUE
EZB0790I GetNextNote returns. Connection -48 Notification Other external interrupt received (8688)
EZB0622I Terminated by external interrupt

Figure 23. Example of a LPD Server Trace for a Remote Print Request (Part 3 of 3)

188 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�2� Indicates the IP address of the host. If the name of the host was specified
instead of the IP address, this message would indicate if the IP address of
the host was resolved.

�3� Indicates that the name SOTO was defined on the SERVICE statement for
the remote printer, lpt1, which had the address 9.37.34.39.

�4� Indicates the byte size and the name of the data file sent from the LPR
client on host MVS7.

�5� Indicates the byte size and name of control file sent from the LPR client on
host MVS7.

�6� Indicates that the connection between the LPR client and the LPD server
was closing, after the server received the data and control files.

�7� Indicates that the print job was received, placed in the LPD print queue,
represented by SOTO, and scheduled to be sent to its destination.

�8� Indicates that the LPD server started to send print job 502 to the remote
server.

Note: If the printer was local, rather than remote, the message would have
read 502 JOBstartPRINTING.

�9� Indicates that the LPD server, acting as a client, was opening a connection
to the remote printer using local port 721.

�10� Indicates that the LPD server removed the job from its work queue.

�11� Indicates that the connection to the remote server timed out.

�12� Indicates that the remote server did not respond to the request to open.

�13� Indicates that the FAILEDJOB MAIL option was defined under the SERVICE
statement and that SMTP was running. The text in these messages was
sent to the user ID of the LPR client.

�14� Indicates that the print job was completely purged.

�15� Describes additional activity between the LPD server and other clients.

Chapter 7. Diagnosing Line Print Requester and Daemon (LPR and LPD) Problems 189

190 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems

This chapter describes how to diagnose problems with the CS for OS/390 FTP
server and FTP client. If, after reading this chapter, you are unable to solve your
problem and you need to call the IBM Software Support Center, see one or both of
the following sections for the documentation you need to provide: “Documenting
Server Problems” on page 213 and “Documenting FTP Client Problems” on
page 218.

FTP Server
This section describes the following topics:

v “Structural Overview”

v “Definitions and Setup”

v “Error Exit Codes” on page 192

v “Name Considerations for OS/390 UNIX FTP” on page 192

v “Common OS/390 UNIX FTP Problems” on page 193

v “Diagnosing FTP Server Problems with Traces” on page 205

v “Documenting Server Problems” on page 213

Structural Overview
The OS/390 UNIX FTP server has a multiprocess design. The main FTP daemon
performs initialization and configuration functions, and then waits for incoming client
connections. When an incoming client connection is received, a new process is
forked, and a second load module, which provides the actual session support for
the client connection, is loaded into the new address space.

The socket connection information and configurable variables are passed to the
new address space so the variables in the client session program will have the
same value as the variables in the main daemon process at the time the new client
connection is received. (In other words, the client session program has the current
settings of all variables, not the initial settings.)

After the new client process has been created, the main daemon process and all
client processes are totally independent from one another. Any changes to the
variables in the main daemon process, or in other client processes, are not
reflected in any other process.

After the new client process is created, the client is prompted for a user ID and
password. The C Runtime Library function seteuid() sets the effective user ID for
the new address space to the client user ID.

Definitions and Setup
This section describes the definitions and setup for the FTP server.

Start Procedure
The start procedure for the FTP server is EZAFTPAP (alias FTPD) in the
hlq.SEZAINST data set. Changes might be necessary to customize the start
procedure for your MVS host system. The following should be kept in mind for the
FTP server start procedure.

v The library containing FTPD and FTPDNS must be APF authorized and must be
either in the MVS link list or included on the STEPLIB DD statement.

© Copyright IBM Corp. 1994, 2000 191

v The C run-time libraries are needed for FTPD and FTPDNS. They must be APF
authorized. If the C runtime library is not in the MVS link list, it must be included
on the STEPLIB DD statement.

v If the FTP server will be used for SQL queries, the DB2 DSNLOAD library must
be APF authorized and must be either in the MVS link list or included on the
STEPLIB DD statement.

v Several start options are available for the FTP server. If specified in the start
procedure, these values will override the default values for the FTP server and
any values specified in the FTP.DATA data set.

For more information about the FTP server start procedure, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

FTP.DATA Data Set
The FTP.DATA data set is an optional data set that allows the FTP server
configuration parameters to be customized. Refer to the OS/390 IBM
Communications Server: IP Configuration Reference for more information about the
FTP.DATA data set.

TCPIP.DATA Data Set
The TCPIP.DATA data set provides information to the FTP server, such as the
high-level qualifier to be used for configuration data sets, whether messages are to
be written in uppercase or mixed case, and which DBCS translation tables are to be
used. For more information about the TCPIP.DATA data set, refer to the OS/390
IBM Communications Server: IP Configuration Reference.

Error Exit Codes
OS/390 UNIX FTP uses the following error exit codes:

12 Daemon initialization failed; unable to accept an incoming connection. An
EZY message identifying the specific problem is sent to syslogd.

24 The client sessions initialization terminated because the FTP server load
module cannot be loaded or executed. Message EZYFT53E is sent to
syslogd.

28 Daemon initialization was terminated because the IBM TCP/IP is not
enabled in the IFAPRDxx parmlib member. Message EZYFT54E is sent to
syslogd and the operator console.

Name Considerations for OS/390 UNIX FTP
This section explains the MVS and HFS naming conventions.

MVS Naming Conventions
MVS data set names used with all FTP commands sent to the OS/390 UNIX FTP
server must meet MVS data set naming conventions as follows:

v Data set names can be no longer than 44 characters.

If the path name parameter sent with an FTP command is not enclosed in single
quotation marks, the path name is appended to the current working directory to
create the data set name. The combination of current working directory and the
path name cannot be longer than 44 characters. The current working directory
can be displayed by issuing the PWD command.

v Each qualifier in a data set name, or each member name for a partitioned data
set, must conform to the following:

– It must be no longer than eight characters.

192 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

– It must begin with a letter or the special characters
$, @, or #.

– It can contain only numbers, letters, or the special characters
$, @, #, -, or }.

v Generation data group data set names must be in the format
gdg_name(generation_level). The generation_level is either 0, +nn, or −nn,
where nn is the generation number. For example, the GDG data set MYGDG
could be specified as MYGDG(0) for the current generation level, MYGDG(-1) for the
next to the latest generation level, or MYGDG(+1) for the new generation level.

HFS Naming Conventions
The following list describes some naming conventions you should know about when
using HFS files with the OS/390 UNIX FTP server:

v The HFS name is case-sensitive.

v If a name begins with a single quote, specify QUOTESOVERRIDE FALSE in
FTP.DATA, or use the SITE NOQUOTESOVERRIDE command.

v Names may contain imbedded blanks for special characters. Be aware that:

– The subcommand is interpreted as:
<ftp_subcommand><one blank space><pathname><new_line>

– Some FTP clients may truncate trailing blanks.

v The LIST and NLST subcommands, including all client subcommands that invoke
the NLST subcommand, such as MGET or MDELETE, require special handling
for certain special characters. For more information, refer to OS/390 IBM
Communications Server: IP User’s Guide.

v The START and SITE parameters have additional restrictions on the path name
used with SBDATACONN. Refer to OS/390 IBM Communications Server: IP
Configuration Reference and OS/390 IBM Communications Server: IP User’s
Guide.

v When specifying a OS/390 UNIX FTP subcommand with a file name containing
special characters, some FTP clients may truncate trailing blanks, compress
multiple internal blanks, or interpret special characters to have special meanings.
Special specification of the file name such as enclosing in double or single
quotes, or escaping special characters, may be necessary to get the client to
send the file name to the server correctly. Refer to your client documentation to
see if this is necessary.

Common OS/390 UNIX FTP Problems
This section describes some common OS/390 UNIX FTP problems.

FTP Daemon Initialization Problems
The following problems may be encountered when the FTP daemon is initialized.

No ″Initialization Complete″ Message: If the EZY2702I Server-FTP
Initialization completed at ... message does not appear on the system
console within a few minutes after starting the FTP daemon, verify that the daemon
background job is still running. For example, if you started FTP with a procedure
called FTPD, you can use the D A,L command to see if the job FTPD1 is active.

If the background job daemon job is running (for example, FTPD1), verify that
TCP/IP is running. If it is not, start TCP/IP. The FTP initialization will complete when
TCP/IP starts.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 193

|

If the background daemon job is not running, check the system console for nonzero
exit codes from the background job. Look for messages in message or trace output
from syslogd for an EZY error message from FTP. Following are the possible exit
codes and the appropriate responses:

v 0012

FTP is unable to use the port specified for the control connection. Look in the
syslogd messages for the specific reason. Possible errors include the following:

– EZYFT13E bind error...Operation not permitted

Ensure that FTP has BPX.DAEMON authority.

– EZYFT13E bind error...Address already in use

Ensure that FTP is trying to use the correct port. The FTP trace indicates the
port the daemon expects to use. If this is the correct port, you can use the
TSO NETSTAT CONN command to determine the job that is currently using
that port.

– EZYFT13E bind error...Permission denied

Ensure that the port you want FTP to use has been reserved for the FTP
background jobname. For example, if your start procedure is called FTPD and
you want FTP to use port 21, the PORT statement in your
hlq.PROFILE.TCPIP data set must specify 21 TCP FTPD1.

v 0028

This FTP daemon is not available because the IBM TCP/IP is not enabled.

Incorrect Configuration Values: If you experience incorrect configuration values,
check the following:

v Look in syslogd output to verify that configuration values are coming from your
intended FTP.DATA file and that no errors were encountered.

v Check if your FTP.DATA file has sequence numbers. If it does, any statement
with an optional parameter omitted will pick up the sequence number as the
parameter value.

For example, the BLKSIZE statement has an optional parameter size. If you
specify the size, the sequence number is ignored. If you do not specify the size,
the system assumes the sequence number is the size, causing an error.

FTP Daemon Not Listening on Expected Port: If the problem is that the daemon
is not listening on the expected port, verify that the correct port number is specified.
Following is the preference order for a port number:

1. PORT start parm

2. /etc/services

3. hlq.ETC SERVICES

4. A default port number of 21

AUTOLOG Does Not Start the FTP Daemon: If your start procedure name is
fewer than eight characters, ensure that the AUTOLOG and PORT statements in
the hlq.PROFILE.TCPIP data set specify the FTP background jobname. For
example, if your start procedure is called FTPD, your hlq.PROFILE.TCPIP data set
should specify FTPD1, as shown in the following examples:

AUTOLOG
FTPD JOBNAME FTPD1

ENDAUTOLOG

194 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

PORT
20 TCP OMVS NOAUTOLOG ;FTP data port
21 TCP FTPD1 ;FTP control port

FTP Server Abends
If the FTP server abends, check the following:

v S683 or U4088 abend validating user ID or password.

– Ensure that the sticky bit has been turned on for the files /usr/sbin/ftpd and
/usr/sbin/ftpdns.

– Ensure that the FTPD and FTPDNS modules reside in an APF authorized
partitioned data set which is specified in the MVS linklist.

– Ensure that all programs loaded into the FTP address space are APF
authorized and are marked as controlled. This means that any FTP user exits,
the SQL load library, and the loaded run-time library need to be marked as
controlled, using the RACF RDEFINE command. For more information, refer
to OS/390 UNIX System Services Planning, or refer to the RACF publications.

v Other

Check the system and language environment (LE) library levels in the EZAFT09I
and EZAFT5II messages in syslogd output. The former should read “Version 2
Release 6”; the latter should read Version 2 Release 4, or higher.

FTP Session Problems
The following sections describe some common FTP session problems.

Connection Terminated by the Server After User Enters User ID: The system
console may display one of the following nonzero exit codes from the FTP server
address space:

v 0012

This exit code indicates a socket error. See the syslogd messages for the
specific error.

v 0024

This exit code indicates that the system was unable to load the server load
module /usr/sbin/ftpdns. Ensure that the symbolic link or links for ftpdns are
correct, that ftpdns exists in the HFS and that the sticky bit is on, and that
FTPDNS exists in the OS/390 search order.

If your system is not configured to display exit codes, look in the syslogd output for
an FTP error message.

Connection Terminated by the Server After User Enters Password: If the
server terminates a connection after the user enters a password, ensure that the
FTP load modules (FTPD and FTPDNS) reside in the APF authorized data set and
that all programs accessed by the FTP address space are APF authorized and
marked as “controlled”. Additional symptoms include the following:

v The FTP daemon is running, but the FTP server address space abends.

v The last FTP entry in the trace reads RA0nnn pass: termid is

Connection Terminated by the Server After User Enters Any Subcommand: If
the server terminates a connection after the user enters a subcommand, either one
or both of the following events may occur:

v FTP server address space shows an exit code of 0000.

v Last entry for the client session is RXnnnn Server thread terminates rc = -2.
and the preceding entries indicate a “select” error due to a bad file descriptor.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 195

These events indicate that the server inactive time limit has probably expired with
no activity from the client. If this happens frequently, check the inactive time set for
the server, increase it, if necessary, and recycle the FTP daemon.

Password Validation Fails; Session Continues: If password validation fails and
the session continues, you may receive one of the following two replies from the
FTP server:

v 550 error processing PASS command: <reason>

If you receive this message, do one or more of the following:

– Ensure all libraries used by FTP are controlled and APF authorized.

– Ensure FTP is authorized if you are using BPX.DAEMON.

– Ensure that the FTP daemon has been started from a user ID running with
superuser authority if the daemon has been started from the OS/390 UNIX
shell.

v PASS command failed - getpwnam() error: <reason>

If you receive this message, ensure that the login user ID has an OMVS segment
defined or that a default OMVS segment is established.

Anonymous Logon Fails: If an anonymous logon fails:

1. Ensure that you have specified ANONYMOUS as a start parameter or in
FTP.DATA.

2. Check the setting of the ANONYMOUSLEVEL variable in FTP.DATA. If
ANONYMOUSLEVEL is not explicitly set in FTP.DATA, its value will be 1 (one).

If ANONYMOUS is set in FTP.DATA, and the STARTDIRECTORY is HFS, and
ANONYMOUSLEVEL is 2 or 3, verify the required executable files have been
installed in the anonymous user’s root directory. SYSLOGD will have error
messages if the required executable files are not installed in the anonymous user’s
home directory. For information on setting up the anonymous user’s root directory,
see OS/390 IBM Communications Server: IP Configuration Guide.

If you did not specify a user ID on the ANONYMOUS start parameter or FTP.DATA
statement, ensure that the user ID ANONYMO is defined to TSO and RACF and
that it has a defined OMVS segment or that a default OMVS segment exists for
your system. For information on the OS/390 UNIX environment and its security
considerations, refer to OS/390 UNIX System Services Planning.

If you did specify a user ID on the ANONYMOUS start parameter or FTP.DATA
statement, ensure that the specified user ID is defined to TSO and RACF and that
the specified user ID has a defined OMVS segment or that a default OMVS
segment exists for your system.

If ANONYMOUSLEVEL is 2 or 3, verify the STARTDIRECTORY value is compatible
with the ANONYMOUSFILEACCESS value, and that the FILETYPE value is
compatible with the ANONYMOUSFILETYPESEQ, ANONYMOUSFILETYPEJES,
and ANONYMOUSFILETYPESQL values. If ANONYMOUSLEVEL=3 and one of the
following is coded: ANONYMOUS or ANONYMOUS/USERID/PASSWORD, the user
will be prompted to enter an e-mail address as a password. Verify the email
address entered by the user is consistent with the requirements of the
EMAILADDRCHECK statement in FTP.DATA. If ANONYMOUS/USERID is coded,
then the user must provide the password for USERID. See the OS/390 IBM
Communications Server: IP Configuration Reference for more information on these
FTP.DATA statements.

196 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Wrong Initial Working Directory: If the initial working directory is userid instead
of an HFS directory, ensure that the STARTDIRECTORY HFS statement is
specified in the FTP.DATA data set and that the $HOME directory (defined or
defaulted) exists for the login user ID.

Unable to Open Data Connection Message from Server: If, after issuing a
command such as RETR, STOR, or LIST, the client receives the message 425
Unable to open data connection from the server, check the FTP server trace for
an error. One possible trace entry is data_connect: bind() error...permission
denied. If you see this trace entry, ensure that the FTP data connection port is
reserved to OMVS in the PROFILE.TCPIP data set. Following is an example:
PORT

20 TCP OMVS NOAUTOLOG ;FTP data port
21 TCP FTPD1 ;FTP control port

Another possible trace entry is data_connect: seteuid(0) error...Permission
denied. If you see this trace entry, ensure that FTP has BPX.DAEMON authority.

Data Transfer Problems
This section describes various problems involving data transfer.

Load Module Transfer Failures: This section describes failures when transferring
MVS load modules.

If the MVS load module transfers but is not executable on the target system:

v Ensure that all hosts involved in the load module transfer are at the V2R10 level
or higher.

– For proxy transfers, both servers and the client must be V2R10 or higher.

v Ensure that the user did not attempt an operation which is not supported by load
module transfer:

– Ensure that the user did not attempt to rename the load module on transfer.

– Ensure that the working directory on both the current and target systems is a
load library of the correct type. An MVS load library for purposes of this
support is a PDS with RECFM=U or a PDSE. Files may only be transferred
between the same types of load library. This means that a PDS load library
member must be transferred to another PDS, and a PDSE load library
member must be transferred into another PDS. The FTP client displays a
terminal message EZA2841I Local directory might be a load library when
a user changes local directory into a PDS or PDSE eligible for load module
transfer support. The FTP server sends a 250-Local directory might be a
load library reply to the client when a CWD command is processed which
causes the server working directory to become a PDS or PDSE eligible for
load module transfer support. If both the message and the reply are not seen
when changing directories before a transfer, load module transfer processing
will NOT be used to transfer any files between the two directories.

– Ensure that the load module(s) are transferred by member names only. The
current working directory on both the target and destination systems must be
the load library. Fully-qualifying the membernames is not permitted.

v Ensure that there are no problems with the IEBCOPY invocation. If an error is
detected with an IEBCOPY invocation, the FTP server or client will furnish the
IEBCOPY SYSPRINT output as messages to either the console (in the server’s
case) or the terminal session (in the client’s case). If no IEBCOPY errors are
detected by FTP, then the IEBCOPY SYSPRINT output is provided with the
debug 1 trace.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 197

|

|

|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

If the MVS load module fails to transfer:

v If Reload of the load library failed or Unload of the load library failed
messages or replies are seen, then these messages indicate a problem with a
call to the IEBCOPY system utility. Ensure that the IEBCOPY system utility is
installed on the system and available to be called from application programs. If
so, examine the FTP debug 1 trace to determine if IEBCOPY was successfully
invoked (some client environments, particularly REXX scripts running under the
UNIX system services shell, are not fully authorized to call IEBCOPY). If so,
examine the IEBCOPY SYSPRINT output (described above) to see if IEBCOPY
reported any errors.

v If ″allocation failure″ messages or replies are seen then:

– If the dataset whose allocation failed is either the source or destination load
library, ensure that no other process has allocated the load library for
exclusive use.

– If no dataset name appears, or if the dataset name ends in the characters
XLMT, ensure that sufficient temporary DASD is available on the system.
Load module transfer requires the use of sufficient temporary DASD to hold
all data that could be transferred in one transfer command. Consider breaking
up large mget or mput transfers into smaller groups to reduce the amount of
required temporary DASD. If sufficient temporary DASD is not immediately
available, then the setting of the AUTOMOUNT/NOAUTOMOUNT site option
will regulate whether or not FTP attempts to mount addtional temporary
storage to complete a load module temporary file allocation request.

If the MVS load module transfer hangs, then most likely the system is waiting for
temporary DASD to be mounted. If your system does not respond promptly to
mount requests for temporary DASD, consider setting the NOAUTOMOUNT
(LOC)SITE option on the hanging system, and breaking up large load module
transfer mgets and mputs into smaller requests to reduce the requirement for
temporary DASD.

Data Set Allocation Fails: If data set allocation is failing (MKD, STOR/STOU, or
APPE), check for the following:

v Issue the STAT command and check for problems with the variables that define
data set characteristics (LRECL, RECFM, BLKSIZE, PRIMARY, SECONDARY,
DIRECTORY).

– Do they all have a valid value defined?

– If the variable is not listed in the STAT command output, no value is assigned
to this variable. If no value is assigned to the variable, the value must be
picked up from another source—either a model DCB or SMS. Does either the
DCBDSN or DATACLASS (SMS) parameter have a valid value to provide a
source for the missing variables?

– If an SMS data class is specified, is SMS active at the server system?
(Current SMS status is displayed as part of the output for the STAT
command).

– If an SMS data class is specified, do the data class definitions contain values
for the missing variables?

– Are PRIMARY and SECONDARY both either specified or not specified? If
either PRIMARY or SECONDARY are specified, neither of the values will be
picked up from an SMS data class. Both must be unspecified to pick up the
value from SMS or both must be specified to override the SMS values.

– If a model DCB is specified, are the characteristics of this data set valid for
the data set being allocated?

198 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

v Issue the STAT command and check the PRIMARY, SECONDARY, and
SPACETYPE values to determine how large the new data set will be. The
VOLUME and UNIT value of the STAT command will tell you where the data sets
are being allocated. (If neither volume or unit are shown by the STAT command,
data sets will be allocated on the system default SYSDA DASD.) Does the server
system have sufficient space where the data sets will be allocated to allocate the
data set? The SITE QDISK command will provide information about the space
available at the server system.

v Is the destination at the server site writable? Check with the operator at the
server system to verify that the destination of the new data set is not write
protected.

Data Set Allocation Not Picking Up Correct Characteristics: If the data set is
being allocated successfully, but the resulting data set does not have the expected
data set characteristics, check for the following:

1. All values obtained from SITE variables

v Issue the STAT command to verify that the settings of all the SITE variables
are correct. If any variables are missing from the STAT output, check for
values specified for the DCBDSN or DATACLASS parameters. If a value is
specified for the DCBDSN data set, go to step 3 on page 200. If a value is
specified for the DATACLASS parameter, go to step 2.

v Check for variables overridden by a client. The VM and MVS FTP clients both
automatically issue SITE commands when doing a STOR, STOU, or APPE
command. The values sent automatically by the client could be overriding
values set by specific SITE commands issued by the user. To prevent the VM
or MVS client from automatically sending new SITE settings, issue the
SENDSITE command at the client.

2. Values from SMS

If the DATACLASS parameter has been specified, but the actual data set
characteristics do not match the values in the specified SMS data class, issue
the STAT command and check the information shown in the output from the
STAT command for the following:

v Is SMS active at the server system? If SMS is not active, the SMS data class
cannot be used to define the data set.

v Are values specified for any of the data set characteristic variables (LRECL,
RECFM, BLKSIZE, PRIMARY, SECONDARY, RETPD, DIRECTORY)? If
these keywords are missing from the STAT output, no value is assigned to
them and the data set characteristics should be picked up from the SMS data
class. If, however, a value is present for any of these variables, the setting
shown by the STAT command overrides any information in the SMS data
class. To pick up the value from the data class, issue the SITE command with
the keyword with no value (for example, SITE RECFM) to turn off the
parameter setting.

v Is a value specified for the DCBDSN parameter? If a DCBDSN data set is
specified, the values for LRECL, RECFM, BLKSIZE, and RETPD will be
obtained from the model DCB data set and overrides any values in the SMS
data class. Issue the SITE DCBDSN command to turn off the DCBDSN
parameter setting.

v Check for variables overridden by a client. The VM and MVS FTP clients both
automatically issue SITE commands when doing a STOR, STOU, or APPE
command. The values sent automatically by the client could be overriding
values set by specific SITE commands issued by the user. To prevent the
MVS or VM client from automatically sending new SITE settings, issue the
SENDSITE command at the client.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 199

3. Values from DCBDSN

If the DCBDSN parameter has been specified, but the actual data set
characteristics do not match the characteristics of the specified data set, issue
the STAT command and check the information shown in the output from the
STAT command for the following.

v Are values specified for any of the data set characteristic variables (LRECL,
RECFM, BLKSIZE, or RETPD)? If these keywords are missing from the STAT
output, no value is assigned to them and the data set characteristics should
be picked up from the DCBDSN data set. If, however, a value is present for
any of these variables, the setting shown by the STAT command will override
the values of the DCBDSN data set. To pick up the value from the DCBDSN
data set, issue the SITE command with the keyword with no value (for
example, SITE RECFM) to turn off the parameter setting.

v Check for variables overridden by a client. The VM and MVS FTP clients both
automatically issue SITE commands when doing a STOR, STOU, or APPE
command. The values sent automatically by the client could be overriding
values set by specific SITE commands issued by the user. To prevent the VM
or MVS client from automatically sending new SITE settings, issue the
SENDSITE command at the client.

MVS Data Set Not Found: If the server is not able to find the MVS data set,
check for the following problems:

v Issue the DIR command to display the data set. Can the server find the data set
to list it?

v Is the MVS data set at the server in the catalog? The server can only locate
cataloged MVS data sets.

v Was the pathname on the FTP command entered in single quotation marks? If
not, the path name specified is appended to the end of the current working
directory. Issue the PWD command to display the current working directory. If
current_working_directory.pathname is not the correct name of the file, either
change the current working directory with the CWD command or issue the
correct data set name in single quotation marks as the pathname.

RETR, STOR, RNFR, RNTO, APPE, or DELE of Data Set Fails: If RETR, STOR,
RNFR, RNTO, APPE, or DELE for the data set fails, check for the following
problems:

v Is the data set protected by a security system, such as RACF or HFS permission
bits or a retention period?

v Is the data set “in use” at the server site by another program or user?

v Was the data set available to the system, or was it migrated or on an unmounted
volume?

v Did the data set or member exist?

The following problems apply to MVS data sets only:

v Did the specified path name follow MVS data set naming conventions?

v Was the requested data set a supported data set organization (PS, PDS, or PDS
member) on a supported device type (DASD or tape)?

v Were the path name specifications consistent with the type of data set? For
example, if a member was requested, was the data set a PDS?

Data Transfer Terminated: Check for the following problems:

v Is the data set at the server large enough to receive the data being sent? If not,
use the SITE command to change the space allocation for new data sets.

200 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v If storing a member of a PDS, is there room in the PDS for an additional
member? Is there room in the PDS directory for another directory entry?

v Did the client send an ABOR command?

v Is the file type correct? For example, if filetype=SQL when it should be set to
SEQ or JES, the host file being retrieved is assumed to be a SQL statement and
FTP will attempt to connect to DB2 and submit the statement to DB2 for
processing.

Client Abends During RETR Command Data Transfer: If the client abends while
processing a RETR command, issue the STAT command and check the value of
the checkpoint interval. If this value is greater than zero, and data is being
transferred in EBCDIC, either block mode or compressed mode, the server is
sending checkpoint markers with the data being transferred. If the client being used
does not support checkpoint/restart, this checkpoint information can cause
unpredictable results, such as abends or data errors at the client. Change the
setting of the checkpoint interval by issuing SITE CHKPTINT=0.

Data Set Disposition Incorrect When Transfer Fails: If the data set disposition
is incorrect when transfer fails, check for the following problems:

v Data sets cataloged instead of deleted

– Issue the STAT command and check the setting of the conditional disposition.
If the STAT command output indicates New data sets will be cataloged if
a store operation terminates abnormally, the server will catalog new data
sets even if the data transfer fails. To change this setting, issue the SITE
CONDDISP=DELETE command.

– Did the transfer fail because the FTP server was either abending or being
terminated by a STOP or CANCEL command? If this is the case, the data set
will be kept.

– Is the client sending checkpoint information? If the data is being transferred in
EBCDIC, either in block mode or compressed mode, and the client has sent
at least one checkpoint marker, the FTP server will keep the data set even if
the conditional disposition has been set to delete.

v Data sets deleted instead of cataloged
– Issue the STAT command and check the setting of the conditional disposition.

If the STAT command output indicates New data sets will be deleted if a
store operation terminates abnormally, the server will delete new data sets
if the data transfer fails. To change this setting, issue the SITE
CONDDISP=CATALOG command.

Checkpoint Markers Do Not Appear to Be Sent: Issue the STAT command and
check the settings for data transfer. Checkpoint information is only transferred in
EBCDIC, with either block or compressed mode. The checkpoint interval must be
greater than zero.

The sender of the data initiates the checkpoint information; therefore, checkpointing
must be set on at the client for a STOR, STOU, or APPE, (for the MVS FTP client,
this is done by issuing the LOCSITE CHKPTINT=nn command with a value larger
than zero) and set on at the server (by issuing the SITE CHKPTINT=nn command
with a value larger than zero) for a RETR.

LOADLIB Directory Information Is Not Sent with Module Transfer: Issue the
STAT command and check the settings for data transfer. Load module directory
information is only sent for EBCDIC with a mode of either block or compressed.

The client you are using must support the SDIR command.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 201

Double-Byte Character Set (DBCS) Support
If you enter quote type b <n> at the client and if the DBCS translate table has not
been loaded, the following reply is displayed:
504-Type not Supported. Translation table not loaded.

Do one or both of the following:

v Check the LOADDBCSTABLES statement in the TCPIP.DATA configuration file. If
the statement wraps to the next line, parameters on the continued line are
ignored. If all the parameters for the LOADDBCSTABLES statement do not fit on
one line, use multiple LOADDBCSTABLES statements.

v Check the precedence order for TCPIP.DATA to ensure that the file being used
contains the LOADDBCSTABLES statement or statements. Be aware that the
RESOLVER_CONFIG environment variable or /etc/resolv.conf takes precedence
over DD:SYSTCPD or jobname.TCPIP.DATA.

DB2 Query Support
This section describes how to use FTP server DB2® query support and how to
diagnose SQL problems.

How to use FTP Server SQL Support: Before you can use the FTP server to
submit queries to the DB2 subsystem, complete the following steps:

1. Start the DB2 subsystem.

2. BIND the DBRM called EZAFTPMQ. This must be done whenever the part
EZAFTPMQ.CSQLMVS has been recompiled.

The DBRM must be bound into the plan named EZAFTPMQ, unless the
keyword DB2PLAN was used in your FTP.DATA file to specify a different plan
name.

If you are running multiple instances of the OS/390 UNIX FTP server at different
maintenance levels, you must use DB2PLAN in FTP.DATA for each server and
specify unique plan names.

3. Grant execute privilege to the public for the plan created in the previous step.

To submit a query to DB2 through the FTP server, issue the following commands as
necessary:

v SITE FILETYPE=SQL

v SITE DB2=db2name where db2name is the name of a DB2 subsystem at the
host

v RETR fname1 fname2 where fname1 is a file at the host that contains a SQL
SELECT statement

Symptoms of SQL Problems: The following two tables shows some symptoms
and possible causes of SQL problems. Table 16 on page 203 shows problems that
generate a reply beginning with 55x.

202 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 16. SQL Problems Generating 55x Replies

Reply Output file Possible causes

Reply 551: Transfer aborted: SQL
PREPARE/DESCRIBE failure

The output file
contains the SQL
code and error
message returned by
the DB2 subsystem.

v A syntax error in the SQL
statement in the host file

v The time stamp in the load
module is different from
the BIND time stamp built
from the DBRM (SQL
code = -818). This occurs
if a BIND was not done for
the EZAFTPMQ DBRM
that corresponds to the
current load module, or if
the server is not
configured to use the
correct DB2 plan name. If
this is the problem, every
SQL query submitted
through the FTP server
will fail.

Reply 551: Transfer aborted:
unsupported SQL statement

No output is sent from
the host.

The file type is SQL, but
the host file being
retrieved does not contain
an SQL SELECT
statement.

Reply 551: Transfer aborted: attempt
to connect to db2name failed (code)

No output is sent from
the host.

v The site db2name
specifies a nonexistent
DB2 subsystem.

v The DB2 subsystem has
not been started.

Reply 551: Transfer aborted: SQL
not available. Attempt to open plan
<planname> failed
(DB2_reason_code).

No output is sent from
the host.

v BIND was not done for the
specified plan.

v BIND was done for plan
name other than
EZAFTPMQ, but
FTP.DATA does not
contain a DBZPLAN
statement to specify this
planname.

v User does not have
execute privilege for the
DB2 plan being used by
the FTP server.

Reply 550: SQL query not available.
Can’t load CAF routines.

No output is sent from
the host.

The DSNLOAD library is
not in the link list or the
FTP server STEPLIB.

Note: For more information about the messages, refer to OS/390 IBM Communications
Server: IP and SNA Codes.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 203

Table 17 shows other SQL problems.

Table 17. Other SQL Problems

Problem Possible causes

Output file contains only the SQL SELECT
statement

v The file type is SEQ, rather than SQL. If
the file type is SEQ, a retrieve is done, but
the host file is just sent back to the client.
The query is not submitted to the DB2
subsystem.

v The SELECT is for a VIEW for which the
user ID does not have DB2 select
privilege. The DB2 subsystem returns an
empty table.

Client closes the connection because server
is not responding

The processing time needed by DB2 and
FTP or both for the SQL query has
exceeded the client’s time limit for send
or receive.

An FTP server trace will indicate the
amount of SQL activity through FTP and
the approximate time when each query
was processed.

JES Support
This section describes the procedures to follow when JES output is not found and
when remote job submission functions fail.

JES Output Not Found (Zero Spool Files): If the server is in
JESINTERFACELEVEL=1 and FILETYPE=JES, and a job has been submitted but
the output of the job cannot be found (that is, you get zero spool files from a DIR
command), check the following:
v Is the job name correct? The job name must be the user ID followed by a single

character.
v Was the job output spooled to the hold queue? The server will only be able to

retrieve job output that is in the hold queue.

For example: If JESINTERFACELEVEL=2 then make sure the JESJOBNAME,
JESSTATUS, and JESOWNER filters are set correctly with the STAT command.

If the server is in JESINTERFACELEVEL=2 and FILETYPE=JES, and a job has
been submitted but the output of the job cannot be found (that is, you get zero
spool files from a DIR command), check the 125 reply message to verify that the
JESOWNER, JESJOBNAME, and JESSTATUS filters are set to values that apply to
your job. For example, if the JESJOBNAME=USER1* and the job submitted was
USER2A, then use the SITE command to set the JES filter to the appropriate value
to find the job requested. If the SITE command does not allow the end user to
change the values of the three JES filters, refer to the OS/390 IBM Communications
Server: IP User’s Guide to determine if the proper Security Access Facility
resources allow changing of the JES filters for the user.

Remote Job Submission Functions Fail: For problems with remote job
submission, run the FTP JES trace to check for the following:
v Cannot allocate internal storage
v JES is not communicating
v JES unable to find output for the specified job ID
v Unable to acquire JES access
v Unknown return code from GET JES spool request

204 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

v JES unable to provide spool data set name now
v JES unable to get a job ID for a PUT or GET request
v JES PUT or GET aborted, job not found
v JES PUT or GET aborted, internal error
v JES PUT or GET aborted, timeout exceeded
v JES internal reader allocation failed
v JES user exit error

To trace the FTP JES activity, use the JTRACE, JDUMP, or UTRACE option on the
MODIFY command.

User Exit Routine Is Not Invoked
If the user exit routine is not invoked, check the FTP trace in syslogd to see if the
exit routine was loaded. FTCHKIP is loaded once by the FTP daemon during
initialization. The remaining user exits (FTCHKPWD, FTCHKCMD, FTCHKJES, and
FTPSMFEX) are loaded in the FTP server address space for each client session.

For example, check for one of the following:
main: ret code from fndmembr() for FTCHKIP is: 4
main: user exit FTCHKIP not found. Bypassing fetch().

or
main: ret code from fndmembr() for FTCHKCMD is: 0
main: chkcmdexit successfully loaded

If you have user-written exit routines and the FTP server is not able to find them,
ensure that the user-written exit routines exist in an APF-authorized partitioned data
set which is in the OS/390 search order.

Messages and Trace Entries
If messages and trace entries are lost, do one or more of the following:

v Ensure that syslogd is configured for daemon entries. The file /etc/syslog.conf
must have an entry for daemon.info to get FTP messages and/or an entry for
daemon.debug to get FTP messages and trace entries.

v Ensure that the files specified for daemon entries exist at the time that syslogd
started. If not, you need to create the files and recycle syslogd.

v Ensure that the files specified for daemon entries have appropriate permission
bits (for example, 666).

v Ensure that syslogd is active.

If messages and trace entries display on the system console, it means that syslogd
cannot write to the files specified for daemon entries and that /dev/console is
defined. Check that syslogd is configured correctly and that the files specified for
daemon entries have appropriate permission bits (for example, 666).

Diagnosing FTP Server Problems with Traces
Several types of traces are available to aid in debugging OS/390 UNIX FTP server
problems. Tracing of OS/390 UNIX FTP server initialization is controlled by the
TRACE start parameter or the TRACE keyword in FTP.DATA. (See “Start Tracing”
on page 206.) When initialization is complete, tracing can be controlled by options
on the MODIFY command. (See “Controlling the FTP Server Traces with MODIFY”
on page 207.)

You can trace activity for all clients connecting to the FTP server. When tracing for
all clients, you can choose to trace general FTP activity, or JES-related activity, or

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 205

|
|

both. You also can choose the level of detail to be included in the trace log. See
“Tracing Activity for All Clients” on page 207.

Alternatively, you can trace all activity for a single user ID. See “Tracing Activity for
One User ID” on page 207.

Where to Find Traces
The OS/390 UNIX FTP server sends its trace entries to syslogd. The
daemon.debug statement in /etc/syslog.conf specifies where syslogd writes FTP
trace records.
#
All ftp, rexecd, rshd
debug messages (and above
priority messages) go
to server.debug.a
#
daemon.debug /tmp/syslogd/server.debug.a

All of OS/390 UNIX FTP trace entries (general or JES-related) are written to the
same HFS file.

Note: The TRACE parameter and MODIFY options are issued to the FTP daemon
and affect all client sessions that connect to the OS/390 UNIX FTP server
while tracing is active.

Refer to the OS/390 IBM Communications Server: IP Configuration Guide for more
information about syslogd.

Start Tracing
This section discusses two methods of starting the FTP server traces:

v During FTP initialization

v After FTP initialization

Start Tracing During FTP Initialization: You can use the TRACE start parameter
or the TRACE statement in FTP.DATA to begin tracing during FTP daemon
initialization. This continues tracing for all FTP events (except JES-related events)
for all FTP sessions. The trace data is routed to a file in your HFS through a
definition in your syslogd configuration file (/etc/syslog.conf).

Tracing remains active until you issue a MODIFY command to end it. Refer to
“Controlling the FTP Server Traces with MODIFY” on page 207.

Note: When you issue a MODIFY command to end tracing, tracing does not occur
for any subsequent client sessions; however, tracing will continue for any
sessions that were already connected.

Start Tracing After FTP Initialization: After initialization, you can enable tracing
using an MVS MODIFY command to the FTP server listener process. Refer to
“Controlling the FTP Server Traces with MODIFY” on page 207. Already established
FTP connections are not affected by a MODIFY command. Only FTP connections
that are established after the MODIFY command was issued will be subject to
tracing.

Stop Tracing
You stop global tracing using the MODIFY command (for example: F
FTPD1,NOTRACE). This works assuming you started your FTP listener process by way

206 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

of a PROCLIB member with the name FTPD, which means the process to modify is
FTPD1. You stop tracing for a single user using the command F FTPD1,NOUTRACE.
Already established FTP connections that were started with tracing enabled
continue to produce trace output until the connections are terminated, but new
connections start without tracing enabled.

Tracing Activity for All Clients
Use the following options to control general and JES tracing for all user IDs. Both
general and JES tracing can be active at the same time.

v The TRACE option begins the general trace for the FTP server. The general
trace provides information, such as logical paths followed and error conditions
encountered, for all clients connecting to the FTP server.

v The NOTRACE option ends general tracing.

v The JTRACE option begins the JES trace for the FTP server. The JES trace
provides information, such as logical paths followed and error conditions
encountered for JES-related activity, for all clients connecting to the FTP server.

v The NOJTRACE option ends JES tracing.

The general trace and JES trace are global traces, that is, they provide trace data
for all user IDs. Additional options control the recording of detailed data, such as
parameter lists and storage areas, in the trace logs.

v The DUMP option specifies that additional detailed data is to be included
whenever the general trace (TRACE) is active.

v The NODUMP option specifies that detailed data is to be excluded from the trace
log. This is the default.

v The JDUMP option specifies that additional detailed data is to be included
whenever the JES trace (JTRACE) is active.

v The NOJDUMP option specifies that detailed data is to be excluded from the JES
trace log. This is the default.

Tracing Activity for One User ID
Trace data for a specified user ID includes both general and JES-related activity
and includes data such as parameter lists and storage areas. User tracing is
controlled by the following options:

v The UTRACE option begins tracing for the specified user ID. Only one user ID
can be traced at a time. All other tracing options in effect are suspended when
the user trace is started and resumed when the user trace is stopped. No new
trace options can be entered while the user trace is in effect, with the exception
that a new user trace can be entered to change the user ID that is to be traced.

v The NOUTRACE option ends tracing for a specified user ID. Any global tracing
options (for the general or JES traces) that were in effect when user tracing was
begun are resumed when user tracing is ended.

Controlling the FTP Server Traces with MODIFY
The general trace for the FTP server can be started for all user IDs during
initialization by specifying the TRACE parameter either as a start option in the FTP
server start procedure or in the FTP.DATA data set.

Alternatively, tracing options can be started or stopped after initialization by issuing
one of the following MVS MODIFY commands to the FTP server jobname.

Note: The jobname is the name associated with the FTP daemon background job.
It is documented in EZYFT41I message in the FTP services log. If you
started the OS/390 UNIX server using a proc named FTPD, the jobname to
use for the MODIFY command is probably FTPD1. As client sessions

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 207

connect to the FTP server, the session process adapts the trace options
currently active. These options remain in effect for the life of the client
session process, regardless of subsequent MODIFY commands issued to
the FTP daemon.

Following are some examples of the MODIFY command used to control OS/390
UNIX FTP server traces.

v MODIFY ftp_server_jobname,TRACE

Starts the FTP server general trace for all user IDs. This option can be issued
anytime, except when the user trace is active.

v MODIFY ftp_server_jobname,NOTRACE

Stops the FTP server general trace for all user IDs. This option can be issued
anytime, except when the user trace is active.

v MODIFY ftp_server_jobname,JTRACE

Starts the FTP server JES trace for all user IDs. This option can be issued
anytime, except when the user trace is active.

v MODIFY ftp_server_jobname,NOJTRACE

Stops the FTP server JES trace for all user IDs. This option can be issued
anytime, except when the user trace is active.

v MODIFY ftp_server_jobname,UTRACE=user_id

Starts the FTP server trace for the specified user ID.

If a previous user trace was in effect, the user ID previously being traced will no
longer be traced. The new user ID will be traced instead.

If other trace options were in effect when the user trace was started, they will be
suspended until the user trace is stopped.

Any MODIFY commands to start other traces will be ignored while the user trace
is in effect.

v MODIFY ftp_server_jobname,NOUTRACE

Stops the FTP server user trace.

Restores any global trace options (for the general or JES traces) that were in
effect at the time the UTRACE option was entered to start tracing a specified
user ID.

v MODIFY ftp_server_jobname,DUMP

Causes detailed data, such as parameter lists and storage areas, to be included
in the general trace log.

This option can be issued before or after general tracing has been started. If it is
issued while general tracing is active, it takes effect immediately. This option
cannot be entered while a user trace is active.

v MODIFY ftp_server_jobname,NODUMP

Causes detailed data to be excluded from the general trace log.

This is the default.

This option can be issued before or after general tracing has been started. If
issued while general tracing is active, it takes effect immediately. This option
cannot be entered while a user trace is active.

v MODIFY ftp_server_jobname,JDUMP

Causes detailed data, such as parameter lists and storage areas, to be included
in the JES trace log.

208 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

This option can be issued before or after JES tracing has been started. If issued
while JES tracing is active, it takes effect immediately. This option cannot be
entered while a user trace is active.

v MODIFY ftp_server_jobname,NOJDUMP

Causes detailed data to be excluded from the JES trace log.

This is the default.

This option can be issued before or after general tracing has been started. If
issued while general tracing is active, it takes effect immediately. This option
cannot be entered while a user trace is active.

Trace Examples and Explanations
Figure 24 shows an example of a trace of an OS/390 UNIX FTP server.
(Timestamps have been removed for clarity.) A trace explanation is given in “Trace
Output Explanation” on page 212.

�1� ftpd[33554440]: EZYFT18I Using catalog '/usr/lib/nls/msg/C/ftpdmsg.cat' for FTP messages.
�2� ftpd[33554440]: EZY2697I IBM FTP CS V2R10 13:59:35 on 03/05/98
�3� ftpd[33554440]: EZY2693I Unable to open DD:SYSFTPD : EDC5129I

No such file or directory.
ftpd[33554440]: EZY2693I Unable to open //'FTPD.FTP.DATA' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open /etc/ftp.data : EDC5129I

No such file or directory.
ftpd[33554440]: EZY2693I Unable to open SYS1.TCPPARMS(FTPDATA): EDC5067I

An attempt was made to open a nonexistent file for read.
ftpd[33554440]: EZY2693I Unable to open //'TCPIP.FTP.DATA' : EDC5049I

The specified file name could not be located.
�4� ftpd[33554440]: EZY2638I Using FTP configuration defaults.
�5� ftpd[33554440]: EZY2693I Unable to open 'FTPD.SRVRFTP.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'TCPIP.SRVRFTP.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'FTPD.STANDARD.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'TCPIP.STANDARD.TCPXLBIN' : EDC5049I

The specified file name could not be located.
�6� ftpd[33554440]: EZYFT26I Using 7-bit conversion derived from 'ISO8859-1'

and 'IBM-1047' for the control connection.
�7� ftpd[33554440]: EZYFT33I Unable to open DDNAME 'SYSFTSX' for the data connection:

EDC5129I No such file or directory.
ftpd[33554440]: EZY2693I Unable to open 'FTPD.SRVRFTP.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'TCPIP.SRVRFTP.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'FTPD.STANDARD.TCPXLBIN' : EDC5049I

The specified file name could not be located.
ftpd[33554440]: EZY2693I Unable to open 'TCPIP.STANDARD.TCPXLBIN' : EDC5049I

The specified file name could not be located.
�8� ftpd[33554440]: EZYFT32I Using the same translate tables for the control

and data connections.
ftpd[33554440]: DM0685 main: __ipdspx returned TCPIP

�9� ftpd[33554440]: EP4982 set_dbcs: __ipdbcs() returned 0 parms from LOADDBCSTABLES statement(s)
�10� ftpd[33554441]: DM0794 main: attempt OS/390 registration...

ftpd[33554441]: DM0814 main: back from ifaedreg. rc = 0
ftpd[33554441]: DM0880 main: NLSPATH environment variable not defined. Using default nslpath.
ftpd[33554441]: S.0885 main: Using /usr/lib/nls/msg/%L/%N for nlspath.
ftpd[33554441]: DM0912 main: LANG environment variable not defined. Using default lang value.
ftpd[33554441]: S.0917 main: Using C for lang value.

Figure 24. Example of a Trace of an OS/390 UNIX FTP Server (Part 1 of 4)

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 209

�11� ftpd[33554441]: DM0929 main: a2e table for control connection
ftpd[33554441]: 09647307 00010203 372D2E2F 1605150B 0C0D0E0F *................*
ftpd(33554441): 09647317 10111213 3C3D3226 18193F27 1C1D1E1F *................*

...
ftpd[33554441]: DM0931 main: e2a table for control connection
ftpd[33554441]: 09647407 00010203 1A091A7F 1A1A1A0B 0C0D0E0F *................*
ftpd[33554441]: 09647417 10111213 1A0A081A 18191A1A 1C1D1E1F *................*

...
ftpd[33554441]: DM0934 main: a2e table for data connection
ftpd[33554441]: 09647107 00010203 372D2E2F 1605150B 0C0D0E0F *................*
ftpd[33554441]: 09647117 10111213 3C3D3226 18193F27 1C1D1E1F *................*

...
ftpd[33554441]: DM0936 main: e2a table for data connection
ftpd[33554441]: 09647207 00010203 1A091A7F 1A1A1A0B 0C0D0E0F *................*
ftpd[33554441]: 09647217 10111213 1A0A081A 18191A1A 1C1D1E1F *................*

...
ftpd[33554441]: DM0944 main: msgcat for server msgs is; 157655072

�12� ftpd[33554441]: DM0991 main: ret code from fndmembr() for FTCHKIP is: 4
ftpd[33554441]: DM1003 main: user exit FTCHKIP not found. Bypassing fetch().
ftpd[33554441]: EZYFT09I system information for MVSJ: OS/390 version 02 release 05.00 (9021)
ftpd[33554441]: DM1034 main: __librel returns 22040000
ftpd[33554441]: EZYFT51I OS/390 version 2, release 04, modification 0000.

�13� ftpd[33554441]: DM1066 main: Initialization parameter values:
ftpd[33554441]: DM1068 ..localsite values -------------------------
ftpd[33554441]: DM1070asatrans..................0
ftpd[33554441]: DM1072automount.................1
ftpd[33554441]: DM1074autorecall................1
ftpd[33554441]: DM1076blocksize.................6233
ftpd[33554441]: DM1078ckpt_interval.............0
ftpd[33554441]: DM1080conddisp..................C
ftpd[33554441]: DM1082dataclass.................
ftpd[33554441]: DM1084db2name...................DB2
ftpd[33554441]: DM1086dcbdsn....................
ftpd[33554441]: DM1088destuser..................
ftpd[33554441]: DM1090directory.................27
ftpd[33554441]: DM1092directorymode.............0
ftpd[33554441]: DM1094filetype..................1
ftpd[33554441]: DM1096imbedrdw..................0
ftpd[33554441]: DM1098jeslrecl..................80
ftpd[33554441]: DM1100jesrecfm..................128
ftpd[33554441]: DM1102lrecl.....................256
ftpd[33554441]: DM1104mgmtclass.................
ftpd[33554441]: DM1106migratevol................MIGRAT
ftpd[33554441]: DM1108primary...................1
ftpd[33554441]: DM1110quote_override............1
ftpd[33554441]: DM1112spread....................0
ftpd[33554441]: DM1114recfm.....................80
ftpd[33554441]: DM1116retpd.....................-1
ftpd[33554441]: DM1118secondary.................1

Figure 24. Example of a Trace of an OS/390 UNIX FTP Server (Part 2 of 4)

210 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

ftpd[33554441]: DM1120spacetype.................3
ftpd[33554441]: DM1122sqlcol....................N
ftpd[33554441]: DM1124storclass.................
ftpd[33554441]: DM1126trailing_blanks...........0
ftpd[33554441]: DM1128ucshostcs.................IBM-1047
ftpd[33554441]: DM1130ucssub....................0
ftpd[33554441]: DM1132ucstrunc..................0
ftpd[33554441]: DM1134unitname..................
ftpd[33554441]: DM1136unit_is_tape..............0
ftpd[33554441]: DM1138volser....................
ftpd[33554441]: DM1140wraprecord................0
ftpd[33554441]: DM1142 ..other values -----------------------------
ftpd[33554441]: DM1144smfappe...................0
ftpd[33554441]: DM1146smfdel....................0
ftpd[33554441]: DM1148smfjes....................0
ftpd[33554441]: DM1150smflogn...................0
ftpd[33554441]: DM1152smfren....................0
ftpd[33554441]: DM1154smfretr...................0
ftpd[33554441]: DM1156smfsql....................0
ftpd[33554441]: DM1158smfstor...................0
ftpd[33554441]: DM1160acceptanonymous...........0
ftpd[33554441]: DM1162auto_tape_mount...........1
ftpd[33554441]: DM1164DB2plan...................EZAFTPMQ
ftpd[33554441]: DM1166inactivetime..............300
ftpd[33554441]: DM1168jespgto...................600
ftpd[33554441]: DM1170jobname...................FTPD1
ftpd[33554441]: DM1172runtimedebug..............1
ftpd[33554441]: DM1174server_port...............621
ftpd[33554441]: DM1176startDirectory............1
ftpd[33554441]: DM1179 main: daemon's code page is: IBM-1047
ftpd[33554441]: DM1182 main: daemon's locale is: C
ftpd[33554441]: EZY2700I Using port FTP control (621)
ftpd[33554441]: EZY2701I Inactivity time is 300
ftpd[33554441]: SD0280 accept_client: socket()
ftpd[33554441]: SD0371hostname..................MVSJ.tcp.raleigh.ibm.com
ftpd[33554441]: SD0376 accept_client: assigned socket 6
ftpd[33554441]: SD0385 accept_client: setsockopt()
ftpd[33554441]: SD0398 accept_client: bind()
ftpd[33554441]: SD0416 accept_client: listen()
ftpd[33554441]: EZY2702I Server-FTP: Initialization completed at 13:59:37 on 03/05/98.
ftpd[33554441]: EZYFT41I Server-FTP: process id 33554441, server job name FTPD1
ftpd[33554441]: SD0469 accept_client: prepare to accept another client

�14� ftpd[33554441]: SD0488 accept_client: calling selectex for socket 6
ftpd(33554441): SD0406 accept_client: accept()
ftpd(33554441): SD0424 accept_client: accepted client on socket 7

�15� ftpd(33554441): SD0475 accept_client: new session for 9.67.43.72 port 2056
ftpd(33554441): SD0363 accept_client: prepare to accept another client

�16� ftpd(33554441): SD0382 accept_client: calling selectex for socket 6
�17� ftpd(83886096): SD0794 spawn_ftps: my pid is 83886096 and my parent's is 33554441

ftpd(83886096): SD0733 setup_new_pgm: issuing execv
ftps(83886096): RX0708 undo charvars: msgcat is; 154448120
ftps(83886096): RX0715 undo charvars: replycat is; 154452688
ftps(83886096): SR1178 setup_client_sn: entering setup_client_sn with socket 7

Figure 24. Example of a Trace of an OS/390 UNIX FTP Server (Part 3 of 4)

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 211

Trace Output Explanation: Following are short descriptions of the numbered
items in the trace.

�1� Indicates the message catalog used by the FTP server, as determined by
the NLSPATH and LANG environment variables. If the catalog cannot be
opened, message EZYF501I displays, and the default messages are used.

�2� The version and release of the FTP server

�3� The FTP daemon begins its search for an FTP.DATA file. The trace shows
what happened at each step in the search.

�4� No FTP.DATA file was found, so configuration defaults are used.

�5� The FTP daemon begins to search for a translate table data set
(TCPXLBIN file) to be used for the control connection. If there had been an
FTP.DATA file with a valid CTRLCONN statement, this search would not
occur.

�6� Conversion to be used for the control connection

�7� Begin search for translation tables for the data connection.

�8� Conversion to be used for the data connection

�9� No parameters for the TCPIP.DATA LOADDBCSTABLES statement means

ftps(83886096): RX0304 main: ftp server processing entered for socket 7
ftps(83886096): RX0311 main: no LANG for child
ftps(83886096): RX0315 main: child's codeset is: IBM-1047
ftps(83886096): RX0318 main: child's locale is: C

�18� ftps(83886096): RX0356 main: ret code from fndmembr() for FTCHKCMD is: 0
ftps(83886096): RX0362 main: chkcmdexit successfully loaded
ftps(83886096): RX0372 main: ret code from fndmembr() for FTCHKPWD is: 0
ftps(83886096): RX0378 main: chkpwdexit successfully loaded
ftps(83886096): RX0388 main: ret code from fndmembr() for FTCHKJES is: 0
ftps(83886096): RX0394 main: chkjesexit successfully loaded
ftps(83886096): RX0420 main: SMF EXIT not specified in configuration parameters,

so did not look for FTPSMFEX.
ftps(83886096): RX0527 init_thread_site_vars: init_thread_site_vars routine entered.
ftps(83886096): PR0188 parse_cmd: entering parse_cmd.
ftps(83886096): SR0612 get_command: select rc is 1
ftps(83886096): SR0649 get_command: received 13 bytes

�19� ftps(83886096): PR0308 Parse_cmd: command line: USER user31

...
ftps(83886096): SR0612 get_command: select rc is 1
ftps(83886096): SR0649 get_command: received 6 bytes
ftps(83886096): PR0308 Parse_cmd: command line: QUIT
ftps(83886096): PR0325 parse_cmd: calling user exit FTCHKCMD with:

rc 0, numparms 3, userid 'USER31', cmd 'QUIT' args '0/'
ftps(83886096): PR0345 parse_cmd: return from FTCHKCMD with rc: 0.
ftps(83886096): RM1485 quit: quit routine entered.
ftps(83886096): SR0538 end_session: Ending session 000D086C

�20�ftps(83886096): RX0500 Server thread terminates rc = 99.
ftpd[33554441]: SD0469 accept_client: prepare to accept another client

�21� ftpd[33554441]: DF0193 mvs_command_handler: routine entered.
ftpd[33554441]: DF0205 mvs_command_handler: console command hex code: 40; parm:
ftpd[33554441]: DH0234 pgmstpd: SIGTERM signal received
ftpd[33554441]: EZY2714I FTP server shutdown in progress
ftpd[33554441]: DH0271 pgmstpd: off to ifaeddrg_byaddr...
ftpd[33554441]: DH0274 pgmstpd: back from ifaeddrg_byaddr. rc = 0
ftpd[33554441]: EZYFT59I FTP shutdown complete.

Figure 24. Example of a Trace of an OS/390 UNIX FTP Server (Part 4 of 4)

212 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

no DBCS data transfer can be done with this FTP server. If languages were
specified on a LOADDBCSTABLES statement, they would be listed
following this trace entry.

�10� Note that the process ID changes as the FTP daemon forks to the
background.

�11� The initial translate tables to be used for the control and data connections.
(a2e=ascii-to-ebcdic; e2a=ebcdic-to-ascii) These can be changed during a
client session by a site command.

�12� The daemon looks for the FTCHKIP user exit. Trace will indicate whether or
not it is loaded.

�13� The configuration values the FTP daemon will run with

�14� The daemon waits for command or new client connection.

�15� The client IP address and port

�16� After forking a new address space, the daemon goes back to wait for a
command or new connection.

�17� New server address space for this client session

�18� Server address space loads remaining user exists if they exist.

�19� Entire command line is reflected (after conversion to EBCDIC).

Note: The PASS command line is not reflected.

�20� Normal end of client session

�21� The daemon has received a STOP command.

Documenting Server Problems
If the problem is not caused by any the common errors described in this section,
collect the following documentation before calling the IBM Support Center.
Documentation is divided into two categories: essential and helpful but not
essential.

v Essential:

– Precise description of problem, including expected results and actual results

– OS/390 UNIX FTP server dump (for abends)

– OS/390 UNIX FTP server traces (refer to “Diagnosing FTP Server Problems
with Traces” on page 205 for information on collecting FTP server traces)

v Helpful:

– FTP client output

– FTP.DATA data set

– TCPIP.DATA data set

– PROFILE.TCPIP data set

– ETC.SERVICES data set

– The output from the STAT command issued to the server

– If applicable, sample data to recreate the problem

FTP Client
This section describes the procedures to follow when diagnosing problems with the
FTP client.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 213

Execution Environments
The FTP client can run in any of the following environments:

v Interactive (under the TSO or the OS/390 UNIX shell)

v Batch (under TSO only)

v REXX exec (under TSO or the OS/390 UNIX shell)

When run interactively, you can redirect terminal I/O. When run under TSO, server
responses and debug messages can be redirected to a file. For example, you can
use the following command to redirect output from a TSO command line to a data
set: ftp 9.68.100.23 > ’USER27.FTPOUT’. When run under the OS/390 UNIX shell,
both input and output can be redirected.

Note: When redirecting output under OS/390 UNIX, nothing is displayed on the
system console, not even command prompts, and it is difficult to know when
input is requested. Consequently, use output redirection only when also
using input redirection.

To redirect input from the file /user27/ftpin and output to the file /user27/ftpout, issue
the following command: ftp 9.68.100.23 > /user27/ftpout < /user27/ftpin.

Setup
You can use an FTP.DATA data set to customize configuration parameters. For
information about the FTP.DATA data set used by the FTP client, refer to OS/390
IBM Communications Server: IP User’s Guide. Use the FTP client LOCSTAT
command to display the name of the FTP.DATA file that is being used.

The TCPIP.DATA configuration file provides information for the FTP client such as
the high-level qualifier to be used for configuration data sets, and which DBCS
translation tables can be used. For more information about the TCPIP.DATA
configuration file, refer to the OS/390 IBM Communications Server: IP Configuration
Reference. The OS/390 UNIX search order for the file is used even if the FTP client
is invoked under TSO.

Naming Considerations
The FTP client can access both native MVS data sets and HFS files. For more
information, see “Name Considerations for OS/390 UNIX FTP” on page 192.

Common Problems
This section describes some common problems with the FTP client.

Abends
If the client abends immediately after entering the FTP command and the following
message is displayed, ensure that the local TSO user ID has an OMVS segment
defined or that a default OMVS segment is established:
ftp
CEE5101C During initialization, the OpenEdition callable service
BPX1MSS failed. The system return code was 0000000156

, the reason code was 0B0C00FB . The application will be
terminated

IKJ56641I FTP ENDED DUE TO ERROR+
READY

214 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Unknown Host Error Message
The FTP client displays EZA1551I Unknown Host: <hostname> if it receives a
negative response from the resolver. This occurs when the hostname specified on
the FTP command cannot be resolved either by the name server or the local
resolution file.

Note: The FTP client always uses the OS/390 UNIX resolver, even when FTP is
invoked from TSO.

Use the host IP address instead of the hostname on the FTP command or see
“Chapter 15. Diagnosing Dynamic Domain Name Server (DDNS) Problems” on
page 295 for information on diagnosing name-server problems.

Incorrect Configuration Values
Issue the LOCSTAT subcommand to determine the name of the file being used for
your local site configuration parameters. If the file you want is not being used, start
the FTP client with the -d or CTRACE options to trace the client as it follows the
search order for the FTP.DATA file. For more information about the search order
used by the client, refer to the OS/390 IBM Communications Server: IP User’s
Guide.

Check if your FTP.DATA file has sequence numbers. If it does, any statement with
an optional parameter omitted will pick up the sequence number as the parameter
value. For example, the BLKSIZE statement has an optional parameter size. If you
specify the size, the sequence number is ignored. If you do not specify the size, the
system assumes the sequence number is the size, causing an error.

Data Transfer Problems
Most of the data transfer problems that apply to a server also apply to a client. (See
“Data Transfer Problems” on page 197.) In addition, a problem occurs when an FTP
client is invoked under TSO and a TYPE U 2 or UCS2 command is invoked. When
this happens, the following message is displayed:
EZA2749E Cannot establish conversion between <codeset>

and UCS-2.

To transfer data encoded in UCS-2 during an FTP session, invoke the FTP
command with the _ICONV_UCS2_PREFIX environment variable, specifying the
prefix used for your runtime library. Following is an example:
FTP ENVAR("_ICONV_UCS2_PREFIX=CEE.OSVIR4") / <host_ip_addr> <port>

Double-Byte Character Set (DBCS) Support
If the DBCS translate tables are not available, the client issues the following
message after a valid command to establish a double-byte transfer type (for
example, SJISKANKI, BIG5, or ‘TYPE B n’) is entered:
"EZA1865I Command not Supported. Translation Table not Loaded.

If this message displays, check the LOADDBCSTABLES statement in the
TCPIP.DATA file. If the statement wraps to the next line, parameters on the
continued line are ignored, and no error message is issued. If all parameters for the
LOADDBCSTABLES statement do not fit on one line, use multiple LOADDBCS
statements.

Check the precedence order for the TCPIP.DATA file to ensure that the file being
used contains the LOADDBCSTABLES statement or statements. Be aware that the
RESOLVER_CONFIG environment variable or /etc/resolv.conf takes precedence
over DD:SYSTCPD or jobname.TCPIP.DATA.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 215

DB2 Query Support
This section describes how to use the FTP client DB2 query support and how to
diagnose SQL problems.

How to use FTP Client SQL Support
Before you can use the FTP client to submit queries to the DB2 subsystem,
complete the following steps:

1. Start the DB2 subsystem.

2. BIND the DBRM called EZAFTPMQ. This must be done whenever the part
EZAFTPMQ.CSQLMVS has been recompiled.

The DBRM must be bound into the plan named EZAFTPMQ, unless the
keyword DB2PLAN was used in your FTP.DATA file to specify a different plan
name.

3. Grant execute privilege to the public for the plan created in the previous step.

To use the FTP client to submit a query to DB2 and send the output to the FTP
server, issue the following commands as necessary:

v LOCSITE FILETYPE=SQL

v LOCSITE DB2=db2name where db2name is the name of a DB2 subsystem at
the local host

v PUT fname1 fname2 where fname1 is a local file that contains a SQL SELECT
statement

Symptoms of SQL Problems
The following two tables shows some symptoms and possible causes of SQL
problems. Table 18 shows problems that generate a reply beginning with 55x.

Table 18. SQL Problems Generating 55x Replies

Reply Output file Possible causes

EZA2570E: Transfer aborted: SQL
PREPARE/DESCRIBE failure

The output file
contains the SQL
code and error
message returned by
the DB2 subsystem.

v A syntax error in the SQL
statement in the host file

v The time stamp in the load
module is different from
the BIND time stamp built
from the DBRM (SQL
code = -818). This occurs
if a BIND was not done for
the EZAFTPMQ DBRM
that corresponds to the
current load module, or if
the server is not
configured to use the
correct DB2 plan name. If
this is the problem, every
SQL query submitted
through the FTP server
will fail.

EZA2573E: Transfer aborted:
unsupported SQL statement

No output is sent from
the host

The file type is SQL, but the
host file being retrieved does
not contain an SQL SELECT
statement.

216 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 18. SQL Problems Generating 55x Replies (continued)

Reply Output file Possible causes

EZA2568E: Transfer aborted: attempt
to connect to db2name failed (code)

No output is sent from
the host

v The locsite db2name
specifies a nonexistent
DB2 subsystem.

v The DB2 subsystem has
not been started.

EZA2569E: Transfer aborted: SQL
not available. Attempt to open plan
<planname> failed
(DB2_reason_code).

No output is sent from
the host

v BIND was not done for the
specified plan.

v BIND was done for plan
name other than
EZAFTPMQ, but
FTP.DATA does not
contain a DBZPLAN
statement to specify this
plan name.

v User does not have
execute privilege for the
DB2 plan being used by
the FTP server.

EZA2740E: SQL query not available.
Can’t load CAF routines.

No output is sent from
the host.

The DSNLOAD library is not
in the link list or the FTP
server STEPLIB.

Note: For more information about these messages, refer to OS/390 IBM Communications
Server: IP and SNA Codes.

Table 19 shows other SQL problems.

Table 19. Other SQL Problems

Problem Possible causes

Output file contains only the SQL SELECT
statement

v The file type is SEQ, rather than SQL. If
the file type is SEQ, a retrieve is done, but
the local file is just sent to the server. The
query is not submitted to the DB2
subsystem.

v The SELECT is for a VIEW for which the
user ID does not have DB2 select
privilege. The DB2 subsystem returns an
empty table.

Connection terminated The processing time needed by DB2 and
FTP or both for the SQL query has exceeded
the server time limit for send or receive.

If you are using the MVS FTP server and the
server trace shows a select error due to a
bad file descriptor, check the inactive time
set for the server and, if necessary, increase
the time.

An FTP client trace will indicate the amount
of SQL activity through FTP and the
approximate time when each query was
processed.

Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems 217

Diagnosing FTP Client Problems with Tracing
You can activate tracing on startup with the -d or CTRACE command line options.
Alternatively, you can activate tracing by toggling tracing on or off during an FTP
session with the DEBUG command.

The DEBUG (or DEBUG 1) and DEBUG 2 commands activate two levels of tracing.
DEBUG 2 includes trace entries generated by level 1 and additionally dumps
internal storage. It can generate large amounts of data, so it is recommended that
you redirect output to a file when using DEBUG 2.

When running FTP interactively or from a REXX exec, all tracing goes to the
terminal unless output has been redirected. When running FTP from a TSO batch
job, all tracing goes to SYSOUT.

If you experience problems using DD names to refer to files in FTP transfers:

1. Ensure that the user has properly allocated the DDNAME being referred to. The
TSO command LISTALC STAT HIST can be helpful in debugging allocations.
Also ensure that the allocations are proper, such as for a file that already exists
the disposition should not be NEW.

2. Ensure that DDNAMEs are only used to refer to local files. For example, get
//DD:FTP01 FILEONE is not valid because it attempts to use a DDNAME to refer
to a host file. If you try to use a DDNAME for a remote file name, the name will
be sent to the remote host for processing as-is. If the remote host actually has a
file named //DD:FTP01 then that file would be referred to but most likely the
remote host would reject it as a not valid file name.

3. To find attempts to access files by DDNAME, look for DD: in FTP trace output.
MF0573 seq_open_file: OSTN -> w,recfm=*,NOSEEK for dd:FTP02
MF0663 seq_open_fle: ddname FTP02 has filename USER1.CCPYXLMT
MF0669 seq_open_file: set DDNAME characteristics- recfm=90, lrecl=128, blksize=6144

Note: By using DDNAME support, the user is assuming responsibility for correctly
allocating and deallocating the DDNAMEs being used!

Documenting FTP Client Problems
If the problem is not caused by any the common errors described in this section,
collect the following documentation before calling the IBM Software Support Center.
Documentation is divided into two categories: essential and helpful but not
essential.

v Essential:

– Precise problem description, including client console, expected results, and
actual results

v Helpful:

– Client trace at the DEBUG 1 level. This information can be extremely helpful.
(You do not need to generate DEBUG 2 level tracing unless it is requested by
IBM service.)

– Output from the client LOCSTAT command

– FTP.DATA data set

– TCPIP.DATA data set

– If appropriate, sample data to recreate the problem

218 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

Chapter 9. Diagnosing OS/390 UNIX Telnet Problems

This chapter provides diagnostic information for OS/390 UNIX Telnet.

Common Problems
The following list describes common problems that you may encounter during
execution of the Telnet daemon.

v Diagnostic messages are not being printed to the appropriate file.

– The diagnostic messages are printed out with the use of syslogd. Ensure that
the syslogd is currently active (check for /etc/syslog.pid).

– If syslogd is active, ensure that the file where the output is intended to be
outputted is currently allocated. Syslogd will not create the file; it expects it to
exist. OS/390 UNIX Telnet uses local1.debug for logging messages. Ensure
that the syslog.conf file contains an entry for local1.debug or the *.* default
file. Refer to the OS/390 IBM Communications Server: IP Configuration Guide
for more detailed information about syslogd.

– Ensure also that the specified file exists. Ensure that the permissions on the
file are at a minimum ″666″.

– Make sure you specify -t and/or -D all as the OS/390 UNIX Telnet options in
/etc/inetd.conf.

v Use of the arrow keys

The arrow keys are not functional in raw mode. This is AIX-like behavior, except
that, in AIX, the arrow key produces peculiar characters such as
¬--B on the screen to let the user know not to use arrows. Under rlogin, the
cursor moves where you would want it to and correction is allowed, but the shell
also treats these characters as part of the original command.

v The keyboard appears locked and the user can not issue commands.

When executing UNIX-type clients (for example, AIX), if the -k option is specified
for telnet in inetd.conf, telnet does not allow kludge linemode (see “Setting Up
the inetd Configuration File” on page 309). UNIX-type clients require
character-at-a-time mode to process correctly. If you remove the -k option from
the parameters, then the software processes correctly.

If this does not work, run tracing -t D all. Look for Ept to determine what the
exception conditions are for the pty. The number of bytes should equal 4. Verify
that the exception conditions identified are processed by the OS/390 UNIX Telnet
server. (Check EZYTE67I messages for more information; refer to Figure 26 on
page 221.)

v EDC5157I An internal error has occurred, rsn=0b8802AF.

The “2AF” of the reason code signifies that the user did not have the proper
authority to execute the command. This may result in either the user system
having BPX.DAEMON authority set up in their environment, and the proper
authorities have not been issued to the user, or the user does not have super
user authority, which may be required to issue some of these commands.

Debug Traces
Table 20 on page 220 describes options that relate to user-controlled trace
information.

© Copyright IBM Corp. 1994, 2000 219

Table 20. Debug Trace Options

Option Sub-Option Description

-t Internal tracing, intended to replace the DIAGNOSTICS
compile option currently in place within the BSD code.

-D options Prints information about the negotiation of TELNET
options

-D report Prints the options information, plus some additional
information about what processing is going on.

-D netdata Displays the data stream received by telnetd.

-D ptydata Displays the data stream written to the pty.

-D all Supports all of the options/report/ptydata/netdata options.

Debug Trace Flows (netdata and ptydata)
When issuing any of the following three trace commands within /etc/inetd.conf (-D
ptydata, -D netdata or -D all), you will have in your syslogd file, the contents in both
hexadecimal and ASCII, the data being sent over the sockets or between the ttys. If
the user is having problems between the parent and the client, try the -D netdata
option. If it is between the parent and the child, try the -D ptydata option. If both or
either may apply, try the -D all option.

Each set of hexadecimal data will be preceded by a three-letter tag. This tag will
represent the direction the data is flowing from. Figure 25 is a pictorial
representation of this flow.

v Int—client to parent

v Ont—parent to client

v Ipt—child to parent

v Opt—parent to child

The user types a command on the command line. It flows Int -> Opt. The child
responds and the flow is Ipt -> Ont.

Debug Trace Examples (-t -D all)
Figure 26 on page 221 gives an example of the trace generated from -t -D all. This
was generated from an AIX Telnet client. A trace explanation follows the figure.

--------------- -------------- ----------------
	Int		Opt	
	------------>	Telnet	---------->	Telnet
Client	socketfd	parent	masterfd	child
	<------------		<----------	
	Ont		Ipt	
--------------- --------------- ----------------

Figure 25. Trace between the Telnet Client, Parent and Child

220 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�1� EZYTE29I Starting new telnet session. catfd = 134459616
EZYTE04I catgets EDC5000I No error occurred. rsn = 00000000
EZYTO05I Initial EBCDIC codepage = IBM-1047, ascii codepage = ISO8859-1

�2� EZYTE05I Trace 1 Debug 1d keepalive 1 kludgelinemode 2
hostinfo 1 Registered host 0 linemode 1 multi_proc 1

�3� EZYTE11I doit: host_name rperot.raleigh.ibm.com
�4� EZYTE11I doit: IP address 9.37.34.249

EZYTE11I doit: PORT 1028
EZYTE11I doit: host MVS3

�5� EZYTS04I STATE:send_do: send DO TERMINAL TYPE¬(
EZYTS04I STATE:send_do: send DO TSPEED¬(
EZYTS04I STATE:send_do: send DO XDISPLOC¬(
EZYTS04I STATE:send_do: send DO NEW-ENVIRON¬(
EZYTS04I STATE:send_do: send DO OLD-ENVIRON¬(
EZYTS04I STATE:send_do: send DO BINARY¬(
EZYTS09I STATE:send_will: send WILL SUPPRESS GO AHEAD¬(
EZYTS09I STATE:send_will: send WILL ECHO¬(

�6� EZYTU14I UTILITY: netwrite 24 chars.
�7� EZYTU21I Ont: fffd18fffd20fffd23fffd27fffd24fffd00fffb

EZYTU21I Ont: 03fffb01
�8� EZYTU03I UTILITY:ttloop read 3 chars.
�9� EZYTU47I Int: fffb18 ...
�10� EZYTS05I STATE:willoption: receive WILL TERMINAL TYPE¬(

EZYTU03I UTILITY:ttloop read 21 chars.
EZYTU47I Int: fffc20fffc23fffc27fffc24fffc00fffd03fffd
EZYTU47I Int: 01 .

�11� EZYTS08I STATE:wontoption: receive WON'T TSPEED¬(
EZYTS08I STATE:wontoption: receive WON'T XDISPLOC¬(
EZYTS08I STATE:wontoption: receive WON'T NEW-ENVIRON¬(
EZYTS08I STATE:wontoption: receive WON'T OLD-ENVIRON¬(
EZYTS08I STATE:wontoption: receive WON'T BINARY¬(

�12� EZYTS10I STATE:dooption: receive DO SUPPRESS GO AHEAD¬(
EZYTS10I STATE:dooption: receive DO ECHO¬(

�13� EZYTU17I UTILITY: send suboption
TERMINAL-TYPE
SEND
EZYTU14I UTILITY: netwrite 6 chars.
EZYTU21I Ont: fffa1801fff00
EZYTU03I UTILITY:ttloop read 4 chars.
EZYTU47I Int: fffa1800
EZYTU03I UTILITY:ttloop read 7 chars.
EZYTU47I Int: 7674323230fff00

Figure 26. OS/390 UNIX Telnet Trace Using -t -D all (Part 1 of 3)

Chapter 9. Diagnosing OS/390 UNIX Telnet Problems 221

EZYTS17I Defer suboption negotiation
EZYTU14I UTILITY: netwrite 0 chars.
EZYTU17I UTILITY: receive suboption
TERMINAL-TYPE
IS vt220

�14� EZYTE10I terminaltypeok: call tgetent (buf, vt220)
¬(
EZYTE48I Ont: c5e9 EZ
EZYTE59I read_pw: Character ignored a

�15� EZYTO04I lusername = user79
¬(
EZYTE48I Ont: c5e9 EZ
EZYTE59I read_pw: Character ignored a
EZYTE22I herald()

�16� EZYTE26E herald: stat error EDC5129I No such file or directory. rsn = 057C006C
EZYTE16I uid = 215, gid = 5
EZYTY03I GOTPTY: ioctl TIOCSWINSIZ EDC5000I No error occurred. rsn = 00000000
EZYTY05I GETPTY: slave fd = 10 , masterfd = 7

�17� EZYTS15I STATE:dooption:deferred receive DO ECHO¬(
EZYTO09I options(1) = 3 .
EZYTS15I STATE:dooption:deferred receive DO SUPPRESS GO AHEAD¬(
EZYTO09I options(3) = 3 .

�17� EZYTS16I STATE:willoption:deferred receive WILL TERMINAL TYPE¬(
EZYTO09I options(24) = 12 .
EZYTS04I STATE:send_do: send DO LINEMODE¬(
EZYTS04I STATE:send_do: send DO NAWS¬(
EZYTS09I STATE:send_will: send WILL STATUS¬(
EZYTS04I STATE:send_do: send DO LFLOW¬(
EZYTU14I UTILITY: netwrite 12 chars.
EZYTU21I Ont: fffd22fffd1ffffb05fffd21
EZYTU03I UTILITY:ttloop read 6 chars.
EZYTU47I Int: fffc22fffb1f
EZYTS08I STATE:wontoption: receive WON'T LINEMODE¬(
EZYTS05I STATE:willoption: receive WILL NAWS¬(
EZYTS04I STATE:send_do: send DO TIMING MARK¬(
EZYTS04I STATE:send_do: send DO BINARY¬(
EZYTU14I UTILITY: netwrite 6 chars.
EZYTU21I Ont: fffd06fffd00
EZYTE66I PROTOCOL:lmodetype=2, linemode=0, uselinemode=0

�18� EZYTY08I argv_fsum(0) = fomtlinp
EZYTY08I argv_fsum(1) = *4OurhrEa)R0,H/h
EZYTY08I argv_fsum(2) =

Figure 26. OS/390 UNIX Telnet Trace Using -t -D all (Part 2 of 3)

222 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�1� EZYTE29I indicates the start of a new OS/390 UNIX Telnet client session.

�2� EZYTE05I indicates what options were specified in /etc/inetd.conf for
OS/390 UNIX Telnet.

�3� EZYTE11I indicates the resolved host name (from the client).

�4� EZYTE11I shows the IP address of the OS/390 UNIX Telnet client.

�5� EZYTS04I indicates the terminal negotiation options sent to the client by the
OS/390 UNIX Telnet server.

�6� EZYTU14I traces netwrites (writes to the client terminal).

�7� EZYTU21I traces data from parent to client; that is, OS/390 UNIX Telnet to
the client terminal.

�8� EZYTU03I indicates the number of bytes read from the client by OS/390
UNIX Telnet.

�9� EZYTU47I traces data from the client to the parent (OS/390 UNIX Telnet
server).

�10� EZYTS05I shows the terminal option negotiation the client has
sent/received.

�11� EZYTS08I shows the terminal option negotiation the client has
sent/received.

�12� EZYTS10I shows the terminal option negotiation the client has
sent/received.

�13� EZYTU17I traces OS/390 UNIX Telnet sending terminal negotiation
sub-options to the client.

�14� EZYTE10I traces the call to tgetent(), which determines client terminal type.

�15� EZYTO04I shows the user name with which the telnet client logged in.

EZYTY08I argv_fsum(3) = 0
EZYTY08I argv_fsum(4) = 7
EZYTY08I argv_fsum(5) = 10
EZYTY08I argv_fsum(6) = 0
EZYTY08I argv_fsum(7) = 0
EZYTY08I argv_fsum(8) = 6
EZYTY08I argv_fsum(9) = 80
EZYTY08I argv_fsum(10) =
EZYTY08I argv_fsum(11) = vt220
EZYTY08I argv_fsum(12) =
EZYTY08I argv_fsum(13) =
EZYTY08I argv_fsum(14) =
EZYTY08I argv_fsum(15) =
EZYTY08I argv_fsum(16) = 1
EZYTY08I inherit flag = 40000000
EZYTY09I login_tty: spawnp fsumoclp 131080

�19� EZYTE67I S(nfd):socketfd..ibits=00000001 obits=00000000 ebits=00000000
S(nfd) pty..ibits=00000000 obits=00000000 ebits=00000080

�20� EZYTE68I Ept: #bytes = 4 pkcontrol(cntl) 1003
EZYTE69I PROTOCOL: cntl = 1003
EZYTE65I PROTOCOL: send IAC Data Mark. DMARK¬(

Figure 26. OS/390 UNIX Telnet Trace Using -t -D all (Part 3 of 3)

Chapter 9. Diagnosing OS/390 UNIX Telnet Problems 223

�16� EZYTE26E indicates no /etc/banner file was found.

�17� EZYTS15I and EZYTS16I show that a state change was processed due to
options/responses received from the client.

�18� EZYTY08I traces the parameters passed to the spawned/forked child
address space where the OMVS shell runs.

�19� EZYTE67I traces the socket sets to show whether input/ibits, output/obits,
or exception/ebits data has been received.

�20� EZYTE68I shows exception data received on the parent/child connection.

Cleaning Up the utmp Entries Left from Dead Processes
Assuming that you have the suggested /etc/rc script, the utmpx file is cleaned up
each time the S OMVS command is issued. The utmpx file should not normally
need cleaning up, as each terminal slot should be reused the next time someone
logs on with that terminal.

Although during normal processing the utmp entries are cleaned up, there are the
occasional incidents where zombies are created, or the user may have terminated
the session abnormally. When this occurs the utmp entry for that user will remain in
the /etc/utmpx file until it is cleared out. There is an associated tty reserved for
every entry in the /etc/utmpx file including the zombie entries. For dead entries,
these ttys will not be available for reuse until someone under superuser erases the
/etc/utmpx file.

Note: If you erase the file while someone is logged on, the next logoff will report
not finding the utmpx entry for the user. This can be seen with a waitpid
failure during that user cleanup.

224 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 10. Diagnosing Telnet Problems

This chapter describes how to diagnosis Telnet problems.

General Telnet Server Information
The Telnet protocol provides a standardized interface, through which a program on
one host (the Telnet client) can access the resources of another host (the Telnet
server) as though the client were a local terminal connected to the server host.

Telnet protocol is based on the concept of a Network Virtual Terminal (NVT) and the
principle of negotiated options.

An NVT is an imaginary device, providing the necessary basic structures for a
standard terminal. Each host client represents an imaginary device with certain
terminal characteristics that the host server can support.

The principle of negotiated options is used by the Telnet protocol because many
clients and hosts want to use additional services beyond the base services. Various
options can be negotiated. Server and client use a set of conventions to establish
operational characteristics for their Telnet connection by means of the “DO, DON’T,
WILL, WON’T” mechanism that is discussed in “Telnet Commands and Options” on
page 240.

Telnet Server Definitions
Telnet must be defined correctly to both VTAM and TCP/IP. A VTAM APPL definition
statement is needed for each Telnet LU that will be used or model application
naming can be used with VTAM V4R3 or higher. A corresponding LU must be
specified in the BEGINVTAM section of the PROFILE.TCPIP data set. Refer to the
OS/390 IBM Communications Server: IP Configuration Reference for detailed
information about these definitions.

Note: All default 3270 LOGMODE entries from the table of Telnet device name
parameters in OS/390 IBM Communications Server: IP Configuration
Reference are for non-SNA sessions. You must code device types and the
needed LOGMODE entries for SNA sessions. All default 3270E LOGMODES
are for SNA sessions. Also, the SESSLIM=YES parameter should be coded
for each VTAM APPL definition statement (SNA or non-SNA) to ensure
correct Telnet processing with applications using VTAM CLSDST/PASS
macros.

Diagnosing Telnet Server Problems
Problems with Telnet are generally reported under one of the following categories:
v Abends
v Logon problems
v Session hangs
v Incorrect output
v Session outages

Use the information provided in the following sections for problem determination
and diagnosis of errors reported against Telnet.

© Copyright IBM Corp. 1994, 2000 225

If a problem is re-creatable, you can use the DEBUG DETAIL statement in
TELNETPARMS, refer to OS/390 IBM Communications Server: IP Configuration
Reference for details.

Abends (Server)
An abend during Telnet processing should result in messages and error-related
information sent to the MVS system console. A dump of the error will be needed
unless the symptoms already match a known problem.

Documentation
Code a SYSMDUMP DD or SYSABEND DD statement in the PROC used to start
TCP/IP to ensure that a useful dump is obtained in the event of an abend.

Analysis
Refer to OS/390 MVS Diagnosis: Procedures or see Chapter 3. Diagnosing Abends,
Loops, and Hangs, for debugging dumps produced during TCP/IP processing.

Logon Problems (Server)
Telnet login problems are reported when clients are unable to connect to the host
application. Generally, this type of problem is caused by an error in the
configuration or definitions (either in VTAM or TCP/IP).

Documentation
The following documentation should be available for initial diagnosis of Telnet login
problems:
v TCP/IP console log
v PROFILE.TCPIP data set
v VTAM APPL definitions for Telnet LUs

More documentation that might be needed is discussed later in the analysis section.

Analysis
Table 21 shows symptoms of login problems and refers to the steps needed for
initial diagnosis of the error. The information following the chart and associated
information can be used for extended diagnosis, if the problem persists.

Table 21. Telnet Login Problems

Login Problem Analysis Steps

No LUs available 1, 2, 6, 10

OPEN failure 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

x-clock (Telnet solicitor panel) 1, 2, 3, 4, 5, 6, 7, 10

x-clock (blank screen) 1, 2, 3, 6, 7, 8, 10, 12

x-clock (application panel) 7, 8, 10

Incorrect USSMSG or DEFAULTAPPL 3, 4, 5, 6, 11

Following are the diagnosis steps referred to in Table 21.

1. Have VTAM APPL definition statements been coded correctly?

Note: There must be a VTAM definition statement or model application name
for each LU coded in the PROFILE.TCPIP data set.

2. Is the VTAM node containing the Telnet LU definitions active?

3. Is there a DEFAULTAPPL coded in the PROFILE.TCPIP data set?

226 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

4. Is the host application (or DEFAULTAPPL) active?

5. Is there an ALLOWAPPL statement coded that will include the requested
application?

6. Have comment delimiters been added or removed as needed in the
BEGINVTAM section of the PROFILE.TCPIP data set?

7. Have correct LOGMODEs (or required overrides for SNA) been coded in the
PROFILE.TCPIP data set?

8. Does the host application have BIND (session parameter) requirements that
are not met by the specified LOGMODE?

9. Is the MSG07 parameter coded in the PROFILE.TCP data set?

Note: MSG07 returns information to the end user indicating the reason for the
failure.

10. Are any abends (in VTAM, host application, or TCP/IP) indicated on the MVS
system console?

Note: If an abend occurred, refer to the section on abends to continue
investigation of the problem.

11. Check the PROFILE.TCPIP data set for the IP to LU mapping.

12. Is an SSL client attempting to connect to a basic port or is a basic client trying
to connect to an SSL port?

If the problem still occurs after following the preceding procedure and making any
needed changes, obtain the following documentation:
v TCP/IP packet trace and data trace
v VTAM buffer trace of the Telnet LU
v VTAM DISPLAY of the host application

The following documentation might also be needed in some cases, but it is
suggested that your IBM Software Support Center be contacted before this
documentation is obtained:
v Component Trace
v TCP/IP Services Telnet display output
v VTAM VIT trace (API, PIU, MSG, PSS options)
v VTAM DISPLAY of Telnet LU
v Dump of TCP/IP address space

For information about obtaining VTAM traces, refer to OS/390 IBM Communications
Server: SNA Operation or to OS/390 IBM Communications Server: SNA Diagnosis
V2 FFST Dumps and the VIT for your release. Instructions on obtaining a dump can
be found in OS/390 MVS Diagnosis: Tools and Service Aids for your release of
MVS.

Session Hangs (Server)
This section discusses diagnosis of a hang after a session has been successfully
connected. A hang would be indicated by the keyboard remaining locked on the
client side of the session, with no data being sent to or received from the server
host.

Documentation
To determine the cause of a Telnet session hang, the following documentation will
usually be required:
v TCP/IP packet trace and data trace
v VTAM buffer trace of the Telnet LU

Chapter 10. Diagnosing Telnet Problems 227

v Information about what was seen at the client screen

Analysis
The preceding traces are essential to finding the reason for the session hang. Data
entered at the client terminal is sent to the Telnet server on the TCP/IP connection.
The TCP/IP packet trace and data trace will show the data as it arrives from the
client and is sent to the platform code to be forwarded to the host application. Some
processing steps during this time are also included in the trace.

The VTAM buffer trace will show the data as received by VTAM to be forwarded to
the host application. Following the data flow through the traces between VTAM,
TCP/IP, and Telnet will provide an indication of where the problem is occurring.

The following list suggests information to check in the traces. Refer to OS/390 IBM
Communications Server: SNA Diagnosis V2 FFST Dumps and the VIT or to SNA
Network Product Formats for more information about VTAM buffer trace output.

Was the last activity at the client input or output? If input (data from the client), start
with step 1. If output, go to Step 9.

1. Does the packet trace show data passed to TCP/IP? If not, the problem is in
client or emulator code. If data is in the trace, continue with Step 2.

2. Does data trace show data passed to Telnet? If not, the error is in the TCP/IP
platform code. Otherwise, continue with Step 3.

3. Does VTAM buffer trace show data passed from Telnet? If not, problem is in
the Telnet server code. Otherwise, continue with Step 4.

4. Does VTAM buffer trace show data passed to host application? If not, problem
is in VTAM code. If buffer trace shows correct data, continue with Step 5.

5. Does the buffer trace show data coming from the host application? If not, the
problem is in the host application. Contact your host application Support
Center for these products. Otherwise, continue with Step 6.

6. Does the buffer trace show data sent back to the Telnet LU? If not, the
problem is in VTAM. Otherwise, continue with Step 7.

7. Is the last data from the application seen in the data trace output? If not, the
problem is in the Telnet server. Otherwise, continue with Step 8.

8. Does the packet trace show the data sent to the client? If not, the error is in
TCP/IP platform. Otherwise, continue with Step 9.

9. Check the data in the packet trace output to see if unlock keyboard is set on in
the data stream. If unlock is set in the output data, the problem is in the
emulator or client code. Otherwise, continue with Step 10.

10. Check the last data received by the Telnet LU in the VTAM buffer trace. If
unlock is set in that data stream, or end bracket or change direction is set in
the RH, the problem is in the Telnet server code. If none is set, the host
application did not allow for unlocking of the keyboard. You should contact your
host application IBM Software Support Center.

If the preceding problem determination shows the error to be in the TCP/IP platform
or Telnet server code, a dump will be needed to allow a more detailed investigation
of the problem.

228 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Incorrect Output (Server)
Problems with incorrect output are reported when the data sent to the client is not
seen in its expected form. This could be garbled data that is unreadable on the
screen, a blank screen when output is expected, or screen formatting problems.

Documentation
Documentation needed to find the source of the error in an incorrect output problem
would be:
v TCP/IP packet trace and data trace
v VTAM buffer trace of the Telnet LU
v Client screen output information

Analysis
The main goal of diagnosing this type of problem is to determine if the data was
sent incorrectly by the host application or corrupted by VTAM, TCP/IP, Telnet server
or Telnet client code.

Table 22 lists the types of incorrect output that might be seen and the steps needed
to identify the code in error.

Table 22. Incorrect Output Types for Telnet

Incorrect Output Analysis Steps

Blank screen 1, 6, 7

Garbled or unreadable characters on the
screen

2, 3, 4, 5, 6, 7

Incorrectly formatted screen 6, 7

Refer to Table 22 to find which of the following steps to use in determining the
cause of the error.

1. Was the last output data seen in the packet trace displayed at the terminal? If
not, problem is in the client or emulator. Contact your IBM Software Support
Center for this product. If the last output was seen at the terminal, go to step 9
on page 228 of the analysis procedure in Session Hangs (Server), and continue
your diagnosis.

2. Was the TELNET command entered with TRANSLATE specified? If so, make
sure the translate table is compatible with the capabilities of the client device. If
compatible or no TRANSLATE was used, continue with step 4.

3. Is the data stream sent to the client (packet trace) the same as that sent by
Telnet (data trace)? If not, the problem is with the TCP/IP platform code.
Otherwise, continue with Step 4 on page 228.

4. In the data trace output, is the data stream sent by the server the same as
received from VTAM? If not, the problem is with the Telnet server code.
Otherwise, continue with step 5 on page 228.

Note: If the client is an ASCII device, these might be different due to
EBCDIC-to-ASCII translation. Check the appropriate translate table for
compatibility with the client device.

5. Is the data passed by VTAM the same as received by VTAM (check VTAM
USER and VTAM BUFF entries)? If not, VTAM has corrupted the code.
Otherwise, incorrect data was sent by the application. Contact the IBM Software
Support Center for the host application.

6. Is the LOGMODE specified for the negotiated terminal type valid for the actual
client device?

Chapter 10. Diagnosing Telnet Problems 229

Note: Use display connection to determine the LOGMODE of the session.

7. Does the device type information in the BIND sent by the host application match
the device type information in the specified LOGMODE entry?

Note: This can be checked by comparing the specified LOGMODE entry (refer
to OS/390 IBM Communications Server: SNA Customization) with the
BIND in the buffer trace at logon to the selected application.

If the problem is not found after using the analysis steps, contact your IBM Software
Support Center for additional diagnostic suggestions.

Session Outages (Server)
Session outages are reported as an unexpected termination of the TCP/IP
connection or the Telnet-to-host application session. A session that has been
disconnected or terminated will result in the client being returned to the panel where
the initial TELNET command was entered.

The Telnet server will end a session if there is no activity for the amount of time
specified in the INACTIVITY parameter of the TELNETPARMS statement in the
PROFILE.TCPIP data set. The server will also send packets to each Telnet
connection at the interval specified in the TIMEMARK parameter of the
TELNETPARMS statement. If no response to this TIMEMARK packet is received,
the session will be ended.

Documentation
The following documentation is needed for initial investigation of problems reported
as session outages:
v MVS system console log
v TCP/IP console log
v TCPIP SYSDEBUG data set

Analysis
The preceding output is needed to begin diagnosis of a session outage reported
against Telnet. It will also be helpful to know what kind of processing the Telnet user
was doing at the time of the interrupted session.

The following steps are suggested for initial investigation of a Telnet session
outage:

1. If a time-out due to inactivity or termination due to TIMEMARK processing is
suspected, check the values set in the PROFILE.TCPIP data set.

2. Check the documentation listed in “Documentation” for indications of an error.

v If the MVS system console indicates a VTAM error, continue diagnosis with
your VTAM programmer.

v If the TCP/IP console shows a Telnet or TCP/IP error, check OS/390 IBM
Communications Server: IP Messages Volume 1 (EZA) and follow the
directions for system programmer response for the message.

v Information in the TCPIP SYSDEBUG data set should contain a detailed
description of the error.

If messages are found that do not lead to an accurate diagnosis and resolution
of the error, contact your IBM Software Support Center for host TCP/IP.

3. If only one Telnet user session was affected, continue with step 4 on page 231.
Otherwise, go to step 6 on page 231.

230 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

4. If the problem can be recreated by performing the same operation or
processing, the following traces should be helpful in further diagnosis of the
error:
v VTAM buffer trace output
v TCP/IP packet trace and data trace
v Component Trace output
v Please contact your IBM Software Support Center for TCP/IP for information

about options needed before running these traces.

A VTAM internal trace (VIT) might also be needed.

5. If all Telnet user sessions were interrupted, check the MVS system console and
LOGREC for abends. This type of outage is usually seen when an abend in
VTAM or the TCP/IP VTAM interface code occurs. See “Abends (Server)” on
page 226 for information about obtaining and diagnosing a dump of the failure.

6. If there are no messages or abends and all Telnet user sessions have been
disconnected, the traces listed in Step 4 will be needed during a recurrence of
the failure.

Special Considerations When Using SSL Encryption Support
Because data flowing across the connection between the client and the server is
encrypted, the data field in the packet trace is also encrypted once SSL
handshaking is completed. If problem determination requires seeing Telnet
handshake or user data, you also need to run Component Trace to see the
decrypted data field. When starting Component Trace, specify options=(TELNET)
and use IPCS to format the Component Trace. For more information on Component
Trace, see “Chapter 5. TCP/IP Services Traces and IPCS Support” on page 47.

The Telnet Component Trace records contain the client IP address in the
Connection Identifier (CID) field. Use this field to locate records related to the client
in question. Once an LUname has been assigned, the Component Trace User field
shows the LUname, providing additional data for locating your client.

The following Component Trace records might be of interest:

SKSCINIT Succeeded
SSL handshaking has completed and subsequent data on this connection
will be encrypted.

Receive Data from Client
The Data from Client field of this record contains the decrypted data coming
from the client.

Send Data to Client
The Data to Client field of this record contains the decrypted data going to
the client.

Following is a sample Send Data to Client Component Trace record:
MVS181 TELNET 70010004 12:49:06.354966 Send Data to Client
HASID..002A PASID...002A SASID..002A MODID..EZBTTSND
TCB....00000000 REG14...89D37F40 USER...TCPM1011 DUCB...0000000D
CID....092552C4 SEQ.....000024BE

...

...
ADDR...00000000 08167AB0 LEN....00000004 Number of Bytes Sent

+0000 0000002C │ │
ADDR...00000000 7F687950 LEN....0000002C Data to Client

+0000 F5C1115D 7F1D4011 40401DC8 C9D2D1F5 │ 5A.)". . .HIKJ5 │

Chapter 10. Diagnosing Telnet Problems 231

+0010 F6F7F0F0 C140C5D5 E3C5D940 E4E2C5D9 │ 6700A ENTER USER │
+0020 C9C44060 1D4011C1 5013FFEF │ ID -. .A&... │

Telnet Component Trace Data
To help associate a Component Trace entry with a particular client, the following
two Component Trace fields contain data unique to Telnet:

CID IP address of the client.

USER The LUname associated with the client, once it has been assigned. Prior to
LUname assignment, this field may be null or contain the TCP procedure
name. The LUname is not set until after the completion of the Telnet
handshake.

Use these fields in Component Trace formatting to limit the records to be displayed.
For example, if you want Telnet records for a client connecting from 9.37.82.196
with the LUName TCPM1011, code the following IPCS command:
CTRACE COMP(SYSTCPIP) SUB((TCPIP)) FULL JOBLIST (TCPM1011)

OPTIONS((TELNET,CID(X'092552C4')))

General Telnet Client Information
The Telnet client code runs under TSO in the TSO user’s address space. The
Telnet client uses the VTAM interface, like other TSO applications, to send data out
to the user’s terminal.

The Telnet client can run in line mode, when accessing an ASCII host, or run in
full-screen mode, if the remote host provides 3270 full-screen support.

Telnet Client Definitions
The Telnet command must be authorized to be issued by TSO users. Refer to the
OS/390 MVS Initialization and Tuning Guide for information about making Telnet an
authorized command. There are no other special definitions or setup requirements
to run the Telnet client.

Diagnosing Telnet Client Problems
Problems that might involve the Telnet client are usually reported as one of the
following types:
v Abends
v Session hangs
v Incorrect output

Use the information in the following sections for problem determination and
diagnosis of errors reported in the Telnet client.

Abends (Client)
An abend in the TELNET client should result in messages and error-related
information sent to the MVS system console. These abends should affect only the
TSO user that was running Telnet. A dump of the error is needed unless the
symptoms match a known problem.

232 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation
Code a SYSMDUMP DD or SYSABEND DD statement in the TSO PROC to ensure
that a useful dump is obtained in the event of an abend. Refer to the “Chapter 3.
Diagnosing Abends, Loops, and Hangs” on page 21, for more information.

Analysis
Refer to OS/390 MVS Diagnosis: Procedures or see “Chapter 3. Diagnosing
Abends, Loops, and Hangs” on page 21 for more information about debugging
dumps produced during TCP/IP processing.

Session Hangs (Client)
This section discusses diagnosis of a hang after a session has been successfully
connected. A hang is indicated by the keyboard remaining locked after sending or
receiving data from the remote host.

There are many components involved in the transfer of data from a locally attached
device through a Telnet session. Any one of these might be the cause or a
contributing factor to the hang. Each must be investigated to define the area
responsible for the failure.

Documentation
To determine the cause of a Telnet client session hang, the following is needed:
v Information about what was seen at the client screen
v VTAM buffer trace of the local device LU
v VTAM internal trace (if the error appears to be in VTAM)
v VTAM TSO trace of the user ID issuing Telnet
v GTF trace of SVC93 and SVC94 (TGET/TPUT)
v Telnet client trace
v Dump of the TSO user’s address space
v TCP/IP packet trace and data trace on remote host (if possible)

The preceding list of documentation is a complete list that includes documentation
needed to resolve most types of hangs. All of the indicated data might not be
needed for each occurrence of a hang. The following analysis section provides
information about what types of data might be needed through each diagnostic
step.

Analysis
To assist with diagnosis of a Telnet client hang, it is helpful to be familiar with the
components involved and understand which ones interface directly with each other.
In the case of a Telnet from an MVS client to a remote host, the following occurs:
v Data is entered by the user and then passed by VTAM to TSO.
v Data is passed from TSO to Telnet client code.
v Data is transferred across the TCP/IP connection to the remote host.
v The remote server sends data to the target application.

Note: It is suggested that a VTAM buffer trace and a Telnet client trace be run
while recreating the problem for initial debugging purposes. A sample of the
client trace output can be found in Figure 27 on page 236. Refer to OS/390
IBM Communications Server: SNA Diagnosis V2 FFST Dumps and the VIT
or to SNA Network Product Formats for more information about VTAM buffer
trace output.

Following are suggested steps for diagnosing a Telnet client hang, along with the
documentation needed in each situation.

Chapter 10. Diagnosing Telnet Problems 233

1. Does the hang affect other Telnet clients? If so, go to “Diagnosing Telnet Server
Problems” on page 225. Otherwise, continue with step 2.

2. Was the last activity at the terminal input or output? If input, go to step 5. If
output, continue with step 3.

3. Check the data in the VTAM buffer trace to see if unlock keyboard is set on in
the data stream. If unlock is set on in the data stream, the problem is in the
emulator, control unit, or terminal device. If not, check the Telnet client trace to
ensure the output data stream matches what is seen in the buffer trace. If the
data streams match, the remote host application has not unlocked the keyboard.
Contact your IBM Software Support Center for the host application for more
help with the problem. If the data streams do not match, continue with step 4.

4. The problem appears to be in the VTAM TSO area. Recreate the error while
running the Telnet client trace, a GTF trace of SVC93 and SVC94, a VTAM TSO
trace, and a VTAM buffer trace. Contact your IBM Software Support Center for
assistance in interpreting the traces.

5. Check the VTAM buffer trace to ensure input data was received by VTAM and
passed to TSO. If the last data entered at the terminal is not in the VTAM buffer
trace, the problem is in the PC emulation code or in the control unit. If input
data is correct, continue with step 6.

6. Is the entered data seen in client trace output? If not, the problem is in VTAM
TSO. Follow the instructions in step 4. If data is in the client trace, the error
needs to be diagnosed from the server host. Refer to “Session Hangs (Server)”
on page 227 and follow the path for “last activity at the terminal was input”.

Documentation listed earlier, but not referenced in the previous debugging steps,
can be useful in the following situations:

v VTAM internal trace

Note: Data is seen in “BUFF VTAM” VTAM buffer trace entry (entering VTAM
from the terminal), but not in the “BUFF USER” VTAM buffer trace entry
(passed from VTAM to TSO).

v Dump of TSO user’s address space

Note: Data is seen in the “BUFF USER” VTAM buffer trace entry, but not in the
VTAM TSO trace or Telnet client trace.

Contact the IBM Software Support Center for assistance with further diagnosis
when data is obtained in these situations.

Note: Information about starting and examining traces is discussed in “Starting
Telnet Client Traces” on page 235.

Incorrect Output (Client)
Problems with incorrect output are reported when the data seen at the terminal is
not in its expected form. This might be garbled data that is unreadable, a blank
screen when output is expected, or screen formatting problems.

Documentation
Documentation needed to find the source of the error in an incorrect output problem
is:
v VTAM buffer trace of the local device LU
v VTAM TSO trace of the user ID issuing Telnet
v GTF trace of SVC93 and SVC94

234 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v Telnet client trace
v Client screen output information

Analysis
The main goal of diagnosing this type of problem is to determine if the data was
sent incorrectly by the host application or was corrupted by the Telnet server, Telnet
client, TSO, or VTAM code. The following analysis steps should allow quick
determination of whether the problem is a Telnet client problem or must be
addressed from the server host.

1. If new data sent to the screen cannot be read (garbled or formatted incorrectly),
go to step 4. Otherwise, continue with step 2.

2. Was the last output data seen in the VTAM buffer trace displayed at the
terminal? If not, the problem is in the emulator or device. Contact the
appropriate IBM Software Support Center. Otherwise, continue with step 3.

3. Does the last output data in the Telnet client trace match the data in the VTAM
buffer trace? If not, contact your IBM Software Support Center with the client
trace, a VTAM TSO trace, and a VTAM buffer trace of the error. Otherwise, this
problem must be investigated from the Telnet server side. Continue with the
investigation as a Telnet server session hang.

4. Was the TELNET command entered with TRANSLATE specified? If so, make
sure the translate table is compatible with the capabilities of the output device. If
the table is compatible or no TRANSLATE was used, continue with step 5.

5. Check the Telnet client trace and VTAM buffer trace. If the data is different,
contact your IBM Software Support Center with the client trace, a VTAM TSO
trace, and an VTAM buffer trace. Otherwise, continue investigating as a Telnet
server incorrect output problem.

6. If the data is formatted incorrectly for the screen size, check the defined session
parameters for the negotiated device type for the Telnet server.

If the problem is not found after using the analysis steps, contact your IBM Software
Support Center for more diagnostic suggestions.

Telnet Client Traces
The Telnet client trace shows data received from the remote server to be sent to
the local device, and data from the device to be forwarded to the remote host. This
includes attention interrupts and some negotiation data seen at the beginning of the
session. Data from the initial Telnet negotiation is not seen, only an indication that it
is negotiation data and the number of bytes received.

Starting Telnet Client Traces
Before issuing the Telnet command, the following command should be issued from
the TSO “ready” prompt or command line to allocate the trace data set:
ALLOC F(DEBUGFIL) DA(data.set.name) NEW

Trace data is written to the data set indicated in the command.

The trace is invoked by issuing the Telnet command with the DEBUG option:
TELNET hostname (DEBUG

Chapter 10. Diagnosing Telnet Problems 235

Trace Example (Client)
Figure 27 is sample output from a Telnet client trace showing part of a Telnet login
to a remote host.

�1� EZA8310I DataDelivered; # bytes: 3
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives

�2� EZA8306I Option neg. stuff arrives
EZA8310I DataDelivered; # bytes: 6
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8310I DataDelivered; # bytes: 12
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8338I ord: 255 asis:
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8310I DataDelivered; # bytes: 222

�3� EZA8359I Data received from TCP:
�4� EZA8361I FF FD 00 FF FB 00 05 C2 11 40 40 1D E4 C5 95 A3 85 99 40 E8

EZA8361I 96 A4 99 40 E4 A2 85 99 89 84 7A 1D C4 00 00 00 00 00 00 00
EZA8361I 00 1D E4 11 C1 50 1D E4 D7 81 A2 A2 A6 96 99 84 7A 1D CC 00
EZA8361I 00 00 00 00 00 00 00 1D E4 11 C1 F7 1D E4 D5 85 A6 40 97 81
EZA8361I A2 A2 A6 96 99 84 7A 1D CC 00 00 00 00 00 00 00 00 1D E4 11
EZA8361I C2 60 1D E4 C1 97 97 93 89 83 81 A3 89 96 95 7A 1D C4 40 40
EZA8361I 40 40 40 40 40 40 1D E4 11 C3 F0 1D E8 C1 97 97 93 89 83 81
EZA8361I A3 89 96 95 40 99 85 98 A4 89 99 85 84 4B 40 D5 96 40 C9 95
EZA8361I A2 A3 81 93 93 81 A3 89 96 95 40 C4 85 86 81 A4 93 A3 40 40
EZA8361I 40
EZA8361I 40 40 40 40 40 40 40 40 40 40 40 40 00 00 00 11 40 40 05 13
EZA8361I FF EF

�5� EZA8364I z" w" B" "UEnter Your Userid:D " "" """U"A&"UPassword:">";
EZA8364I "U"A7"UNew password:">"U"B-"UApplication:"D
EZA8364I "U"C0"YApplication required. No Installation Default
EZA8364I " "┬Q

Figure 27. Telnet Client Trace (Part 1 of 4)

236 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZA8339I In Transparent mode, found IAC at IacOffset 0, CurrentChar is 0
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8339I In Transparent mode, found IAC at IacOffset 0, CurrentChar is 3
EZA8345I in TelnetRead
EZA8305I in IacNoteArrives
EZA8306I Option neg. stuff arrives
EZA8339I In Transparent mode, found IAC at IacOffset 214, CurrentChar is 6
EZA8345I in TelnetRead

�6� EZA8313I got USERdeliversLINE
EZA8371I in SendData

�7� EZA8380I User data is...
EZA8381I 7D '
EZA8381I C2 B
EZA8381I F1 1
EZA8381I 11 "
EZA8381I 40
EZA8381I D4 M
EZA8381I E4 U
EZA8381I E2 S
EZA8381I C5 E
EZA8381I D9 R
EZA8381I F2 2
EZA8381I 11 "
EZA8381I C2 B
EZA8381I 6E >
EZA8381I E3 T
EZA8381I E2 S
EZA8381I D6 O
EZA8381I 40
EZA8381I 40
EZA8381I 40
EZA8381I 40
EZA8381I 40

�8� EZA8382I ; Len is 22
EZA8310I DataDelivered; # bytes: 48
EZA8359I Data received from TCP:
EZA8361I 05 C1 11 5D 7F 1D 40 11 40 40 1D C8 C9 D2 D1 F5 F6 F7 F0 F0
EZA8361I C1 40 C5 D5 E3 C5 D9 40 E4 E2 C5 D9 C9 C4 40 60 1D 40 11 C1
EZA8361I 50 13 FF EF 01 C2 FF EF
EZA8364I A")"" " "HIKJ56700A ENTER USERID -" "A&"┬Q"B"Q;
EZA8339I In Transparent mode, found IAC at IacOffset 42, CurrentChar is 0
EZA8345I in TelnetRead
EZA8339I In Transparent mode, found IAC at IacOffset 2, CurrentChar is 44
EZA8345I in TelnetRead
EZA8313I got USERdeliversLINE

�9� EZA8371I in SendData
EZA8380I User data is...
EZA8381I 7D '
EZA8381I C1 A
EZA8381I D5 N
EZA8381I 11 "
EZA8381I 40
EZA8381I 5A !
EZA8381I A4 u
EZA8381I A2 s
EZA8381I 85 e
EZA8381I 99 r
EZA8381I F3 3
EZA8382I ; Len is 11

Figure 27. Telnet Client Trace (Part 2 of 4)

Chapter 10. Diagnosing Telnet Problems 237

EZA8310I DataDelivered; # bytes: 1106
EZA8359I Data received from TCP:
EZA8361I 05 C3 11 40 40 3C 40 40 40 11 40 40 1D E8 60 60 60 60 60 60
EZA8361I 60
EZA8361I 60 60 60 60 60 40 E3 E2 D6 61 C5 40 D3 D6 C7 D6 D5 40 60 60
EZA8361I 60
EZA8361I 60 60 60 60 60 60 60 60 60 60 60 60 60 60 11 C1 50 1D E8 40
EZA8361I 40
EZA8361I 40
EZA8361I 40
EZA8361I 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 11
EZA8361I C2 60 1D E8 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
EZA8361I 40
EZA8361I 40
EZA8361I 40
EZA8361I 40 40 40 40 11 5B 60 1D E8 D7 C6 F1 61 D7 C6 F1 F3 40 7E 7E
EZA8361I 6E 40 C8 85 93 97 40 40 40 40 D7 C6 F3 61 D7 C6 F1 F5 40 7E
EZA8361I 7E 6E 40 D3 96 87 96 86 86 40 40 40 40 D7 C1 F1 40 7E 7E 6E
EZA8361I 40 C1 A3 A3 85 95 A3 89 96 95 40 40 40 40 D7 C1 F2 40 7E 7E
EZA8361I 6E 40 D9 85 A2 88 96 A6 11 5C F0 1D E8 E8 96 A4 40 94 81 A8
EZA8361I 40 99 85 98 A4 85 A2 A3 40 A2 97 85 83 89 86 89 83 40 88 85
EZA8361I 93 97 40 89 95 86 96 99 94 81 A3 89 96 95 40 82 A8 40 85 95
EZA8361I A3 85 99 89 95 87 40 81 40 7D 6F 7D 40 89 95 40 81 95 A8 40
EZA8361I 85 95 A3 99 A8 40 86 89 85 93 84 11 C3 F3 1D E8 C5 95 A3 85
EZA8361I 99 40 D3 D6 C7 D6 D5 40 97 81 99 81 94 85 A3 85 99 A2 40 82
EZA8361I 85 93 96 A6 7A 11 C4 E3 1D E8 D9 C1 C3 C6 40 D3 D6 C7 D6 D5
EZA8361I 40 97 81 99 81 94 85 A3 85 99 A2 7A 11 C6 D2 1D 60 40 E4 A2
EZA8361I 85 99 89 84 40 40 40 40 7E 7E 7E 6E 11 C6 E2 1D E8 E4 E2 C5
EZA8361I D9 F3 40 40 1D F0 11 C8 F2 1D 60 40 D7 81 A2 A2 A6 96 99 84
EZA8361I 40 40 7E 7E 7E 6E 11 C9 C2 1D 4C 00 00 00 00 00 00 00 00 1D
EZA8361I F0 11 4D F2 1D 60 40 C1 83 83 A3 40 D5 94 82 99 40 7E 7E 7E
EZA8361I 6E 11 4E C2 1D C8 00 00 00 00 00 00 00 00 00 00 00 00 00 00
EZA8361I 00
EZA8361I 00 00 00 00 00 00 1D F0 11 4B D2 1D 60 40 D7 99 96 83 85 84
EZA8361I A4 99 85 40 7E 7E 7E 6E 11 4B E2 1D C8 D4 E5 E2 F4 F2 F2 40
EZA8361I 40 1D F0 11 50 D2 1D 60 40 E2 89 A9 85 40 40 40 40 40 40 7E
EZA8361I 7E 7E 6E 11 50 E2 1D C8 F4 F0 F9 F6 00 00 00 1D F0 11 D2 F2
EZA8361I 1D 60 40 D7 85 99 86 96 99 94 40 40 40 7E 7E 7E 6E 11 D3 C2
EZA8361I 1D C8 00 00 00 1D F0 11 4C C2 1D 60 40 C7 99 96 A4 97 40 C9
EZA8361I 84 85 95 A3 40 40 7E 7E 7E 6E 11 4C D5 1D C8 00 00 00 00 00
EZA8361I 00 00 00 1D F0 11 C9 E2 1D 60 40 D5 85 A6 40 D7 81 A2 A2 A6
EZA8361I 96 99 84 40 7E 7E 7E 6E 11 C9 F5 1D 4C 00 00 00 00 00 00 00
EZA8361I 00 1D F0 11 D7 F3 1D E8 C5 95 A3 85 99 40 81 95 40 7D E2 7D
EZA8361I 40 82 85 86 96 99 85 40 85 81 83 88 40 96 97 A3 89 96 95 40
EZA8361I 84 85 A2 89 99 85 84 40 82 85 93 96 A6 7A 1D 60 11 D9 C7 1D
EZA8361I E8 00 11 D9 C9 1D C8 40 1D F0 60 D5 96 94 81 89 93 1D 60 11
EZA8361I D9 D7 1D E8 00 11 D9 D9 1D C8 40 1D F0 60 D5 96 95 96 A3 89
EZA8361I 83 85 1D 60 11 D9 E8 1D E8 00 11 D9 6A 1D C8 00 1D F0 60 D9
EZA8361I 85 83 96 95 95 85 83 A3 1D 60 11 D9 7A 1D E8 00 11 D9 7C 1D
EZA8361I C8 40 1D F0 60 D6 C9 C4 83 81 99 84 40 1D 60 11 D5 D2 1D 60
EZA8361I 40 C3 96 94 94 81 95 84 40 40 40 7E 7E 7E 6E 11 D5 E2 1D C8
EZA8361I 40
EZA8361I 40
EZA8361I 40
EZA8361I 40
EZA8361I 1D F0 11 C7 C2 1D 7C 40 E2 85 83 93 81 82 85 93 40 40 40 40
EZA8361I 40 7E 7E 7E 6E 11 C7 D5 1D 7C 40 40 40 40 40 40 40 40 1D F0
EZA8361I 11 C9 C3 13 FF EF

Figure 27. Telnet Client Trace (Part 3 of 4)

238 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�1� This entry shows the data received from the Telnet server and indicates the
number of bytes. The example here is during initial negotiation and does
not include the actual data received.

�2� This indicates the type of data received.

�3� This entry indicates the data received from TCP (from the Telnet server).

�4� The actual hexadecimal data received. This trace example is of a
transparent mode session, so the data is in EBCDIC. In a line mode
session, the data would be in ASCII, and there would be one character per
line (like the input data later in the trace).

�5� This is the translation of the previous hexadecimal data. All hexadecimal
characters that translate into readable data are displayed.

�6� This entry indicates data received from the terminal or PC.

�7� Following this line is the actual input data. There is a single hexadecimal
byte per line that is translated into its readable form.

�8� This entry follows the input data and indicates the number of bytes received
from the terminal.

�9� This entry indicates the data from the host application (via the Telnet server)
that is being sent to the terminal.

EZA8364I C - Y -------------------------------- TSO/E LOGON --
EZA8364I ------------------ A& Y
EZA8364I
EZA8364I B- Y
EZA8364I │$- YPF1/PF13==> Help PF3/PF15=
EZA8364I Logoff PA1==> Attention PA2==> Reshow *0 YYou may
EZA8364I request specific help information by entering a '?' in any
EZA8364I entry field C3 YEnter LOGON parameters below: DT YRACF LOGON
EZA8364I parameters: FK - Userid ===> FS YUSER3 0 H2 - Password
EZA8364I ===> IB < 0 (2 - Acct Nmbr ===> +B H
EZA8364I 0".K - Procedure===> .S HMVS422 EZA8364I 0

&K - Size ===> &S H4096 0 K2 - Perform ===> LB
EZA8364I H 0 <B - Group Ident ===> <N H 0 IS- New Passw
EZA8364I ord ===> I5 < 0 P3 YEnter an 'S' before each option
EZA8364I desired below: - RG Y RI H 0-Nomail RP Y RR H 0-Nonoti
EZA8364I ce - RY Y R: H 0-Reconnect - R: Y R@ H 0-OIDcard - NK -
EZA8364I Command ===> NS H
EZA8364I 0 GB @ Seclabel
EZA8364I ===>GN @ 0 IC 'Q
EZA8339I In Transparent mode, found IAC at IacOffset 1104, CurrentChar is 0
EZA8345I in TelnetRead
EZA8313I got USERdeliversLINE
EZA8371I in SendData

Figure 27. Telnet Client Trace (Part 4 of 4)

Chapter 10. Diagnosing Telnet Problems 239

Telnet Commands and Options
Table 23 describes the Telnet commands from RFC 854, when the codes and code
sequences are preceded by an IAC. For more information about Telnet commands,
refer to RFC 854.

Table 23. Telnet Commands from RFC 854

Command Code Description

SE X'F0' End of subnegotiation parameters.

NOP X'F1' No operation.

Data Mark X'F2' The data stream portion of a Synch. This should
always be accompanied by a TCP Urgent
notification.

Break X'F3' NVT character BRK.

Interrupt Process X'F4' The function IP.

Abort output X'F5' The function AO.

Are You There X'F6' The function AYT.

Erase character X'F7' The function EC.

Erase Line X'F8' The function EL.

Go ahead X'F9' The GA signal.

SB X'FA' Indicates that what follows is subnegotiation of the
indicated option.

WILL (option code) X'FB' Indicates the desire to begin performing, or
confirmation that you are now performing, the
indicated option.

WON’T (option code) X'FC' Indicates the refusal to perform, or continue
performing, the indicated option.

DO (option code) X'FD' Indicates the request that the other party perform,
or confirmation that you are expecting the other
party to perform, the indicated option.

DON’T (option code) X'FE' Indicates the demand that the other party stop
performing, or confirmation that you are no longer
expecting the other party to perform, the indicated
option.

IAC X'FF' Data byte 255.

Table 24 lists the options available for Telnet commands from RFC 1060. For more
information about Telnet protocols, refer to RFC 1060 and RFC 1011.

Table 24. Telnet Command Options from RFC 1060

Option Option (Hex) Name

0 0 Binary Transmission

1 1 Echo

2 2 Reconnection

3 3 Suppress Go Ahead

4 4 Approx Message Size Negotiation

5 5 Status

240 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 24. Telnet Command Options from RFC 1060 (continued)

Option Option (Hex) Name

6 6 Timing Mark

7 7 Remote Controlled Trans and Echo

8 8 Output Line Width

9 9 Output Page Size

10 A Output Carriage-Return Disposition

11 B Output Horizontal Tab Stops

12 C Output Horizontal Tab Disposition

13 D Output Formfeed Disposition

14 E Output Vertical Tabstops

15 F Output Vertical Tab Disposition

16 10 Output Linefeed Disposition

17 11 Extended ASCII

18 12 Logout

19 13 Byte Macro

20 14 Data Entry Terminal

21 15 SUPDUP

22 16 SUPDUP Output

23 17 Send Location

24 18 Terminal Type

25 19 End of Record

26 1A TACACS User Identification

27 1B Output Marking

28 1C Terminal Location Number

29 1D Telnet 3270 Regime

30 1E X.3 PAD

31 1F Negotiate About Window Size

32 20 Terminal Speed

33 21 Remote Flow Control

34 22 Linemode

35 23 X Display Location

255 FF Extended-Options-List

Chapter 10. Diagnosing Telnet Problems 241

242 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP)
Problems

The Simple Mail Transfer Protocol (SMTP) protocol is used to transfer electronic
mail reliably and efficiently. Recipients of the mail can be users on a local host,
users on Network Job Entry (NJE), or users on remote TCP/IP hosts. The
SMTPNOTE command is used to the send mail to a local or remote host.

Note: For information about diagnosing problems with the other CS for OS/390
mail application, OS/390 UNIX sendmail, see “Chapter 12. Diagnosing
OS/390 UNIX sendmail and Popper Problems” on page 253.

Sender SMTP
The sender SMTP performs the following functions:
v Receives notes from the SMTPNOTE CLIST via a TSO TRANSMIT command
v Resolves the host name of recipients via the RESOLVER module
v Opens a TCP/IP connection with the SMTP server
v Returns mail to the sender, if mail is undeliverable

Receiver SMTP
The receiver SMTP:

v Accepts mail from remote TCP/IP hosts

v Delivers mail to the local user via TSO TRANSMIT to the spool for the local user

v Forwards mail to the next “hop”, if this is not the final destination

v Rejects mail for recipients who are not valid

SMTP Environment
Figure 28 shows the SMTP environment.

SMTP Definitions
In order to run correctly, SMTP must be defined correctly for both TCP/IP and
SMTP. The SMTP.CONFIG and TCPIP.DATA data sets contain the main sender and
receiver parameters. The SMTPNOTE CLIST must be customized for your
particular installation. The IEFSSNxx member of PARMLIB must be modified to
include the following lines:
TNF,MVPTSSI
VMCF,MVPXSSI, nodename (where nodename is the NJE node name)

Figure 28. SMTP Environment

© Copyright IBM Corp. 1994, 2000 243

Notes:

1. The NJE node name, nodename, must be the same as the hostname and the
smtpnode in the SMTPNOTE CLIST.

2. SMTP can handle only one NJE node name.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference for
more information about configuring SMTP and about the Program Directory.

Diagnosing SMTP Problems
Problems with SMTP are generally reported under one of the following categories:
v Abend
v Spooling
v SMTP does not deliver mail
v SMTP loop
v Mail item has incorrect output

Abends
An abend during SMTP processing should result in messages and error related
information being sent to the system console. A dump of the error will be needed
unless the symptoms already match a known problem.

Documentation
The following documentation is needed for abends:

v Dump

Note: Code a SYSMDUMP DD or SYSABEND DD statement in the SMTP
cataloged procedure to ensure that a useful dump is obtained in the event
of an abend.

v Output from the started SMTP procedure

v SYSLOG and LOGREC output for the time of the error

Analysis
Refer to OS/390 MVS Diagnosis: Procedures or see “Chapter 3. Diagnosing
Abends, Loops, and Hangs” on page 21, for information about debugging dumps
produced during SMTP processing.

Spooling Problems
Spooling problems can occur when the VERB command is being used and the
origination information is either missing or not valid. The VERB command requires
the originator to have a valid JES user ID and node ID on the SMTP sending
system. The originator information is taken from the TSO XMIT (Transmit) command
headers.

For more information about the VERB command refer to the OS/390 IBM
Communications Server: IP User’s Guide .

SMTP Does Not Deliver Mail
This section discusses diagnosis of mail items that are not delivered to the
recipient. Problems with mail not being forwarded can be divided into the following
categories:
v Mail not forwarded to a local user
v Mail not forwarded to a user on another NJE host
v Mail not forwarded to remote TCP/IP host

244 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation
The following documentation should be available for initial problem diagnosis:
v TSO console log with the SMTPNOTE messages
v Job log output from the started SMTP procedure
v SMTP.CONFIG data set
v TCPIP.DATA data set

Other documentation that might be needed is discussed in the following section.

Analysis
Use the following procedure to analyze the problem:

1. If the problem is that mail was not forwarded to a local user:

a. Was SMTPNOTE customized for your installation?

b. Is the local user one that is coded as a restricted user in the SMTP.CONFIG
data set?

c. Are the JES node parameters coded correctly? This can be determined by
issuing a TSO TRANSMIT of a data set to the user and node. If the
transmission works, the JES node parameters are coded correctly.

2. If the problem is that a mail note was not forwarded to an NJE host:

a. Follow the preceding steps for mail that was not forwarded to a local user.

b. Is SMTP configured as an NJE gateway?

c. Was SMTPNJE successfully run to create the NJE host table dataset.

d. Check if the NJE mode is in the NJE host table data set.

Note: Refer to the OS/390 IBM Communications Server: IP Configuration
Reference for information about SMTP configuration.

3. If the problem is that mail was not forwarded to a remote TCP/IP host:

a. Use the SMSG SMTP QUEUE command to see the status of the note.

Browse the ADDRBLOK data set for obvious errors. The ADDRBLOK data
set is described in “ADDRBLOK Data Set” on page 247.

Note: You should stop SMTP in order to obtain the ADDRBLOK data set as
it was sent, because the data set is updated during processing and
deleted when the number of recipients equals 0.

b. Has the host name been resolved to an IP address?

Run RESOLVER trace to see if the host name is resolved correctly. The
RESOLVER trace is explained in “RESOLVER Trace” on page 250.

c. Is the remote TCP/IP/SMTP server running?

Use the PING command to see if the remote TCP/IP is running.

Note: Options coded in the SMTP.CONFIG data set directly affect how and
when names are resolved by name servers and how often mail
delivery is attempted, if there is a problem in the network or the
remote NAME server or if the SMTP server is not running.

If the problem still occurs after following this procedure and making any needed
changes and corrections, obtain the following documentation and contact the IBM
Software Support Center:

v SMTP.CONFIG data set

v TCPIP.DATA data set

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems 245

v Output from SYSERR and SYSDEBUG of the started SMTP procedure with
DEBUG turned on

v ADDRBLOK data set

SMTP Loop
This section discusses diagnosis of the SMTP address space looping during
processing.

Documentation
If SMTP is looping and printing out AMPX... messages to SYSERR, please do the
following:

v Examine the SYSERR output for AMPX... error messages and traceback
information of called routines.

v Call the IBM Software Support Center with this information.

Note: Coding the NOSPIE runtime parameter in the SMTP cataloged procedure
might help alleviate a Pascal error recovery loop. For example, code:
//SMTP PROC MODULE=SMTP,DEBUG=,PARMS='NOSPIE',SYSERR=SYSERR

See “Chapter 3. Diagnosing Abends, Loops, and Hangs” on page 21 for more
diagnostic information about diagnosing loops.

Mail Item Has Incorrect Output
Problems with incorrect output are reported when the recipient does not see the
mail item in its expected form.

Documentation
Use the following documentation to confirm the source of the error:

v SMTP.CONFIG data set.

v TCPIP.DATA data set.

v Output from SYSERR and SYSDEBUG from the started SMTP procedure with
DEBUG turned on.

v A packet trace from TCP/IP and network trace facility output.

This documentation might be needed in cases where the actual data in the
TCP/IP packets needs to be examined.

v ADDRBLOK data set.

Note: You should stop SMTP in order to obtain the ADDRBLOK data set as it
was sent, because the data set is updated during processing and deleted
when the number of recipients equals zero.

v SMTPNOTE data set.

Analysis
The main goal in diagnosing an incorrect output problem is to determine where the
corruption occurs. Is the data corrupted in SMTP, TCP/IP, or by something or
someone on the network?

Use the following procedure to analyze the problem:

1. If the problem is that the received mail item has incorrect output:

a. Is the correct translation table being used or could it have been customized
to cause the error?

Correct the translation error.

246 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

b. Do TCP/IP and SMTP receive the correct output from the remote host?

Obtain TCP/IP packet trace output or network trace facility output or both to
see the actual data in the packets from the remote host.

c. Analyze the output from SMTP DEBUG for obvious errors.

Note: The body of the note (mail item) is not shown in this output.

2. If the problem is that the sent mail item has incorrect output:

a. Is the correct translation table being used, or could it have been customized
to cause the error?

Correct the translation error.

b. Was the correct data sent from SMTP or TCP/IP?

Obtain a TCP/IP packet trace to see the actual data in the packets as they
leave TCP/IP.

c. Analyze the output from SMTP DEBUG for obvious errors.

Note: The body of the note (mail item) is not shown in this output.

If the problem cannot be corrected by this procedure, and you believe that the
problem is caused by either SMTP or TCP/IP, call the IBM Software Support Center
for further diagnosis.

Forcing Re-Resolution of Queued Mail
Normally, the SMTP server resolves the MX or A records of a piece of mail and
stores the mail in the data sets pointed to by the MAILFILEDSPREFIX keyword in
the SMTP configuration data set. If the mail cannot be delivered for some period of
time, the IP addresses in the mail can become old or obsolete. The data set names
for each piece of mail are:
mailfiledsprefix.number.ADDRBLOK
mailfiledsprefix.number.NOTE

To force the SMTP server to reresolve the addresses, modify the ADDRBLOK data
set for the piece of mail. For each recipient record (records 3 through the end of the
data set), if the first character of the record is an S, then change the S to an E, for
expired. This causes SMTP to reresolve that record in the ADDRBLOK data set the
next time the SMTP server is started.

To modify the ADDRBLOK data set, the data set must be zapped, or a local utility
program must be used. The data set cannot be modified using the ISPF editor or
IEBUPDATE.

ADDRBLOK Data Set
An ADDRBLOK data set is the master control file for SMTP and is used for tracking
the status of a mail item during mail delivery. One ADDRBLOK data set is allocated
for each piece of mail and is built when the mail is received. The data set is
allocated with a high-level qualifier of MAILFILEDSPREFIX from the SMTP.CONFIG
data set. The data set is updated during mail processing and is deleted when the
number of recipients equals zero.

Note: You might need to stop SMTP in order to obtain the ADDRBLOK data set as
it was sent, because the data set is updated during processing and deleted
when the number of recipients equals zero.

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems 247

Table 25 shows the format of Record 1 (the master control record) of an SMTP
ADDRBLOK data set.

Table 25. Format of Record 1 of an SMTP ADDRBLOK Data Set

Characters Description
Length (in
Characters)

1–7 Total number of recipients 7

8–14 Number of unresolved recipients 7

15–21 Number of recipients left to send this mail item to 7

22 Unused 1

23–30 File name of note file 8

31 Unused 1

32–39 Date 8

40 Unused 1

41–48 Time 8

49 Unused 1

50–53 Unused 4

54–55 Unused 2

56 Key

Value Meaning
B BSMTP RPLY file
S Spool file
M Spool file from Mailer
T File from TCP
E Error file

1

Note: Characters 57–80 are optional data used only when the key (Character 56) is “S” or
“M”.

57–64 Tag user ID 8

65–72 Tag node ID 8

73–76 Spool ID on the current system 4

77–80 Spool ID of the file source 4

Table 26 shows the format of Record 2 (for an unresolved From record) of an
SMTP ADDRBLOK data set.

Table 26. Format of Record 2 (For an Unresolved From Record) of an SMTP ADDRBLOK
Data Set

Characters Description Length (in
Characters)

1 Key

Value Meaning
U Unresolved

1

2 Sender path length (user host.domain) 1

3–4 Length of sender ID 2

5–(L1+4) Sender ID (who sent the mail) L1

248 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 26. Format of Record 2 (For an Unresolved From Record) of an SMTP ADDRBLOK
Data Set (continued)

Characters Description Length (in
Characters)

(L1+5) –(L1+6) Length of sender host.domain 2

(L1+7) –(L1+L2+6) Sending host.domain L2

(L1+L2+7) Length of sender ID 1

(L1+L2+8) –(L1+L2+L3+7) Sender ID (who sent the mail) L3

Table 27 shows the format of Record 2 (for a resolved From record) of an SMTP
ADDRBLOK data set.

Table 27. Format of Record 2 (For a Resolved From Record) of an SMTP ADDRBLOK Data
Set

Characters Description Length (in
Characters)

1 Key

Value Meaning
M Resolved

1

2 Sender path length (user host.domain) 1

3–4 Length of sender ID 2

5–(L1+4) Sender ID (who sent the mail) L1

(L1+5) –(L1+6) Length of sender host.domain 2

(L1+7) –(L1+L2+6) Sending host.domain (L1+L2+7)

(L1+L2+8) Length of sender ID 1

(L1+L2+9) –(L1+L2+L3+8) Sender ID (who sent the mail) L3

(L1+L2+L3+9) Length of encoded return path 1

(L1+L2+L3+10)
–(L1+L2+L3+L4+9)

Encoded return path L4

Table 28 shows the format of Records 3–n of an SMTP ADDRBLOK data set.

Table 28. Format of Record 3 (For an Unresolved From Record) of an SMTP ADDRBLOK
Data Set

Characters Description
Length (in
Characters)

1 Key

Value Meaning
U Unresolved
M Resolved

1

2–5 Time-to-Live (TTL) 4

6 Length of return path 1

7–8 Length of recipient user ID 2

9–(L1+8) Recipient user ID L1

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems 249

Table 28. Format of Record 3 (For an Unresolved From Record) of an SMTP ADDRBLOK
Data Set (continued)

Characters Description
Length (in
Characters)

(L1+9) –(L1+11) Length of recipient host.domain 2

(L1+12) –(L1+L2+11) Recipient’s host.domain L2

(L1+L2+12) Length of recipient path 1

(L1+L2+13) –(L1+L2+L3+12) Recipient path L3

(L1+L2+L3+13) Number of IP addresses 1

(L1+L2+L3+14)
–(L1+L2+L3+17)

IP address 1 4

Note: There can be up to 16 IP addresses listed.

RESOLVER Trace
The RESOLVER trace shows requests and responses sent to and received from
name servers. It also shows if local hosts tables are used for name resolution. This
trace helps you diagnose problems with host name resolution.

RESOLVER trace output from SMTP is included the job log output from the started
SMTP procedure.

Figure 29 on page 251 shows an example of RESOLVER trace output. Short
descriptions of the numbered items in the trace follow the figure.

250 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of numbered items in the trace.

�1� Address of the name server being used for name resolution. The address is
pulled from the TCPIP.DATA data set.

�2� Identification number of the query. This is also returned in the response and
should be used to match queries to responses.

�3� Bits set to determine the type of query and response. (Refer to RFC 1035.)
There are 16 bits (0–15) set in the parameter field of DNS message.

Bit Meaning
0 Operation: 0=query, 1=response
1–4 Query type: 0=standard, 1=inverse
5 Set if the answer is authoritative
6 Set if the message is truncated
7 Set if recursion is desired
8 Set if recursion is available
9–11 Reserved
12–15 Response type

Value Meaning

Userid of Caller: ARMSTRNG
TCP Host Name: RALVMFE1
Domain Origin: RALEIGH.IBM.COM
Jobname of TCP/IP: TCPCS
Communicate Via: UDP
OpenTimeOut: 30
MaxRetrys: 1
NSPort: 53
NameServer Userid: NAMESRV

�1� NSInternetAddress(.1.) := 9.67.1.5
NSInternetAddress(.2.) := 9.67.5.44
Data set prefix used: TCPCS.BTA1

Resolving Name: RICKA
Result from InitResolver: OK
Building Name Server Query:
* * * * * Beginning of Message * * * * *

�2� Query Id: 1
�3� Flags: 0000 0001 0000 0000

Number of Question RRs: 1
�4� Question 1: RICKA.RALEIGH.IBM.COM A IN

Number of Answer RRs: 0
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *

�5� Sending Query to Name Server at 9.67.1.5 Result: OK
�6� Notification Arrived: UDP data delivered RC = OK
�7� UDP Data Length: 55

Return from WaitForAnswer: OK
* * * * * Beginning of Message * * * * *
Query Id: 1
Flags: 1000 0101 1000 0000
Number of Question RRs: 1
Question 1: RICKA.RALEIGH.IBM.COM A IN
Number of Answer RRs: 1

�8� Answer 1: RICKA.RALEIGH.IBM.COM 86400 A IN 9.67.97.3
Number of Authority RRs: 0
Number of Additional RRs: 0
* * * * * End of Message * * * * *
HostNumber (1) is: 9.67.97.3

Figure 29. Example of RESOLVER Trace Output

Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP) Problems 251

0 No error
1 Format error in query
2 Server failure
3 Name does not exist

�4� Actual question sent to the name server

�5� IP address of the name server being queried

�6� The response has arrived (UDP in this case)

�7� Length of the record

�8� Answer to the question

252 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper
Problems

This chapter describes how to diagnose problems with OS/390 UNIX sendmail, an
electronic mail-transport agent and server, and with OS/390 UNIX popper, a
mail-delivery agent.

Diagnostic Aids for sendmail
The following sections describe various tools and techniques available for
diagnosing problems with OS/390 UNIX sendmail. For a comprehensive discussion
of sendmail, refer to the industry-accepted publication sendmail by O’Reilly &
Associates, Inc. (ISBN 1-56592-222-0). That publication is known throughout the
industry as the bat book, because of the fruit bat depicted on the cover. This
chapter consistently refers to the bat book for further information.

You can also find more information about OS/390 UNIX sendmail at the
http://www.sendmail.org web site.

Note: For information about diagnosing problems with the other CS for OS/390
mail application, Simple Mail Transfer Protocol (SMTP), see “Chapter 11.
Diagnosing Simple Mail Transfer Protocol (SMTP) Problems” on page 243.

Debugging Switches
The following table is a complete list of debugging switches in sendmail. Some of
these switches create long and complex output. Each switch that is especially
useful for debugging mail problems is marked ″X″ in the third column.

Table 29. Debugging Switches by Category

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d0.1 37.5.1 X Print version information

-d0.4 37.5.2 X Our name and aliases

-d0.10 37.5.3 Operating System defines

-d0.15 37.5.4 X Dump delivery agents

-d0.20 37.5.5 X Print network address of each interface

-d0.22 37.5.6 Show uname() failure

-d0.40 37.5.7 Show scanning of interfaces

-d0.44 37.5.8 Print addresses of strings

-d0.90 37.5.9 (obsolete) Print first 10 rule sets

-d1.1 37.5.10 Show sender information

-d1.5 37.5.11 Dump the sender address

-d2.1 37.5.12 End with finis()

-d2.9 37.5.13 Show file descriptors with dumpfd()

-d3.1 37.5.14 Print the load average

-d3.5 37.5.15 Print load average

-d3.15 37.5.16 Print three load averages

© Copyright IBM Corp. 1994, 2000 253

http://www.sendmail.org

Table 29. Debugging Switches by Category (continued)

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d3.20 37.5.17 Show offset for load average

-d3.30 37.5.18 Show result of decision to queue

-d4.80 37.5.19 X Trace enoughspace()

-d5.4 37.5.20 Tick for queued events

-d5.5 37.5.21 Events set and cleared

-d5.6 37.5.22 Show events triggered

-d6.1 37.5.23 X Show failed mail

-d6.5 37.5.24 The current error state

-d6.20 37.5.25 Show sender of return to sender

-d7.1 37.5.26 The Queue filename

-d7.2 37.5.27 Show assigned queue filename

-d7.9 37.5.28 Dump file descriptor for the qf file

-d7.20 37.5.29 Show queue names being tried

-d8.1 37.5.30 X Failure of MX search (low level)

-d8.2 37.5.31 X Call to getcanonname(3)

-d8.3 37.5.32 X Trace dropped local hostnames

-d8.5 37.5.33 X Hostname being tried in getcanonname(3)

-d8.7 37.5.34 X Yes/no response to -d8.5

-d8.8 37.5.35 X MX lookup gets wrong type

-d8.20 37.5.36 Inconsistency in returned information

-d9.1 37.5.37 Canonify hostname and RFC1413 queries

-d9.3 37.5.38 Show raw RFC1413 reply

-d9.10 37.5.39 Show RFC1413 query being sent

-d10.1 37.5.40 Show recipient delivery

-d10.2 37.5.41 Dump controlling user’s address

-d10.5 37.5.42 Show don’t send to MeToo address

-d10.100 37.5.43 Predelivery file descriptor dump

-d11.1 37.5.44 X Trace delivery

-d11.2 37.5.45 X Show the uid/gid running as during delivery

-d11.20 37.5.46 Show tried D= directories

-d12.1 37.5.47 X Show mapping of relative host

-d13.1 37.5.48 X Show delivery

-d13.5 37.5.49 Show addresses that we should not send to

-d13.6 n/a Trace envelope stripping, dropping, and moving

-d13.10 37.5.50 Trace sendenvelope()

-d13.20 37.5.51 Show final mode

-d13.21 n/a Show final send queue

-d13.25 n/a Watch owner deliveries

-d13.29 37.5.52 Show autoqueueing

254 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 29. Debugging Switches by Category (continued)

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d13.30 37.5.53 Show envelopes being split

-d14.2 37.5.54 Show header field commas

-d15.1 37.5.55 Show network get request activity

-d15.2 37.5.56 Incoming connections

-d15.101 37.5.57 Kernel TCP debugging

-d16.1 37.5.58 Outgoing connections

-d16.101 37.5.59 Kernel TCP debugging

-d17.1 37.5.60 List MX hosts

-d17.9 37.5.61 Show randomizing MX records

-d18.1 37.5.62 Show SMTP replies

-d18.2 37.5.63 Show entry to MAIL From:

-d18.100 37.5.64 Pause on SMTP read error

-d19.1 37.5.65 Show ESMTP MAIL and RCPT parameters

-d20.1 37.5.66 X Show resolving delivery agent: parseaddr()

-d21.1 37.5.67 Trace rewriting rules

-d21.2 37.5.68 X Trace $& macros

-d21.3 37.5.69 Show subroutine calls

-d21.4 37.5.70 Result after rewriting by a rule

-d21.10 37.5.71 Announce failure

-d21.12 37.5.72 Announce success and show LHS

-d21.15 37.5.73 Show $digit replacement

-d21.35 37.5.74 Show token by token LHS matching

-d21.36 37.5.75 Trace class matching in the LHS

-d22.1 37.5.76 X Trace tokenizing an address: prescan()

-d22.11 37.5.77 X Show address before prescan

-d22.12 37.5.78 Show address after prescan

-d22.36 37.5.79 Show each token

-d22.101 37.5.80 Trace low-level state machine

-d24.4 37.5.81 Trace address allocation

-d24.5 37.5.82 Trace assembly of tokens

-d24.6 37.5.83 Show result of buildaddr()

-d25.1 37.5.84 X Trace ″sendtolist″

-d26.1 37.5.85 Trace recipient queueing

-d26.8 37.5.86 Trace self-destructing addresses

-d26.10 37.5.87 Show full send queue in testselfdestruct

-d27.1 37.5.88 X Trace aliasing

-d27.2 37.5.89 X Include file, self-reference, error on home

-d27.3 37.5.90 X Forwarding path and alias wait

-d27.4 37.5.91 X Print not safe

Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper Problems 255

Table 29. Debugging Switches by Category (continued)

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d27.5 37.5.92 Trace aliasing with printaddr()

-d27.8 37.5.93 Show setting up an alias map

-d27.9 37.5.94 X Show uid/gid changes with :include: reads

-d27.14 37.5.95 Show controlling user that caused change in identity

-d27.20 37.5.96 Show how alias will be looked up in a map

-d28.1 37.5.97 X Trace user database transactions

-d28.2 37.5.98 Show no match

-d28.4 37.5.99 Show result of lookup

-d28.8 37.5.100 Try hes_getmailhost()

-d28.16 37.5.101 MX records for forward host

-d28.20 37.5.102 Show udp lookup

-d28.80 37.5.103 Preview lookups

-d29.1 37.5.104 Special rewrite of local recipient

-d29.4 37.5.105 X Trace fuzzy matching

-d29.5 37.5.106 Preview rule set 5

-d29.7 37.5.107 Show overaliasing fuzzy fallback

-d30.1 37.5.108 Trace processing of header

-d30.2 37.5.109 Eat from

-d30.3 37.5.110 Show a to-less header being added

-d30.35 37.5.111 Trace collect states

-d30.94 37.5.112 Trace collect states

-d31.2 37.5.113 X Trace processing of headers

-d31.6 37.5.114 Is header known?

-d32.1 37.5.115 Show collected headers

-d32.2 37.5.116 Show ARPA mode with setsender

-d33.1 37.5.117 Watch crackaddr()

-d34.1 37.5.118 Watch header assembly for output

-d34.11 37.5.119 X Trace header generation and skipping

-d35.9 37.5.120 X Macro values defined

-d35.14 37.5.121 Macro identification

-d35.24 37.5.122 Macro expansion

-d36.5 37.5.123 Trace processing by stab()

-d36.9 37.5.124 Show hash bucket

-d36.90 37.5.125 Trace function applied to all symbols

-d37.1 37.5.126 X Trace setting of options

-d37.8 37.5.127 X Trace adding of words to a class

-d38.2 37.5.128 X Show map opens and failures

-d38.3 37.5.129 Show passes

-d38.4 37.5.130 X Show result of map open

256 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 29. Debugging Switches by Category (continued)

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d38.9 37.5.131 Trace map closings and appends

-d38.10 37.5.132 Trace NIS search for end of aliases

-d38.12 37.5.133 Trace map stores

-d38.19 37.5.134 X Trace switch map finds

-d38.20 37.5.135 X Trace map lookups

-d38.44 37.5.136 Show nis_getcanonname() record

-d39.1 37.5.137 Display digit database mapping

-d40.1 37.5.138 Trace processing of the queue

-d40.3 37.5.139 Show envelope flags

-d40.4 37.5.140 Show qf file lines as they are read

-d40.8 37.5.141 Show reasons for failure

-d40.9 37.5.142 Show qf and lock file descriptors

-d40.32 37.5.143 Dump the send queue

-d41.1 37.5.144 X Trace queue ordering

-d41.2 37.5.145 Cannot open qf

-d41.49 37.5.146 Show excluded (skipped)queue files

-d41.50 37.5.147 Show every file in the queue

-d42.2 37.5.148 Show connection checking

-d42.5 37.5.149 Trace caching and uncaching connections

-d43.1 37.5.150 Trace MIME conversions

-d43.3 37.5.151 See the final MIME boundary name

-d43.5 37.5.152 Watch search for boundaries

-d43.8 37.5.153 Show the calculations

-d43.35 37.5.154 Show boundary lines as emitted

-d43.36 37.5.155 Show content transfer encoding

-d43.40 37.5.156 Show parse of Content-Type: header

-d43.99 37.5.157 Print the leading/following comments

-d43.100 37.5.158 Mark collect() and putheader()

-d44.4 37.5.159 Trace safefile()

-d44.5 37.5.160 X Trace writable()

-d45.1 37.5.161 Show envelope sender

-d45.3 37.5.162 Show saved domain

-d45.5 37.5.163 Show don’t send to sender

-d46.9 37.5.164 Show xf file’s descriptors

-d48.2 37.5.165 X Trace calls to the check_rule sets

-d49.1 37.5.166 Trace checkcompat()

-d50.1 37.5.167 Show envelope being dropped

-d50.2 37.5.168 Show Booleans

-d50.10 37.5.169 Also show the send queue

Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper Problems 257

Table 29. Debugging Switches by Category (continued)

Category Bat Book
Reference

Useful for Mail
Problems

Description

-d51.4 37.5.170 Show queue entries being unlocked

-d51.104 37.5.171 Prevent unlink of xf file

-d52.1 37.5.172 Show isconnect from controlling TTY

-d52.100 37.5.173 Prevent disconnect from controlling TTY

-d53.99 37.5.174 Trace xclose()

-d54.1 37.5.175 Show error return and output message

-d54.8 37.5.176 Show message and flags

-d55.60 37.5.177 Show file locking

-d56.1 37.5.178 Persistent host status tracing

-d56.2 37.5.179 More persistent host status tracing

-d56.12 37.5.180 Perform a sanity check

-d56.80 37.5.181 Trace creating the path to the status file

-d56.193 37.5.182 Dump MCI record for the host

-d57.2 37.5.183 Monitor vsnprintf() overflows

-d59.1 37.5.184 XLA from contrib

-d60.1 37.5.185 X Trace map lookups inside rewrite()

-d61.10 37.5.186 Trace gethostbyname()

-d62.1 37.5.187 Log file descriptors before and after all deliveries

-d62.8 37.5.188 Log file descriptors before each delivery

-d62.10 37.5.189 Log file descriptors after each delivery

-d80.1 37.5.190 Content-Length: header (Sun enhancement)

-d81.1 37.5.191 > option for remote mode (Sun enhancement)

-d91.100 37.5.192 Log caching and uncaching connections

-d99.100 37.5.193 X Prevent backgrounding the daemon

Additional Diagnostic Aids
In addition to debugging switches, you can use the following OS/390 UNIX
sendmail diagnostic aids:

v Look in the syslog.log for information. Following is a sample OS/390 UNIX
sendmail syslog.log message:
Mar 4 16:17:15 sendmail Y973078550 : EZZ7514I: sendmail starting
.
.
Mar 4 16:17:47 sendmail Y486539289 : starting daemon (8.8.7):SMTP

For descriptions of sendmail messages, see OS/390 IBM Communications
Server: IP and SNA Codes.

v Use the -v (verbose) command-line switch to print a complete description of all
the steps required to deliver a mail message. For details, see Section 4.2 in
sendmail, 2nd Edition.

258 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v Use the -X (trace log) command-line switch to record all input, output, SMTP
traffic, and other significant transactions into the specified trace file. For details,
see Section 26.4 in sendmail, 2nd Edition.

v Check the qf file for queueing concerns. OS/390 UNIX sendmail stores
undeliverable messages in the QueueDirectory that is specified in the
configuration file. The QueueDirectory contains data files (df files) named
dfxxxxxxxx and matching queue-control files (qf files) named qfxxxxxxxx. A df file
contains the body of a queued message. A qf file holds all the information that is
needed to deliver the message. Each queued message has a corresponding df
and qf file.

The qf file is line-oriented, containing one item of information per line. The single
uppercase character (the code letter) specifies the contents of the line. The
complete list of qf code letters is shown in Table 30. References in sendmail, 2nd
Edition are listed in the second column.

Table 30. qf File Code Letters

Code sendmail
book
Reference

Meaning How Many

B 23.9.1 Body type At most one

C 23.9.2 Controlling user At most one per R line

D 23.9.3 Obsolete Obsolete

E 23.9.4 Errors to Many

F 23.9.5 Flag bits Many

H 23.9.6 Header definition Many

I 23.9.7 df file’s inode number Exactly one

K 23.9.8 Time last processed Exactly one

M 23.9.9 Message (why queued) At most one

N 23.9.10 Number times tried At most one

P 23.9.11 Priority (current) At most one

Q 23.9.12 Original recipient At most one

R 23.9.13 Recipient address Many

S 23.9.14 Sender address Exactly one

T 23.9.15 Time created Exactly one

V 23.9.16 Version Exactly one

Z 23.9.17 DSN envelope ID At most one

$ 23.9.18 Restore macro value At most one

. 23.9.19 End of qf file At most one

Diagnostic Aids for Popper
Diagnostic aids are found in the SYSLOGD log information. Following is a sample
OS/390 UNIX popper log message:
Apr 20 14:19:36 MVSW popper[16777240]: Received: "quit"

Use the -t trace option to direct all popper message logging to the specified file.
The POP server copies the user’s entire maildrop to /tmp and then operates on that

Chapter 12. Diagnosing OS/390 UNIX sendmail and Popper Problems 259

|
|

|

copy. If the maildrop is particularly large, or inadequate space is available in /tmp,
then the server will refuse to continue and terminate the connection.

To test popper, you can mimic a popper client by TELNETing into a popper port
(110) and issuing the popper commands documented in RFC1725. Following are a
few of the commands used to verify that popper is listening on port 110:

user name name
Specifies the mailbox

pass string
Specifies a server/mailbox-specific password

list [msg]
Lists all message numbers and size, or information about a specific
message

retr msg
Retrieves the specific message to the screen

quit Closes the connection to popper

Following is an example of a TELNET exchange:
> telnet <host name/ip addr> 110
OK POP (version 2.53) at MVSW.tcp.raleigh.ibm.com starting.

> user user163
OK Password required for USER163

> pass tcpxyz
OK USER163 has 6 messages (4273 octets)

> list
OK 6 messages (4273 octets)
1 346
2 371
3 333
4 347
5 2541
6 335
.

> retr 3
OK 333 octets
Received: 9BPXROOT@local host by mvsw.tcp.raleigh.ibm.com (8.8.7/8.8.1) id
PAA83
886099 for user163; Tue, 10 Mar 1998 15:36:57 -0500
Date: Tue, 10 Mar 1998 15:36:57 -0500
from USER163 <USER163>USER163
Message-ID: <199803102036.PAA83886099@mvsw.tcp.raleigh.ibm.com>
X-UIDL: 4569e8e12631e857eed8d8b0ca493
Status: 0

hello

.

260 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

Chapter 13. Diagnosing SNALINK LU0 Problems

The TCP/IP for MVS host is implemented with the SNALINK LU0 function. This
function allows the use of an SNA backbone to transfer TCP/IP protocols. A TCP/IP
host with SNALINK LU0 can be an originator, destination, or router for TCP/IP data.
To use the SNALINK LU0 function of TCP/IP, each connected host must have
VTAM and TCP/IP installed. The SNALINK LU0 application runs in its own address
space and is defined as a VTAM application. There are two types of SNALINK
implementations:

v SNALINK LU0, which uses VTAM LU0 protocol

v SNALINK LU6.2, which uses VTAM LU6.2 protocol

Note: SNALINK LU6.2 diagnosis is discussed in “Chapter 14. Diagnosing SNALINK
LU6.2 Problems” on page 273.

SNALINK LU0 is a very convenient way to connect to TCP/IP hosts using an
existing SNA backbone. An IP datagram destined for a remote host that is
connected using SNALINK LU0 is passed to the SNALINK LU0 address space by
TCP/IP. The data is packaged into an SDLC frame and transmitted to the remote
host using SNA LU0 protocol. Two SNALINK LU0 applications can be configured to
connect using a single, bidirectional session or with two separate sessions (one
dedicated to send data in each direction).

Definitions
The following are required to define a SNALINK LU0:

v Device and link definitions in the TCPIP profile

v Home address and routing information

v VTAM application definitions

v Parameters on the PROC used to start SNALINK LU0

For more information about these required definitions, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

Problem Diagnosis
SNALINK LU0 problems are normally reported as one of the following:

v Abends

v Session hung terminals

v Session outages

Use the information in the following sections for problem determination and
diagnosis of errors reported against SNALINK LU0.

When contacting the IBM Software Support Center for any type of SNALINK LU0
problem, have the VTAM application definitions for SNALINK LU0 and the DEVICE
and LINK information from the hlq.PROFILE.TCPIP data set for SNALINK LU0.

Abends
An abend for the SNALINK LU0 application should result in messages or
error-related information on the MVS system console. Since SNALINK LU0 is a

© Copyright IBM Corp. 1994, 2000 261

VTAM application, some abends might be generated or first detected by VTAM.
These messages will indicate that VTAM is abending or a dump is being taken for
the SNALINK LU0 application.

Note: In the case of a VTAM error caused by SNALINK LU0, refer to OS/390 IBM
Communications Server: SNA Messages and OS/390 IBM Communications
Server: IP and SNA Codes for initial problem determination.

Documentation
Code a SYSMDUMP DD or SYSABEND DD statement in the SNALINK cataloged
procedure.

There are two MVS abends commonly seen during the initialization and startup of
the SNALINK LU0 application: X'0C2' and X'0F8'. Both can be caused by the
SNALINK LU0 application processing in TCB mode. The VTAM application definition
statement for SNALINK LU0 must have the SRBEXIT=YES parameter coded. This
should ensure that VTAM passes control to SNALINK LU0 in SRB mode. SNALINK
LU0 code has processing that is not allowed in TCB mode. If the SRBEXIT
parameter is coded incorrectly or allowed to default, abend X'0C2' or X'0F8' will
occur.

Note: Some networking optimizing packages change the defined mode for VTAM
applications for performance purposes. It is suggested that this type of
program not be used for the SNALINK LU0 application.

Analysis
For more information about debugging abends, refer to “Chapter 3. Diagnosing
Abends, Loops, and Hangs” on page 21.

An abend or unexpected termination of the SNALINK LU0 application will not
terminate the TCP/IP address space. If there is no alternate route to the remote
host, IP datagrams for TCP/IP Services components (such as TELNET and FTP)
will not be transmitted until the application is restarted, either manually or using
TCP/IP autolog.

Session Hangs
This section discusses diagnosis of a hung terminal after a session has been
successfully connected. A hang might be detected by TCP/IP users who are
connected to the remote system by means of SNALINK LU0 (this could be FTP,
TELNET, or other applications).

The SNALINK LU0 application detects a hung terminal if there is no response to
data sent. After waiting 30 seconds for a response, SNALINK LU0 ends the session
and tries to reestablish the LU-to-LU session with its partner SNALINK LU0
application. This processing is shown on the SNALINK LU0 log or MVS console log.

Documentation
To determine the cause of an SNALINK LU0 session hung terminal, the following
might be needed:

v SNALINK LU0 log or MVS console log

v NETSTAT DEVLINKS display output

v VTAM DISPLAY APPL STATUS output

v SNALINK LU0 DEBUG trace output

v VTAM buffer trace of the SNALINK LU0 applications

v VTAM internal trace

262 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Note: For information on VTAM traces, refer to OS/390 IBM Communications
Server: SNA Diagnosis V2 FFST Dumps and the VIT.

This list of documentation includes documentation needed to resolve most types of
hung terminals. All of the indicated data might not be needed for each occurrence
of a hung terminal. The following section provides information on the types of data
that might be needed for each diagnostic step.

Analysis
The first step in analysis is to determine if the SNALINK LU0 is actually hung or if
one of the sessions using SNALINK LU0 to transfer data is hung. When the
SNALINK LU0 is the only connection between two hosts, an actual hang in the
SNALINK LU0 application impacts all data flowing for TCP/IP. This can include
TELNET, FTP, and any other application. Use the following steps to help determine
the cause of the reported SNALINK LU0 hung terminal:

1. Does all traffic across the SNALINK LU0 stop? A VTAM buffer trace of the
SNALINK LU0 application can be used to see if any data is being passed. If
data is still flowing on the session, the SNALINK LU0 is not hung. You will need
to determine which TCP/IP application or component is failing. If there is no
data traffic, continue with step 2.

Note: SNALINK LU0 traffic can also be checked by doing multiple VTAM
displays of the SNALINK LU0 application. The SEND and RECEIVE data
count should increase for an active session.

2. Issue NETSTAT DEVLINKS to determine the status of the SNALINK LU0
TCP/IP. If the NETSTAT output shows that the application is trying to connect,
check the VTAM and SNALINK LU0 consoles for information about a previous
error or abend. If NETSTAT indicates “connected” or “sending,” continue with
step 3.

3. At this point, we need to determine the last SNALINK LU0 activity or
processing. This is best accomplished with the debug trace. Contact your IBM
Software Support Center with information about the last activity from the
SNALINK LU0 console and debug trace.

Note: Information on starting and examining the trace data is discussed in
“Starting SNALINK LU0 DEBUG Trace” on page 270.

Session Outages
A session outage is an unexpected abend or termination of the task. Session
outages are usually seen only when an irrecoverable error is detected. The error
could be an SNALINK LU0 abend or an error return code from a VTAM request. A
session outage should not occur without an indication of its cause, either on the
SNALINK LU0 console or the VTAM console. Since SNALINK LU0 abends have
already been discussed separately, this section describes other types of session
outages.

For an example of a successful session setup between two SNALINK LU0
applications, refer to the OS/390 IBM Communications Server: IP Configuration
Reference.

Documentation
The following documentation might be needed to determine the source of the error
for a session outage problem:

v SNALINK LU0 log

v MVS console log

Chapter 13. Diagnosing SNALINK LU0 Problems 263

v VTAM log

v NETSTAT DEVLINKS display output

v VTAM display application status output

v SNALINK LU0 DEBUG trace output

v VTAM buffer trace of the SNALINK

v LU0 applications

v VTAM internal trace

Note: For information on VTAM traces, refer to OS/390 IBM Communications
Server: SNA Diagnosis V2 FFST Dumps and the VIT.

Analysis
When a SNALINK LU0 outage occurs, there should be messages and indicators of
the reason for the outage. These appear in the SNALINK LU0 log, or on the VTAM
console, or both. If an abend has been recorded, continue diagnosis using the
section on abends.

The following is an example of a session outage problem. The message EZA5797E
Rejecting bind from xxxxx-no DLC found, along with VTAM error message
IST663I Bind fail request received, SENSE=080A0000, was displayed on the MVS
system console.

Cause: Large packet size sent in a PIU is rejected by the NCP with sense
800A0000(PIU too long).

Resolution: Reduce the MTU size on this route using the GATEWAY statement.

Traces
The IP packet trace and the SNALINK LU0 DEBUG trace are useful in diagnosing
SNALINK LU0 problems.

Using IP Packet Trace
The IP packet trace facility is used to trace the flow of IP packets. It is useful when
tracking the cause of packet loss or corruption. If the LINKNAME parameter of the
IP packet trace facility is specified, only packets transferred along the given link are
traced. Specifying this parameter is recommended to avoid tracing a large number
of unrelated packets. The following command, when passed to the SNALINK LU0
interface, starts the SNALINK LU0 address space packet trace function:
MODIFY addr_sp_name,PKTTRACE,ON,LINKNAME=link_name

where addr_sp_name is the name of the local SNALINK LU0 address space and
link_name is the VTAM LU name associated with a SNALINK LU0 DEVICE
statement defined in the TCPIP profile configuration data set. Refer to the
information on the PKTTRACE statement in the OS/390 IBM Communications
Server: IP Configuration Reference.

Formatting a Trace Report Using the TRCFMT Utility
Trace output can be generated by the TRCFMT utility, which uses the GTF data set
as input.

The TRCFMT utility has several options that allow the user to select the packets to
be formatted and to specify how the trace output is to be formatted. The IP packets

264 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

that are formatted must meet all the conditions specified by the options passed to
the utility. If no options are specified, all packet information stored in the GTF trace
data set is formatted.

The syntax of the option for the TRCFMT utility is as follows:

SS
LINKNAME=*

LINKNAME=linkname STARTDATE= date STOPDATE= date
S

S
STARTTIME= time STOPTIME= time

PRINT=ASCII

PRINT= ASCII
EBCDIC

SNIFFER= TOKENRING
ETHERNET

S

S
=200

=abbrev_length

ST

date:

century
year/month/day

time:

hour:min
:sec

.microsec

LINKNAME Specifies the name of a link. The actual name specified depends on
which device traced the packets. For devices in the TCPIP address
space, specify the link name defined on the LINK statement. For
SNALINK LU0, specify the LU name defined on the DEVICE
statement in the hlq.PROFILE.TCPIP data set. rather than the
associated link name. For SNALINK LU6.2 and X.25 NPSI, specify
the link name on the LINK statement in the appropriate
configuration data set. If the LINKNAME option is omitted or an “*”
is specified, the options will apply to all links.

STARTDATE Specifies the start date for the trace report. Only packets that were
captured on or after this date will appear in the report. The start
date refers to the local date of the host where the packets were
traced. If this option is omitted, formatting will start with the earliest
packet traced.

The subfields of the value associated with this option are described
below. Each of the subfields has a fixed length and must be
supplied with leading zeros.

Chapter 13. Diagnosing SNALINK LU0 Problems 265

century
Specifies the century as a 2-digit number

year Specifies the year as a 2-digit number

month
Specifies the month as a 2-digit number

day Specifies the day as a 2-digit number

STOPDATE Specifies the stop date for the trace report. Only packets that were
captured before or on this date will appear in the report. The stop
date refers to the local date of the host where the packets were
traced. If this option is omitted, formatting will stop with the last
packet traced.

The subfields of the value associated with this option are described
above in the description of the STARTDATE option.

STARTTIME Specifies the start time for the trace report. Only packets that were
captured on or after this time will appear in the report. The start
time refers to the local time of the host where the packets were
traced. If this option is omitted, formatting will start with the earliest
time, that is 00:00:00.000000.

The subfields of the value associated with this option are described
below. Each of the subfields has a fixed length and must be
supplied with leading zeros.

hour Specifies the hour as a 2-digit number

min Specifies the minutes as a 2-digit number

sec Specifies the seconds as a 2-digit number

microsec
Specifies the microseconds as a 2-digit number

STOPTIME Specifies the stop time for the trace report. Only packets that were
captured before or at this time will appear in the report. The stop
time refers to the local time of the host where the packets were
traced. If this parameter is omitted, formatting will stop with the
latest time, that is 23:59.59.999999.

The subfields of the value associated with this option are described
above in the description of the STARTTIME option.

PRINT Specifies that the trace records are to be formatted as a text report
for display on a terminal or printer. This option is the default.

ASCII Specifies that the uninterpreted fields in the IP packet are
assumed to contain ASCII data. The data in these fields is
therefore translated to displayable EBCDIC characters
according to the following table before it is presented in the
character equivalent dump. The ASCII keyword is the
default.

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_
1_
2_ . ! " # $ % & ' () * + , - . /
3_ 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4_ @ A B C D E F G H I J K L M N O
5_ P Q R S T U V W X Y Z . \ . . _
6_ ′ a b c d e f g h i j k l m n o
7_ p q r s t u v w x y z { | } . .

266 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

8_
9_
A_
B_
C_
D_
E_
F_

EBCDIC
If this keyword is specified, the uninterpreted fields in the IP
packet are assumed to contain EBCDIC data. The data in
these fields is translated, according to the following table,
only to remove nondisplayable EBCDIC characters before it
is presented in the character-equivalent dump.

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_
1_
2_
3_
4_ ¢ . < (+ |
5_ & ! $ *) ; ¬
6_ - / ¦ , % _ > ?
7_ ′ : # @ ' = "
8_ . a b c d e f g h i
9_ . j k l m n o p q r
A_ . . s t u v w x y z
B_
C_ { A B C D E F G H I
D_ } J K L M N O P Q R
E_ \ . S T U V W X Y Z
F_ 0 1 2 3 4 5 6 7 8 9

SNIFFER Formats the trace records so that they are suitable for downloading
to a DatagLANce Network Analyzer or a Sniffer Network Analyzer
for analysis.

TOKENRING
If this keyword is specified, the output is formatted for the
token-ring analysis application of the analyzer. This keyword
specifies the file format only and does not imply that only
packets traced on a token ring will be displayed. Packets
from all devices can be displayed using this option.

ETHERNET
If this keyword is specified, the output is formatted for the
ETHERNET analysis application of the analyzer. This
keyword specifies the file format only and does not imply
that only packets traced on an Ethernet will be displayed.
Packets from all devices can be displayed using this option.

Specifies that a truncated portion of the IP packet is to be
formatted. If a length is specified, it must be an integer in
the range from 0 to 65535 inclusive and it nominates the
maximum number of bytes that are formatted from each
packet. If no length is supplied, the first 200 bytes of each
packet are formatted.

As shown in the syntax diagram, the date and time selection criteria can be
specified separately. The date and time options are tested independent of each
other. Thus, if a date specification is given without a time specification, only the
date when the packet was traced is examined to see if it meets the criteria.

Chapter 13. Diagnosing SNALINK LU0 Problems 267

Similarly, if a time specification is given without a date specification, only the time
when the packet was traced is examined to see if it meets criteria. This will, for
example, allow the same time slot to be examined over more than one day.

The TRCFMT program uses three optional ddnames to specify the input, output,
and error data sets during processing. If data sets other than the default are
desired, the ddnames must be assigned to the required data sets when invoking the
TRCFMT utility.

The ddnames are:

FMTIN
Identifies the input GTF trace data set. If this ddname is omitted, the default
data set is SYS1.TRACE.

FMTOUT
Identifies the destination for the trace report for the PRINT option or the
destination of the analyzer records for the SNIFFER option. If this ddname
is omitted, the default data set is TCPIP.TRACE.OUTPUT.

The data set associated with this ddname must have the attributes of
variable-length records and logical record length of 137 bytes.

FMTERR
Identifies the destination for error messages produced when creating a
DatagLANce Network Analyzer or a Sniffer Network Analyzer output file in
FMTOUT. Reporting of inconsistencies in an IP packet is an integral part of
the trace report generated by the PRINT option, but these cannot be sent to
FMTOUT when it is to contain data in a format to be read by a DatagLANce
Network Analyzer or a Sniffer Network Analyzer. If this ddname is omitted,
the default data set is TCPIP.TRACE.ERROR. This ddname is only required
for the SNIFFER option.

The data set associated with this ddname must have the attributes of
variable-length records and logical record length of 137 bytes.

The TRCFMT utility can be invoked in either the TSO environment or as a batch job
using JCL statements.

TRCFMT in the TSO Environment: Figure 30 shows the steps required to use
TRCFMT in the TSO environment.

In the figure, TRCFMT reads input from the GTF trace data set SYS1.TRACE, the
output is written to the data set userid.OUTPUT.TRC, and error messages are
written to the default data set TCPIP.TRACE.ERROR.

System: READY
User: allocate dd(fmtin) ds('sys1.trace')

System: READY
User: allocate dd(fmtout) ds(output.trc)

System: READY
User: trcfmt linkname=tr1 sniffer=ethernet starttime=08:30 stoptime=17:30

System: EZA2070W OPENFILE: DDname FMTERR not defined by user, using default
System: EZA2072I OPENDD: FMTERR DDname has been defined to TCPIP.TRACE.ERROR

System: READY

Figure 30. Invoking TRCFMT from TSO

268 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

The trace output in Figure 31 was done on the local SNALINK LU6.2 host. Packets
are traced as FROM and TO the local host. This trace output enables the
identification of IP packet flow and shows the data content of the packets.

The packets that contain data display the data in hexadecimal digits and, in this
case, both their EBCDIC and ASCII characters.

The message flow for the trace in the Figure is:

TRCFMT processing records using the following selection criteria:
Linkname=* ABBREV=NONE
Start date=* Start time=*
Stop date=* Stop time=*
Print = ASCII

TCPIP Packet Trace formatting routine, Version 3.00 for MVS

�1� PKT 0000001 DATE=94/04/15 TIME= 9:06:09.422725
TO LINK=L622 DEV=SNA_LU6.2

IP SRC=1.3.1.3 DST=1.3.1.2 VIA=1.3.1.2
VER=4 HDLEN=5 TOS=X'00' TOTLEN=276 ID=4 FLAGS=B'000'
FRAGOFF=0 TTL=60 PROTOCOL=ICMP CHECKSUM=X'79DB'

ICMP ECHO_REQ CHECKSUM=X'F9CF' ID=902 SEQ=14144
DATA LEN=248

9F558F7D AF95FCA8 3D147846 127B3A56 ED45A121 *.U.} =.xF .{;V .E.!*
C472BE46 C92D57F6 10D711F2 6DAAC1F8 96AD894B *.r.F .-W. m... ...K*
E293D49E A2BE13FB 34F82362 BC5F387C 0D67B681 *.... 4.#b ._8│ .g..*
6E1733E2 A94FA9E5 246E7212 4D4C194D 463B87C4 *n.3. .O.. $nr. ML.M F;..*
0A2C1E51 2BD9E5F0 A26DFCD5 2D494831 BF7D7EBD *.,.Q +... .m.. -IH1 .}x.*
40EE5540 56E57393 4305CA6A E75256D8 C6AE4FA6 *@.U@ V.s. C..j .RV. ..O.*
F8B10D2C 17793F3D 82E44F70 3D5206B6 DE3FD102 *..., .y?= ..Op =R.. .?..*
F452F421 754AF90B F0803244 5CC33EF4 3306D523 *OR.! uJ.. ..<D \.>. 3..#*
87DE6EBA 6030ABF6 BAD669DE 8C077951 D0F88513 *..n. ′0.. ..i. ..yQ*
35DEC1C6 C1DB46AB E42666A3 F2DC11EB 97B36039 *5... ..F. .&f′9*

753385DD 7977E93E D00B1E6F 71144771 41389A58 *u3.. yw.> ...o q.Gq A8.X*

7FD6A671 E26FAEA9 846A2EAF E4247160 7DDD7E5B *...q .o.. .j.. .$q′ }.x.*

89971613 A63160BA *.... .1′. *
�2� PKT 0000002 DATE=94/04/15 TIME= 9:06:09.448764

FROM LINK=L622 DEV=SNA_LU6.2
IP SRC=1.3.1.2 DST=1.3.1.3

VER=4 HDLEN=5 TOS=X'00' TOTLEN=276 ID=4 FLAGS=B'000'
FRAGOFF=0 TTL=60 PROTOCOL=ICMP CHECKSUM=X'79DB'

ICMP ECHO_REPLY CHECKSUM=X'01D0' ID=902 SEQ=14144
DATA LEN=248

9F558F7D AF95FCA8 3D147846 127B3A56 ED45A121 *.U.} =.xF .{;V .E.!*
C472BE46 C92D57F6 10D711F2 6DAAC1F8 96AD894B *.r.F .-W. m... ...K*
E293D49E A2BE13FB 34F82362 BC5F387C 0D67B681 *.... 4.#b ._8│ .g..*
6E1733E2 A94FA9E5 246E7212 4D4C194D 463B87C4 *n.3. .O.. $nr. ML.M F;..*
0A2C1E51 2BD9E5F0 A26DFCD5 2D494831 BF7D7EBD *.,.Q +... .m.. -IH1 .}x.*
40EE5540 56E57393 4305CA6A E75256D8 C6AE4FA6 *@.U@ V.s. C..j .RV. ..O.*
F8B10D2C 17793F3D 82E44F70 3D5206B6 DE3FD102 *..., .y?= ..Op =R.. .?..*
F452F421 754AF90B F0803244 5CC33EF4 3306D523 *OR.! uJ.. ..<D \.>. 3..#*
87DE6EBA 6030ABF6 BAD669DE 8C077951 D0F88513 *..n. ′0.. ..i. ..yQ*
35DEC1C6 C1DB46AB E42666A3 F2DC11EB 97B36039 *5... ..F. .&f′9*
753385DD 7977E93E D00B1E6F 71144771 41389A58 *u3.. yw.> ...o q.Gq A8.X*
7FD6A671 E26FAEA9 846A2EAF E4247160 7DDD7E5B *...q .o.. .j.. .$q′ }.x.*
89971613 A63160BA *.... .1′.

Figure 31. IP Packet Trace Output for SNALINK LU6.2

Chapter 13. Diagnosing SNALINK LU0 Problems 269

�1� The local host sends an Echo Request packet (packet 1) that is 256 bytes
in length, including the ICMP header, to the remote host.

�2� The remote host returns the local host Echo Request packet (packet 1) as
an identical Echo Reply packet (packet 2).

TRCFMT As a Batch Job: Figure 32 shows a set of JCL statements to invoke
TRCFMT with a batch job.
In this example, TRCFMT reads its input from the data set SYS1.TRACE. Its output

and error messages are written to system-managed spool files.

Generating a File for the DatagLANce or Sniffer Network Analyzer: The
TRCFMT utility supports the generation of a file in a format suitable for downloading
to a DatagLANce Network Analyzer or a Sniffer Network Analyzer. This feature is
selected with the SNIFFER option, which requires specification of either the
ETHERNET or TOKENRING suboption to indicate the format of the file to be
generated for the analyzer. Refer to “Formatting a Trace Report Using the TRCFMT
Utility” on page 264 for information about these suboptions. Once the file is
generated, it is downloaded as a binary file to the analyzer and loaded using the
standard features of the analyzer. If you are using the Ethernet analyzer application,
the DOS file type must be ENC. If you are using the token-ring analyzer application,
the DOS file type must be TRC.

SNALINK LU0 DEBUG Trace
The SNALINK LU0 DEBUG trace output is written to an internal buffer. The trace
can be seen only if a dump of the SNALINK LU0 address space is taken. The trace
wraps when the buffer is full (a pointer in the trace header points to the most
current entry).

The trace contains information on SNALINK LU0 processing. This includes
communication with VTAM and TCP/IP, showing VTAM macro requests and DLC
requests.

Starting SNALINK LU0 DEBUG Trace
To run the SNALINK LU0 DEBUG trace, SNALINK LU0 must be started with
DEBUG listed as the first parameter of the PARM parameter on the EXEC
statement of the SNALINK cataloged procedure. For information about this
parameter, refer to OS/390 IBM Communications Server: IP Configuration
Reference.

//JOB#1 JOB 'JOB1','TRCFMT BATCH',MSGLEVEL=(1,1),MSGCLASS=X,REGION=4096K,
// CLASS=A
//*--
//*
//* IKJEFT01 - RUN A TSO COMMAND IN BATCH
//*
//*--
//IKJEDF01 EXEC PGM=IKJEFT01
//FMTIN DD DSN=SYS1.TRACE,DISP=SHR
//FMTOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
TRCFMT STARTTIME=09:00 PRINT=EBCDIC
/*
//

Figure 32. Invoking TRCFMT in a Batch Job

270 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

DEBUG Trace Example
Figure 33 part of an internal SNALINK LU0 trace obtained from a dump. As shown
in the example, the trace can be located by searching for the characters TRCTBL in
the dump of the SNALINK LU0 address space. Following the eyecatcher is the
address of the current entry, followed by the address of the last entry in the trace.
The rest of the table contains entries.

Use the information following the trace to interpret the entry types and their
meaning.

The layout of a SNALINK trace table entry is shown in Table 31.

Table 31. Format of a SNALINK Trace Table Entry

Bytes Definition

00–07 TOD time stamp

08–0F LU name, if any

0000E660 TO 0000E84F (X'000001F0' bytes)--All bytes contain X'00'
0000E850 00000000 00000000 E3D9C3E3 C2D34040 │TRCTBL |
0000E860 0000F888 000126E8 A8448AE1 C45E1D01 │ ..8h...Yy...D;..|
0000E870 E3C3D7C9 C2F74040 03000000 031E0000 │ TCPIB7|
0000E880 00059000 00000068 A8448AE1 C46B2201 │y...D,..|
0000E890 E3C3D7C9 C2F74040 10220000 00018860 │ TCPIB7h-|
0000E8A0 00059000 0000006A A8448AE1 C4A03801 │y...D...|
0000E8B0 E3C3D7C9 C2F74040 22000000 00018860 │ TCPIB7h-|
0000E8C0 00000000 00000000 A8448AE1 C6C28103 │y...FBa.|
0000E8D0 E3C3D7C9 C2F74040 23100000 000188D0 │ TCPIB7h}|
0000E8E0 00071000 0000002C A8448AE1 C6D43E03 │y...FM..|
0000E8F0 00000000 00000000 0E040068 00000000 │|
0000E900 00000000 00000000 │

.

.

.

.
0000F800 A8448AE2 ECE40E00 y..S.U..|
0000F810 E3C3D7C9 C2F74040 10220000 00018860 │ TCPIB7h-|
0000F820 00059000 00000038 A8448AE2 ED641A01 │y..S....|
0000F830 E3C3D7C9 C2F74040 0F098802 01341234 │ TCPIB7 ..h.....|
0000F840 07836B88 00000062 A8448AE2 F7B1C602 │ .c,h....y..S7.F.|
0000F850 00000000 00000000 0E050000 00000000 │|
0000F860 00000000 00000000 A8448AE2 F7B21602 │y..S7...|
0000F870 E3C3D7C9 C2F74040 03000000 032A0000 │ TCPIB7|
0000F880 00061000 00000060 A8448A43 C202C303 │-y...B.C.|
0000F890 00000000 00000000 0E050000 00000000 │|
0000F8A0 00000000 00000000 A8448A43 C202F603 │y...B.6.|
0000F8B0 E3C3D7E3 C4F44040 03000000 BCD50000 │ TCPTD4N..|
0000F8C0 00019000 00000036 A8448A43 C20CEC03 │y...B...|
0000F8D0 E3C3D7E3 C4F44040 10220000 00018EA0 │ TCPTD4|
0000F8E0 00019000 00000038 A8448A43 C2474300 │y...B...|
0000F8F0 E3C3D7E3 C4F44040 22000000 00018EA0 │ TCPTD4|
0000F900 00000000 00000000 │

.

.

.

.

Figure 33. Example of a SNALINK LU0 DEBUG Trace

Chapter 13. Diagnosing SNALINK LU0 Problems 271

Table 31. Format of a SNALINK Trace Table Entry (continued)

Bytes Definition

10 Entry Type
Value
0F DLC Interrupt
01 DLC Accept
02 DLC Send
03 DLC Receive
04 DLC Sever
05 DLC Msg Pend Queue Request
06 DLC Msg Pend D-Queue Request
0E MVS DLC emulation
0F DLC Interrupt
10 VTAM Request
17 VTAM OPNDST Exit
1F VTAM CLSDST Exit
22 VTAM SEND Exit
23 VTAM Receive Exit
25 VTAM SESSIONC Exit
2A VTAM OPNSEC Exit
2C VTAM TERMSESS Exit
31 VTAM SCIP Exit
32 VTAM LOSTERM Exit
33 VTAM NSEXIT Exit
34 VTAM TPEND Exit
35 VTAM LOGON Exit

11 DLC Interrupt Code/VTAM RPL REQ Code/ VTAM Receive Exit Chain
field

12 VTAM CMD: R15/VTAM Exit: RTNCD

13 VTAM CMD: R0 /VTAM Exit: FDB2/DLC IPRCODE

14-17 RPL Address/DLC MSG ID/TPEND reason code

18–1B VTAM Send/Receive/DLC buffer address

1C–1F VTAM Send/Receive/DLC buffer length

272 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 14. Diagnosing SNALINK LU6.2 Problems

The SNALINK LU6.2 interface uses the LU type 6.2 protocol to establish a
point-to-point connection across an SNA network. SNALINK LU6.2 is capable of
establishing a connection with any system that runs TCP/IP and uses the LU type
6.2 protocol.

The SNALINK LU6.2 interface is similar to the SNALINK LU0 and X.25 NPSI
interfaces with the connection involving several subsystems. The components of the
SNALINK LU6.2 network are shown in Figure 34.

Following is a brief description of the component interaction and data flow that
occurs when data is transferred over a SNALINK LU6.2 network. Each component
is cross-referenced to the figure.

�1� Data is generated and encapsulated on the TCP/IP address space and is
passed to the SNALINK LU6.2 address space through a DLC connection.

�2� The SNALINK LU6.2 address space handles all establishment, aging, and
termination of SNA network connections in a manner transparent to the
TCP/IP address space. The data is then sent to the local system SNA
subsystem. In the case of MVS hosts, this subsystem is VTAM.

�3� VTAM APPC routines are used to pass the data to the SNA network.

�4� VTAM routines on the destination system receive the data and pass it
through to the SNALINK LU6.2 address space.

�5� The SNALINK LU6.2 address space sends the data to the TCP/IP address
space via a DLC connection.

�6� The data is unencapsulated and processed by the TCP/IP address space.

Setting Up a SNALINK LU6.2 Network
Completing the following steps will establish the system described in Figure 34.
Each step should be completed in the order given.

TCPIP
Address Space

TCPIP
Address Space

VTAM
Subsystem

VTAM
Subsystem

DLC
Connection

DLC
Connection

VTAM
API

VTAM
API

SNALINK
LU 6.2
Address Space

SNALINK
LU 6.2
Address Space

MVS Local Host MVS Remote Host

1 6

3 4

2 5

SNA
Network

Figure 34. Components of an SNALINK LU6.2 Connection on MVS

© Copyright IBM Corp. 1994, 2000 273

This list of steps can be used to diagnose problems in starting components by
identifying the prerequisites.

For details about how to complete the steps, refer to the appropriate
documentation.

1. Configure the SNALINK LU6.2 network on both the local and remote network
hosts. This is fully described in the OS/390 IBM Communications Server: IP
Configuration Reference in the section about configuring and operating the
SNALINK LU6.2 interface. The process can be condensed into the following
steps:

a. Specify SNALINK LU6.2 DEVICE and LINK statements in the
hlq.PROFILE.TCPIP data set.

b. Copy the sample SNALINK LU6.2 cataloged procedure to an authorized
data set and update according to your system.

c. Define a SNALINK LU6.2 application LU to VTAM.

d. Customize a SNALINK LU6.2 configuration data set.

2. Vary the SNALINK LU6.2 VTAM application LUs active on both the local and
remote network hosts.

3. Start both the local and remote network TCP/IP address spaces.

4. Start both the local and remote network SNALINK LU6.2 address spaces, if they
have not been autologged by the TCP/IP address space.

5. Verify that the network connection has been established between the local host
and the remote host. See “Using the SNALINK LU6.2 Subcommand” on
page 285 for details about how to verify SNALINK LU6.2 connections.

The example in Figure 35 shows the messages that are expected when the
SNALINK LU6.2 address space is started and a network connection is established.

The following list explains the MVS system console messages on SNALINK LU6.2
address space startup as shown in Figure.

�a� The L62LINK address space has been started.

�b� The SNALINK LU6.2 configuration data set for the L62LINK address space
has been successfully parsed.

�c� The L62LINK address space displays its local VTAM application LU and the
TCP/IP address space name to which it will connect.

�d� The L62LINK address space establishes a network connection through the
VTAM API.

16.43.55 STC02790 $HASP373 L62LINK STARTED
�a� 16.43.55 STC02790 IEF403I L62LINK - STARTED - TIME=16.43.55
�b� 16.43.56 STC02790 EZA5927I LU62CFG : No Errors Detected -

Initialization will continue
�c� 16.43.57 STC02790 EZA5932I Initialization complete - Applid:

X3938L61 TCP/IP: V2R10
�d� 16.44.00 STC02790 EZA5935I Send conversation allocated for 1.3.1.2
�d� 16.44.01 STC02790 EZA5936I Receive conversation allocated for 1.3.1.2
�e� 16.44.25 STC02790 EZA5933I Link L62 opened

Figure 35. Sample MVS System Console Messages on SNALINK LU6.2 Address Space
Startup

274 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�e� The L62LINK address space establishes a DLC connection with its TCP/IP
address space.

Common Configuration Mistakes
Following is a list of common configuration mistakes:

v The SNALINK LU6.2 configuration data set contains a syntax error.

v The SYSTCPD or LU62CFG ddnames in the SNALINK LU6.2 cataloged
procedure have been assigned to a data set that is not valid.

v The SNALINK LU6.2 VTAM application LU has not been activated.

v The SNALINK LU6.2 VTAM application LU definition has the option
SRBEXIT=YES.

v The SNALINK LU6.2 VTAM application LU definition does not have the option
APPC=YES.

v The SNALINK LU6.2 VTAM application LU definition specifies a logon mode
table in the MODETAB parameter that does not contain the log mode entry
specified in the LOGMODE parameter on the LINK statement in the SNALINK
LU6.2 configuration data set. The logon mode entry options used for the local
host must be the same as for the remote host.

v The hlq.PROFILE.TCPIP data set contains syntax errors in the SNALINK LU6.2
DEVICE, LINK, HOME, GATEWAY, or START statements.

v The maximum buffer size in the SNALINK LU6.2 configuration data set does not
match the maximum packet size in the GATEWAY statement of the
hlq.PROFILE.TCPIP data set.

v The link name in the SNALINK LU6.2 configuration data set does not match the
link name on the LINK statement in the hlq.PROFILE.TCPIP data set.

v The SNALINK LU6.2 device has not been started by a START statement in the
hlq.PROFILE.TCPIP data set.

Diagnosing Problems
SNALINK LU6.2 problems are normally reported under one of the following
categories:

v Problems starting the SNALINK LU6.2 address space

v DLC connection

v Network connection establishment

v Network connection loss

v Data loss

v Data corruption

Use the information in the following sections to help you diagnose SNALINK LU6.2
problems.

Quick Checklist for Common Problems
The following list summarizes some initial checks that can be made quickly and are
helpful in identifying problem areas:

1. Is the TCP/IP SNALINK LU6.2 network active?

PING the remote TCP/IP host from the local TCP/IP host to verify that the
SNALINK LU6.2 network is active. If the SNALINK LU6.2 network is not active,
continue through this list to identify the problem.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 275

If the PING still fails after working through this list, refer to “Network Connection
Establishment Problems” on page 280 for a detailed list of network connection
problems and their solutions.

2. Have you completed all the required definitions?

See “Setting Up a SNALINK LU6.2 Network” on page 273 for the list of
definitions and configurations required. Continue through this list if connection
problems persist.

3. Have the VTAM major node and application LU used by the SNALINK
LU6.2 address space been varied active?

See “Useful VTAM Operations” on page 286 for details on how to use the VTAM
DISPLAY command to identify the status of the VTAM major node and
application LU.

If the VTAM application LU is not in a CONCT state, see “Useful VTAM
Operations” on page 286 for details about how to vary the VTAM application LU
active.

4. Are the TCP/IP and SNALINK LU6.2 devices started and active on the local
and remote host?

Check to see if the TCP/IP and SNALINK LU6.2 devices are active and running.
The MVS SDSF facility can be used to view the active address space list for
MVS hosts.

If the SNALINK LU6.2 address space will not start, see “Problems Starting the
SNALINK LU6.2 Address Space” for a detailed list of startup problems and their
solutions.

5. Did the SNALINK LU6.2 address space list any configuration errors to the
SYSPRINT data set?

Use the JCL DD statement in the SNALINK LU6.2 cataloged procedure to
identify the destination of the SYSPRINT output and check for errors. If errors
occur, see “Finding Error Message Documentation” on page 293 to determine
the reason for the configuration errors. Text in the message documentation will
specify the action required to fix the problem.

6. Have the TCP/IP-to-SNALINK LU6.2 DLC connections been established?

See “Using NETSTAT” on page 285 for details about how to use the NETSTAT
command to identify the status of the DLC connection.

If the status of the DLC connection is not “Connected,” see “DLC Connection
Problems” on page 278 for a detailed list of SNALINK LU6.2 DLC connection
problems and their solutions.

7. Does the MVS system console contain VTAM error messages?

Refer to OS/390 IBM Communications Server: SNA Messages and OS/390 IBM
Communications Server: IP and SNA Codes for detailed descriptions of the
VTAM error messages and sense codes. These messages might indicate a
network configuration or hardware error.

Problems Starting the SNALINK LU6.2 Address Space
Generally, if there is a startup problem, error messages are displayed on the MVS
system console during the starting of the SNALINK LU6.2 address space. The
address space then terminates.

Documentation
To isolate an SNALINK LU6.2 address space starting problem, note any error
messages or abend codes that are displayed on the MVS system console.

276 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Analysis
The following is a list of some of the common SNALINK LU6.2 address space
startup problems. Each error symptom is listed with possible causes and
resolutions.

1. The message “Errors Detected - Address Space will Terminate” has been
displayed on the MVS system console with no other error messages.

Cause: This error message indicates that an error has occurred with the
SNALINK LU6.2 configuration data set.

Resolution: Check the SNALINK LU6.2 SYSPRINT output for messages that
tell what kind of syntax error might have occurred. If a syntax error has occurred
in the configuration data set, correct it and restart the SNALINK LU6.2 address
space.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for details about the SNALINK LU6.2 configuration data set statement syntax.

2. The message “Error in open of LU62CFG - no data will be read” has been
displayed on the MVS system console.

Cause: The SNALINK LU6.2 address space cannot access a SNALIN LU6.2
configuration data set. The LU62CFG ddname might have been omitted from
the SNALINK LU6.2 cataloged procedure.

Resolution: Check the SNALINK LU6.2 cataloged procedure. Ensure that the
LU62CFG ddname is assigned a valid SNALINK LU6.2 configuration data set.
Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for an example of a SNALINK LU6.2 cataloged procedure.

3. The message “Address Space Already Active - this Address Space will
Terminate” has been displayed on the MVS system console.

Cause: An address space with the same name as the SNALINK LU6.2 address
space is already active.

Resolution: Check to see if the address space with the same name is no
longer required before stopping it, or rename the SNALINK LU6.2 address
space. Restart the SNALINK LU6.2 address space.

4. The messages “Error 0000005A in VTAM OPEN” and “Errors detected in
VTAM Initialization - Address Space will terminate” have been displayed
on the MVS system console.

Cause: The SNALINK LU6.2 address space has not been able to find the VTAM
application LU that has been defined in the VTAM statement of the SNALINK
LU6.2 configuration data set.

Resolution: This problem might be resolved by one of the following solutions:

a. Check the status of the SNALINK LU6.2 VTAM application LU and its VTAM
major node. If it is not in a CONCT state, the VTAM major node and then
the VTAM application LU must be activated.

See “Useful VTAM Operations” on page 286 for a detailed description of the
VTAM operations that display the status of VTAM application LUs and
activate them.

b. Check the VTAM application LU specified in the VTAM statement of the
SNALINK LU6.2 configuration data set Ensure that it exists and is not
duplicated within the domain in which the SNALINK LU6.2 application
program resides.

Refer to the OS/390 IBM Communications Server: IP Configuration
Reference for details about the SNALINK LU6.2 VTAM statement syntax
and the SNALINK LU6.2 VTAM application LU definition.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 277

5. The messages “Error 00000024 in VTAM OPEN” and “Errors detected in
VTAM Initialization - Address Space will terminate” have been displayed
on the MVS system console.

Cause: VTAM security is not allowing the SNALINK LU6.2 address space to
access the VTAM application LU.

Resolution: Check to see if the SNALINK LU6.2 configuration data set VTAM
statement password matches the password set in the VTAM application LU
definition and correct it, if necessary.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for details about the SNALINK LU6.2 VTAM statement syntax and the SNALINK
LU6.2 VTAM application LU definition.

6. The SNALINK LU6.2 address space abends with a system abend code of
300 after the “SNALINK LU6.2 address space STARTED” message.

Cause: The abend code of 300 indicates that there is insufficient storage for the
SNALINK LU6.2 address space.

Resolution: Either increase the value of the REGION parameter for the address
space or reduce the number of buffers specified in the SNALINK LU6.2
configuration data set. Refer to OS/390 IBM Communications Server: SNA
Messages and OS/390 IBM Communications Server: IP and SNA Codes for
detailed SNALU6.2 abend code descriptions.

7. The SNALINK LU6.2 address space abends with an abend code of S0F8
after the “Initialization Complete...” message.

Cause: The MVS S0F8 abend code indicates that an SVC was issued in SRB
mode. SNALINK LU6.2 is not designed to run with VTAM in SRB mode.

Resolution: The SRBEXIT option in the VTAM application LU definition has
been set to “Yes.” Correct the VTAM application LU definition.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for details about the SNALINK LU6.2 VTAM application LU definition.

If the SNALINK LU6.2 startup problem has not been found after using these
analysis steps, obtain a description of all abend codes and errors written to the
SYSPRINT data set and MVS system console. Most solutions to SNALINK LU6.2
address space starting problems can be solved by reading the error message or
abend code descriptions.

See “Finding Abend and Sense Code Documentation” on page 293 and “Finding
Error Message Documentation” on page 293 for a list of references that contain
SNALINK LU6.2 error message and abend code documentation.

DLC Connection Problems
These problems are related to the TCP/IP DLC connection between the TCP/IP
address space and the SNALINK LU6.2 address space.

The DLC connection between the TCP/IP and SNALINK LU6.2 address spaces is
established during the SNALINK LU6.2 address space startup after the SNALINK
LU6.2 configuration data set has been parsed. This DLC connection can be
established independently of the SNA LU type 6.2 connection between two or more
SNALINK LU6.2 address spaces. The fundamental requirements of the DLC
connection is an active, configured SNALINK LU6.2 address space and an active,
configured TCP/IP address space. The DLC connection is initiated by a START
statement in hlq.PROFILE.TCPIP.

278 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation
To check the status of the DLC connection, perform the following diagnosis steps:

1. Note the SNALINK LU6.2 address space startup messages displayed on the
MVS system console.

2. Issue a NETSTAT DEVLINKS command to obtain the status of the DLC
connection.

See “Using NETSTAT” on page 285 for details about how to use the NETSTAT
command to identify the status of the DLC connection.

If the DLC connection status is not Connected, check the list of common DLC
connection problems in the next section.

Analysis
The following list contains some of the common DLC connection problems between
the SNALINK LU6.2 address space and the TCP/IP address space. Each error
symptom is listed with possible causes and resolutions.

1. The message “Error in DLC connect...” has been displayed on the MVS
system console and the NETSTAT DEVLINKS output shows that the DLC
connection status is either “Issued Connect” or “Will retry connect.”

Cause: The TCP/IP address space is attempting to attach to the SNALINK
LU6.2 address space, but the SNALINK LU6.2 address space is not responding.

Resolution: Check if the SNALINK LU6.2 address space is active and start it, if
necessary.

2. The SNALINK LU6.2 address space has started, but the “Link open”
message has not been displayed on the MVS system console, no other
error messages have been displayed on the console, and the NETSTAT
DEVLINKS output shows that the DLC connection status is either “Issued
Connect” or “Will retry connect.”

This problem can be due to one of the following situations:

Cause: The SNALINK LU6.2 address space might be rejecting the connect
attempt from the TCP/IP address space because it has the wrong TCP/IP ID.

Resolution: Check the SNALINK LU6.2 SYSPRINT output for the “Rejecting
DLC path for the link_name, wrong TCP/IP id tcpip_addr_space” error message.

If this error message is displayed, check to see if a valid hlq.TCPIP.DATA data
set has been specified as the SYSTCPD ddname in the SNALINK LU6.2
cataloged procedure and correct it, if necessary.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for an example of a SNALINK LU6.2 catalogued procedure.

If a valid hlq.TCPIP.DATA data set has been used, check the TCP/IP address
space specified in the TCPIPJOBNAME statement within it.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for a detailed description of the TCPIPJOBNAME statement in the
hlq.PROFILE.TCPIP.

Cause: The SNALINK LU6.2 address space might be rejecting the connect
attempt from the TCP/IP address space because of an incorrectly-defined
SNALINK LU6.2 link name.

Resolution: Check the SNALINK LU6.2 SYSPRINT output for the “Rejecting
DLC path for link_name, not configured” error message.

If this error message is displayed, check to see if the link name specified in the
LINK statement of the SNALINK LU6.2 configuration data set matches the link
name specified in the LINK statement associated with the SNALINK LU6.2
device defined in hlq.PROFILE.TCPIP.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 279

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for details about the SNALINK LU6.2 LINK statement syntax and the TCPIP
LINK statement syntax.

3. The SNALINK LU6.2 address space has been started but the “Link
opened” message has not been displayed and the NETSTAT DEVLINKS
output shows that the DLC connection is “Inactive.”

Cause: The DLC connection to the SNALINK LU6.2 device associated with the
SNALINK LU6.2 address space might not have been started by the TCP/IP
address space.

Resolution: Check the START statements in hlq.PROFILE.TCPIP.

If the SNALINK LU6.2 device has not been started, use the VARY
TCPIP,procname,START,device_name for the SNALINK LU6.2 device or include
the START statement in the hlq.PROFILE.TCPIP and restart the TCP/IP
address space.

Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for a detailed description of the START statement in the hlq.PROFILE.TCPIP.

Network Connection Establishment Problems
These problems are related to the establishment of the SNA LU type 6.2 connection
between two or more SNALINK LU6.2 devices.

The SNA LU type 6.2 connection can be established independently of the TCP/IP
address space and the DLC link. The fundamental requirements for establishing the
LU type 6.2 connection are two active, configured SNALINK LU6.2 devices that
have an active SNA network connection between them. There are three ways to
initiate the establishment of a network connection.

1. Connections with the INIT parameter specified on the DEST statement in the
SNALINK LU6.2 configuration data set are established when the SNALINK
LU6.2 address space is started.

2. Connections with the DATA parameter specified on the DEST statement in the
SNALINK LU6.2 configuration data set or connections that have timed out or
been terminated are established when a request is made to the SNALINK LU6.2
address space to transfer data across the link.

3. Connections can be established using the SNALINK LU6.2 RESTART MODIFY
subcommand.

Documentation
To check the status of the LU type 6.2 connection, issue the following MODIFY
subcommands to the MVS SNALINK LU6.2 address space.

1. MODIFY addr_sp_name,LIST,LU=dest_lu_name

where addr_sp_name is the MVS SNALINK LU6.2 address space name and
dest_lu_name is the SNA destination LU name of the remote SNALINK LU6.2
device.

See “Using the SNALINK LU6.2 Subcommand” on page 285 for more
information about issuing this command and reading the output.

If the connection status is not “Allocated,” continue with the following
commands.

2. MODIFY addr_sp_name,RESTART,LU=dest_lu_name

This command will attempt to establish the LU type 6.2 connection between the
SNALINK LU6.2 devices. During connection establishment, any problems will
cause error messages to be output to the MVS system console.

3. MODIFY addr_sp_name,LIST,LU=dest_lu_name

280 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

If the connection status is still not “Allocated,” note the messages in the SYSPRINT
data set and on the MVS system console and continue with the following analysis.

Analysis
The following list contains some of the common SNALINK LU6.2 address space
network establishment problems. Each error symptom is listed with possible causes
and resolutions.

1. The SNALINK LU6.2 address space issued error message: “Unable to
allocate send conversation.”

Cause: The local VTAM application LU might not be enabled for LU type 6.2
conversations. The name of this LU is specified on the VTAM statement in the
SNALINK LU6.2 configuration data set.

Resolution: The APPC option in the VTAM application LU definition must be set
to YES to enable LU type 6.2 conversations.

Cause: The remote VTAM application LU names might not identify an LU that is
reachable or that can establish an LU type 6.2 conversation over the SNA
network. The remote VTAM application LU name is specified in the DEST
statement of the SNALINK LU6.2 configuration data set. For dependent LUs,
both the SEND and RECV LU names must be able to establish LU type 6.2
conversations.

Resolution: The first step is to check to see if the remote SNALINK LU6.2
device is active. If the remote SNALINK LU6.2 is using VTAM to access the
SNA network, see “Useful VTAM Operations” on page 286 to check the active
status of the remote LU. If the remote SNALINK LU6.2 device is active, use the
VTAM error messages to determine why the LU type 6.2 conversation cannot
be established with the destination LU. The VTAM error messages are written to
the MVS system console immediately before the Unable to allocate send
conversation message. VTAM sense code documentation can be found in
OS/390 IBM Communications Server: SNA Messages and OS/390 IBM
Communications Server: IP and SNA Codes. These messages might indicate a
network configuration or hardware error.

2. VTAM error message output to the MVS system console: “REQUIRED
LOGMODE NAME UNDEFINED.”

Cause: To allocate LU type 6.2 conversations over an SNA network, both sides
must specify matching log modes. The VTAM log modes are defined in log
mode tables. The log mode configured for use with this connection cannot be
found in the log mode table specified on the VTAM application LU definition.

Resolution: The log mode entry name specified as the LOGMODE parameter
on the LINK statement in the SNALINK LU6.2 configuration file must exist in the
log mode table specified on the MODETAB statement in the VTAM application
LU definition.

Network Connection Loss Problems
SNA network connection loss can be either expected or unexpected. This section
deals with unexpected connection-loss problems. The definitions of expected and
unexpected losses are discussed before continuing with the analysis for unexpected
loss.

Connections for the SNALINK LU6.2 address space can be configured to be
normally active or normally inactive. The normally inactive configuration is used
when there is a cost involved with the network connection time. Normally inactive
connections are expected to experience connection establishment and loss
regularly with use. Because of this, the SNALINK LU6.2 address space does not
write messages to the MVS system console for connection loss. Connection loss for

Chapter 14. Diagnosing SNALINK LU6.2 Problems 281

a normally active connection is unexpected. In this case, the SNALINK LU6.2
address space writes connection loss messages to the MVS system log.

When a connection is configured with the INIT parameter on the DEST statement
and a time-out value of zero on the LINK statement in the SNALINK LU6.2
configuration data set, the connection is a normally active connection.

When a connection is configured with the DATA parameter on the DEST statement
and a nonzero time-out value on the LINK statement in the SNALINK LU6.2
configuration data set, the connection is a normally inactive connection.

Check the connection experiencing the loss to ensure the loss is unexpected. If the
connection loss experienced is specifically caused by errors, the loss is unexpected
regardless of the connection configuration.

Documentation
Unexpected connection loss occurs if the SNALINK LU6.2 address space
encounters errors that compromise the connection. In this case, error messages are
written to the data set specified on the SYSPRINT DD statement in the SNALINK
LU6.2 cataloged procedure.

To check the status of the SNA LU type 6.2 connection, issue the LIST MODIFY
subcommand to the MVS SNALINK LU6.2 address space. See “Using the
SNALINK LU6.2 Subcommand” on page 285 for more information about issuing this
command and reading the output.

Analysis
Use the error messages in the SNALINK LU6.2 SYSPRINT data set to identify the
cause of the loss. See “Finding Error Message Documentation” on page 293 for
details on finding the documentation for these messages. Text in the message
documentation specifies the action required to fix the problem.

The following is an example of an outage problem.

The message EZA5797E “Rejecting bind from xxxxx-no DLC found”, along
with VTAM error message IST663I “Bind fail request received,
SENSE=080A0000”, was displayed on the MVS system console.

Cause: Large packet size sent in a PIU is rejected by the NCP with sense
800A0000(PIU too long).

Resolution: The PIU includes the TH, RH, and RU. SNALINK attempts to send
data up to the MAXRU size. The total size of the PIU includes the RU portion and
the additional 29 bytes for the TH and RH. If this exceeds the maximum size, NCP
will issue a negative response with sense 800A0000 (PIU too long), which results in
the SNA session being taken down between SNALINK and the NCSTLU. When the
DLC connection is reestablished, the NCP sends a Bind RU which is then rejected
with sense 080A0000. The definitions used in the NCP and SNALINK must be such
that MAXRU is at least 29 bytes less than MAXDATA. Refer to OS/390 IBM
Communications Server: SNA Network Implementation Guide for more information
on defining the MAXDATA, MAXBFRU, and UNITSZ operands.

Data Loss Problems
These problems are related to data transfer over the SNALINK LU6.2 network. The
first step is to determine the point in the network where the data is being lost. The
following information is mainly concerned with determining the actual place of loss.

282 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation
To determine where the data packets are being lost, use the LIST MODIFY
command for the SNALINK LU6.2 address space. See “Using the SNALINK LU6.2
Subcommand” on page 285 for details. When listing the connection status, the
number of packets sent and received over the connection since establishment is
displayed in the report. The following steps help you determine the source of the
loss.

1. Record the current packet count for the SNALINK LU6.2 devices in the network
that support the LIST MODIFY command.

2. Issue the PING command on one end of the connection. In a correctly
functioning network, PING sends a data packet to the other end of the
connection, which then sends a response data packet back to the PING
command.

3. Use the updated packet counts to determine how far the packet went.

4. Issue the PING command from the other end of the connection.

5. Use the updated packet counts to determine how far the packet got.

Note: IP packet trace, as described in “Using IP Packet Trace” on page 291, can
also be used to trace and validate the IP data packets as they enter and
leave the SNALINK LU6.2 address space.

Analysis
The following list contains some of the common SNALINK LU6.2 data-loss
problems. Each error symptom is listed with possible causes and resolutions.

1. Data packets are lost between the TCP/IP and the SNALINK LU6.2 address
space (either end).

This problem can be due to one of the following situations:

Cause: The DLC link between the TCP/IP address space and the SNALINK
LU6.2 address space might not be active.

Resolution: See “DLC Connection Problems” on page 278 to diagnose the DLC
link problem.

Cause: The SNALINK LU6.2 address space might be discarding packets.

Resolution: When a condition occurs in the SNALINK LU6.2 address space
that causes data to be lost, “discarding datagram” messages are written to the
data set specified by the SYSPRINT DD statement in the SNALINK LU6.2
cataloged procedure.

See “Finding Error Message Documentation” on page 293 for details on finding
the documentation for these messages. Text in the message documentation
specifies the action required to fix the problem.

2. Data packets are actually not lost but the protocol (PING) times out.

Cause: The SNALINK LU6.2 device might be establishing the LU type 6.2
connection to transfer the data packets. The delay in establishing the
connection might be causing the protocol to time out.

Resolution: If the DATA parameter is specified on the DEST statement for the
connection in the SNALINK LU6.2 configuration data set, the connection is not
established until data is to be transferred over the connection. In this case, after
the first data transfer, further data packets will be transferred successfully.

If the TIMEOUT parameter is specified on the LINK statement for the connection
in the SNALINK LU6.2 configuration data set, the connection can be timing out
too often, causing the connection to be reestablished for each data transfer. In
this case, the protocol time-out value or the connection time-out value should be
increased.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 283

3. Data packets are lost between the SNALINK LU6.2 devices.

Cause: The network is failing.

Resolution: Check for VTAM error messages on the MVS system console. See
“VTAM Buffer Traces” on page 292 for more details about using VTAM traces to
diagnose the SNA network.

Data Corruption Problems
To determine the source of corruption for the data packets, use the IP packet
tracing facility. This facility traces and validates the IP data packets as they enter
and leave the SNALINK LU6.2 address space. Using this facility, the source of
corruption can be identified as either the SNA network or the TCP/IP system.

Documentation
Set up the network conditions that are experiencing the data corruption. Start
component trace in the SNALINK LU6.2 address space. Use the appropriate
amount of data and time to ensure the corruption occurs.

Note: Allocate the MVS GTF trace data set (usually SYS1.TRACE) large enough to
hold the expected trace output. This trace data set wraps back to the start of
the data set when full, overwriting trace information. When tracing, this
option does not collect all the data, which means the corruption could be
missed. When formatting, this option turns off some of the IP packet
validation processing.

Analysis
The IP packet trace facility analyzes the data corruption problem automatically.
Once the trace is collected, the trace data is passed through a formatter, which
presents the data packets in an easy-to-read report and validates the contents of
the packets against the RFC requirements. Every byte of the data packet is
validated including reserved fields. The checksums are also recalculated and
verified. If any of the data packets traced are corrupted, the formatter writes
messages in the formatted report.

You can use this method, possibly together with TCP/IP internal traces, network
level traces, or both, to identify the source and type of corruption.

For details on how to use the IP packet trace facility, see “Using IP Packet Trace”
on page 291.

Documentation References for Problem Diagnosis
This section contains the information and documentation references required to
gather and decode diagnostic information about the SNALINK LU6.2 network
connection.

The main tools used for problem diagnosis are the NETSTAT utility, the SNALINK
LU6.2 LIST subcommand, VTAM status display operations, the SNALINK LU6.2
internal trace facility, and the IP packet trace facility. The use of these tools is
explained in the following sections. An explanation of how to interpret the output
from each of these tools is also provided and referenced against the sample output.

For TCP/IP internal tracing or VTAM buffer tracing, you are referred to the
appropriate diagnosis documentation.

284 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Two cross-reference sections are provided at the end of this section that list all the
types of abend codes, sense codes, and error messages that can be issued from
the SNALINK LU6.2 network connection. For each type of abend code, sense code,
or error message, you are referred to the documentation that provides a complete
description.

Using NETSTAT
This section describes how to use NETSTAT to query the state of TCP/IP devices.
This command can be used to quickly verify the status of the SNALINK LU6.2
device and link with relation to the TCP/IP address space.

The NETSTAT DEVLINKS command output displays only information that is known
to TCP/IP.

Note: The TCP/IP address space must be started before the NETSTAT command
can query the connection status.

The command MODIFY DEVLINKS displays the devices and links that have been
defined to the main TCP/IP address spaces and the status of these devices
(whether or not they are active).

Figure 36 is a sample of output from the NETSTAT DEVLINKS command.

The example shows four SNALINK LU6.2 devices and associated links known to
TCP/IP. The Jobname field contains the name of the SNALINK LU6.2 address
space associated with the SNALINK LU6.2 device.

The most significant field for diagnosing DLC connection problems is the Status
field. Refer to the OS/390 IBM Communications Server: IP Configuration Reference
for detailed interpretation of the device status and its importance in the SNALINK
LU6.2 DLC connection.

For more details about the usage, parameters, and output of the NETSTAT
command, refer to the OS/390 IBM Communications Server: IP User’s Guide.

Using the SNALINK LU6.2 Subcommand
This section details how to use the LIST MODIFY subcommand for the MVS
SNALINK LU6.2 address space. The SNALINK LU6.2 address space has

Device OS2_DEV Type: SNA LU 6.2 Status: Inactive
Queue size: 0 Jobname: SNA62OS2

Link OS2_LINK Type: DLC Net number: 1

Device SNALU62A Type: SNA LU 6.2 Status: Will retry connect
Queue size: 0 Jobname: L62LINK

Link L621 Type: DLC Net number: 1

Device SNALU62B Type: SNA LU 6.2 Status: Connected
Queue size: 0 Jobname: L62LINK

Link L622 Type: DLC Net number: 2

Device SNALU62C Type: SNA LU 6.2 Status: Issued Connect
Queue size: 0 Jobname: L62LINK

Link L623 Type: DLC Net number: 3

Figure 36. NETSTAT DEVLINKS Output Example

Chapter 14. Diagnosing SNALINK LU6.2 Problems 285

interactive commands to control the operation and list the status of the active
address space. The LIST MODIFY subcommand writes a report to the MVS system
console giving the status of the specified connections.

The connection status listed by the LIST subcommand can be requested for a
particular remote VTAM application LU name or destination IP address. The
following is an example using the LU parameter:
MODIFY procname,LIST LU=lu_name

where procname is the member name of the cataloged procedure used to start the
local SNALINK LU6.2 address space and lu_name is the remote VTAM application
LU name of the connection for which you are requesting the status.

Figure 37 shows a sample output from the subcommand.

An active connection displays the EZA5968I Connected message with the
“Allocated” status for both the send and receive conversations.

The SNALINK LU6.2 connection allocates two LU type 6.2 conversations–one for
sending data to the remote device and one for receiving data. For independent LUs,
the remote LU name is the same for both conversations. For dependent LUs, a
remote LU name is specified for both the send and receive conversations.

The Packets In and Packets Out fields are decimal counters that record the number
of data packets received from the remote SNALINK LU6.2 and the number of data
packets sent to the remote SNALINK LU6.2, respectively. These fields can be used
to identify configuration errors that cause data packets to be lost or discarded. For
example, the packet counters can be used to track how far a PING packet travels
around the network circuit before it gets lost. Each counter incremented means the
packet made it past that point.

For more information about the contents of the messages from the LIST MODIFY
subcommand, see the message documentation referenced in “Finding Error
Message Documentation” on page 293. Refer to the OS/390 IBM Communications
Server: IP Configuration Reference for more explanation of the LIST MODIFY
subcommand.

Useful VTAM Operations
This section describes how to use the VTAM DISPLAY and VARY commands to
activate an LU, change an LU definition, and to check the status of an application
LU.

VTAM application LUs are defined with VTAM macros in a member of the
SYS1.VTAMLST data set. The data set member, called the major node, can contain
many application LU definitions, called minor nodes. The application LU names
(minor node names) are specified on the VTAM and DEST statements in the
SNALINK LU6.2 configuration data set.

EZA5971I LIST Accepted; Range = Single Connection
EZA5967I 192.9.2.4 (Connected on 94.109 at 10:30:56) 045
EZA5968I Connected via: RESTART Trace Level: OFF
EZA5969I SEND:- Status: Allocated Packets Out: 0
EZA5970I RECV:- Status: Allocated Packets In: 0
EZA5974I LIST Completed

Figure 37. LIST MODIFY Subcommand Output Example

286 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Activating an LU
To activate an LU, the major node containing the LU definition must be activated
first. If there are no definition errors, all the minor nodes defined in the major node
are activated when the major node is activated. If a minor node becomes inactive, it
can be activated individually. The following is an example of a VTAM VARY
subcommand to activate a major or minor node:
VARY NET,ACT,ID=node_name

where node_name is the major or minor node name to activate.

See “Displaying the Status of an LU” for an explanation of the active states for a
minor node.

Refer to OS/390 IBM Communications Server: SNA Operation for a complete
description of the VARY ACT subcommand.

Changing an LU Definition
To change an LU (minor node) definition, the major node containing the LU
definition must be deactivated and then reactivated to force VTAM to read the new
definition. The following is an example of a VTAM VARY subcommand to deactivate
a major node:
VARY NET,INACT,ID=majnode_name

where majnode_name is the major node name to deactivate.

See “Activating an LU” for the major node activation subcommand.

Refer to OS/390 IBM Communications Server: SNA Operation for a complete
description of the VARY INACT subcommand.

Displaying the Status of an LU
To display the status of an LU definition, use the following command:
DISPLAY NET,ID=node_name,E

where node_name is the major or minor node name for which you want to display
the status.

Displaying the status of a major node will list all of the minor nodes defined to the
major node and their STATUS field. For complete information on status of a minor
node, specify the actual minor node name in the command.

The STATUS field for a successfully activated LU definition is set to “CONCT,”
which means connectable. An LU in this state is waiting for the SNALINK LU6.2
address space to be started. An LU in the CONCT state cannot establish a LU type
6.2 conversation.

Figure 38 on page 288 shows a sample of the output from an LU in connectable
state.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 287

After the SNALINK LU6.2 address space has successfully started, the STATUS field
is set to ACTIV, which means in use by an address space.

Figure 39 shows a sample of the output from a DISPLAY command for an LU in
active state.

This example shows that the SNALINK LU6.2 address space (SNALNK62) has
been started successfully and has its local LU (MINORLU) in use with three
sessions active to a remote LU (REMOTELU).

For each SNALINK LU6.2 connection, VTAM establishes three sessions between
the application LUs. The first is the control session, which is the middle session in
the example. The other two sessions are established for the LU type 6.2
conversations allocated for the connection–one for sending data and one for
receiving data.

Refer to OS/390 IBM Communications Server: SNA Operation for more information
about the DISPLAY command.

Traces
The following traces can be used to obtain information about the data flows and
actions of the SNALINK LU6.2 network connection. The SNALINK LU6.2 internal
trace is the most useful for determining the state of the SNALINK LU6.2 address
space. The IP packet trace facility is the most helpful trace facility for monitoring IP

IST097I DISPLAY ACCEPTED
IST075I NAME = MINORLU, TYPE = APPL 148
IST486I STATUS= CONCT, DESIRED STATE= CONCT
IST977I MDLTAB=***NA*** ASLTAB=***NA***
IST861I MODETAB=***NA*** USSTAB=***NA*** LOGTAB=***NA***
IST934I DLOGMOD=***NA***
IST597I CAPABILITY-PLU INHIBITED,SLU INHIBITED,SESSION LIMIT NONE
IST654I I/O TRACE = OFF, BUFFER TRACE = OFF
IST271I JOBNAME = ***NA***, STEPNAME = ***NA***
IST171I ACTIVE SESSIONS = 0000000000, SESSION REQUESTS = 0000000000
IST172I NO SESSIONS EXIST
IST314I END

Figure 38. DISPLAY Subcommand Output Example for Connectable LU

IST097I DISPLAY ACCEPTED
IST075I NAME = MINORLU, TYPE = APPL 148
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST977I MDLTAB=***NA*** ASLTAB=***NA***
IST861I MODETAB=LU62LMTB USSTAB=***NA*** LOGTAB=***NA***
IST934I DLOGMOD=LU62LOGM
IST597I CAPABILITY-PLU ENABLED ,SLU ENABLED ,SESSION LIMIT NONE
IST654I I/O TRACE = OFF, BUFFER TRACE = OFF
IST271I JOBNAME = SNALNK62, STEPNAME = SNALNK62
IST171I ACTIVE SESSIONS = 0000000003, SESSION REQUESTS = 0000000000
IST206I SESSIONS:
IST634I NAME STATUS SID SEND RECV VR TP NETID
IST635I REMOTELU ACTIV-S CC4B1D5168E1815A 0001 0000 0 2 IBMNETXA
IST635I REMOTELU ACTIV-S CC4B1D5168E18159 0001 0001 0 2 IBMNETXA
IST635I REMOTELU ACTIV-P CC4F225168686526 0000 0001 0 0 IBMNETXA
IST314I END

Figure 39. DISPLAY Subcommand Output Example for Active LU

288 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

packets transferred across the SNALINK LU6.2 network. The TCP/IP internal traces
can be used to diagnose problems with the DLC link between TCP/IP and SNALINK
LU6.2. The VTAM buffer trace is used to monitor data transactions through the
VTAM API interface.

Using SNALINK LU6.2 Internal Traces
The SNALINK LU6.2 internal traces are written to the location specified by the
SYSPRINT statement in the SNALINK LU6.2 cataloged procedure. These traces
provide information on the internals of the SNALINK LU6.2 address space.

SNALINK LU6.2 internal tracing is enabled by specifying the following statement in
the SNALINK LU6.2 configuration data set:
TRACE DETAIL ALL

The SNALINK LU6.2 internal trace can also be started by passing a MODIFY
console command to the SNALINK LU6.2 interface. The following MODIFY
command will start internal tracing:
MODIFY procname, TRACE DETAIL ALL

where procname is the member name of the cataloged procedure used to start the
local SNALINK LU6.2 address space.

Refer to OS/390 IBM Communications Server: IP Configuration Reference for
detailed descriptions of the TRACE statement parameters and the TRACE
subcommand parameters.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 289

SYSTCPD : Line 38: TCPIP address space name set to TCPCS
LU62CFG : Starting Pass 1 of 2
LU62CFG : Starting Pass 2 of 2
LU62CFG : Line 15: LINK statement - Blank Idle Timeout, 0 assumed
LU62CFG : Line 17: LINK statement - Blank Idle Timeout, 0 assumed

�1� LU62CFG : No Errors Detected - Initialization will Continue
Initialization complete - Applid: X3938L61 TCP/IP: TCPCS

�6� CNOS for independent partner; SESSLIM=0002, WINNER=0001,
LOSER=0001

OLU= X3938L61, DLU= X383BL61, IP address= 1.2.1.2
OPRCNOS err. R15 00000000 R0 0000000B RTNCD 00000000 FDBK2 0000000B
OPRCNOS err. RCPRI= 0008, RCSEC= 0000
OPRCNOS Sense code received: 087D0001

Sense code specified: 00000000
Unable to complete CNOS on LU X383BL61 for 1.2.1.2

�2� Conversations for 1.2.1.2 terminated
Unable to allocate send conversation for 1.2.1.2

�7� CNOS for independent partner; SESSLIM=0002, WINNER=0001,
LOSER=0001

OLU= X3938L61, DLU= X3839L63, IP address= 1.3.1.2
�2� Send conversation allocated for 1.3.1.2

VTAM conversation allocated; Convid= 010000C3, SID= F04B1A51695651C1
OLU= X3938L61, DLU= X3839L63, IP address= 1.3.1.2

Connection 1.3.1.2 will timeout in 0 seconds
Receive conversation allocated for 1.3.1.2
VTAM conversation allocated; Convid= 010000C4, SID= 004B1B516957467F

OLU= X3839L63, DLU= X3938L61, IP address= 1.3.1.2
Connection 1.3.1.2 will timeout in 0 seconds

�1� Link L622 opened
�4� IP datagram added to the VTAM send queue, length= 276,

queue count= 1
LU= X3839L63, Linkname= L622 , IP address = 1.3.1.2

�3� VTAM sent logical record; Convid= 010000C3, SID=
F04B1A51695651C1, length= 280

OLU= X3938L61, DLU= X3839L63, IP address= 1.3.1.2
Number of IP packets sent on 1.3.1.2 = 1

�6� 45000114000200003C0179DD01030103010301020800329003863740
C521A047E0A474CDE4014469

70F7ECA6577AF7E7C98A28B3D28B152730E78CF9C39EB1651D187E1EF935F43
ADCC89DB647CA288E

50DBBAF3BDC9B32C6F6659B1A9846B26DED06BDAA37C9DFE96A7AC79A8BF074
3966346240EB7D349

664C02D818C37E7105A06530A619F261F0265602CB68EE2B3AA417020CE6B8F
5B5F99E80904EC91E

7C1B12A72E715AA0102C187559A012244761A009552307E1DB276B869CFAB10
9477CFCC591029435

641F0EBCB62D6B7CD7A577BA547AF9D7276F6E29CB3FE6842F8FA3CBC5BFE7F
C591A36CD2583F676

EBC69ACAD273A6D391F3E5D640D3F49A97076C9C151695961421531B3AB6AE6
03C649A2E00000000

�3� VTAM received logical record; Convid= 010000C4, SID= 004B1B516957467F, length= 280

OLU= X3839L63, DLU= X3938L61, IP address= 1.3.1.2
Number of IP packets received on 1.3.1.2 = 1

Figure 40. SNALINK LU6.2 Internal Trace Output (Part 1 of 2)

290 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are brief explanations of the numbered items in the output:

�1� Messages written to the MVS system console

�2� VTAM send and receive conversation status

�3� Information about the VTAM API interface data flow

The VTAM interface information contains the LU type 6.2 conversation ID
(Convid), the VTAM session ID (SID), length of the VTAM logical record, the
origin and destination VTAM application LUs, and the home IP address.

The VTAM logical record length should be four greater than the length of
the TCP/IP datagram packet to account for the VTAM logical record header.

�4� Information about data received from the TCP/IP DLC connection

Datagrams received from the SNALINK LU6.2 DLC connection are
unpacked from the DLC message and added to the appropriate VTAM send
queue for transmission.

�5� Information about data received from the VTAM API interface

Datagrams received from the VTAM API are packed into a DLC message
buffer.

�6� Hexadecimal display of data passed through the SNALINK LU6.2 address
space

There should be a hexadecimal display for every �4� and �5� event.

�7� Change number of sessions (CNOS) data

Refer to the OS/390 eNetwork Communications Server: SNA Programmers
LU 6.2 Guide for more information about CNOS processing.

Using IP Packet Trace
The IP packet trace facility is used to trace the flow of IP packets. It is useful when
tracking the cause of packet loss or corruption.

If the LINKNAME parameter of the IP packet trace facility is specified, only packets
transferred along the given link are traced. Specifying this parameter is
recommended to avoid tracing a large number of unrelated packets. The following

�6� 45000114000200003C0179DD010301020103010300003A9003863740C
521A047E0A474CDE4014469

70F7ECA6577AF7E7C98A28B3D28B152730E78CF9C39EB1651D187E1EF935F43A
DCC89DB647CA288E

50DBBAF3BDC9B32C6F6659B1A9846B26DED06BDAA37C9DFE96A7AC79A8BF0743
966346240EB7D349

664C02D818C37E7105A06530A619F261F0265602CB68EE2B3AA417020CE6B8F5
B5F99E80904EC91E

7C1B12A72E715AA0102C187559A012244761A009552307E1DB276B869CFAB109
477CFCC591029435

641F0EBCB62D6B7CD7A577BA547AF9D7276F6E29CB3FE6842F8FA3CBC5BFE7FC
591A36CD2583F676

EBC69ACAD273A6D391F3E5D640D3F49A97076C9C151695961421531B3AB6AE60
3C649A2E00000000

�5� IP datagram packed into message, length= 276
LU= X3839L63, Linkname= L622 , IP address = 1.3.1.2

Received operator shutdown request
�2� Link L622 closed

Figure 40. SNALINK LU6.2 Internal Trace Output (Part 2 of 2)

Chapter 14. Diagnosing SNALINK LU6.2 Problems 291

command, when passed to the SNALINK LU6.2 interface, starts the SNALINK
LU6.2 address space packet trace function:
MODIFY procname,PKTTRACE ON LINKNAME=link_name

where procname is the member name of the cataloged procedure used to start the
local SNALINK LU6.2 address space and link_name is the local TCP/IP host
SNALINK LU6.2 link name.

See “Chapter 5. TCP/IP Services Traces and IPCS Support” on page 47 for details
about how to use the IP packet trace facility. Figure 31 on page 269 shows an IP
packet trace for a local SNALINK LU6.2 host sending PING to a remote SNALINK
LU6.2 host. It was formatted using the TRCFMT command. For details on this
command, see “Formatting a Trace Report Using the TRCFMT Utility” on page 264.

Figure 41 shows an example of a CTRACE formatted packet trace record.

TCP/IP Internal Traces
The TCP/IP internal traces are written to the data set specified on the TCP/IP
address space SYSDEBUG ddname statement. These traces provide information
on the internals of the TCP/IP address space that can be used to diagnose
problems in establishing the DLC link between the TCP/IP address space and the
SNALINK LU6.2 address space.

VTAM Buffer Traces
The VTAM buffer traces provide information on the contents of the VTAM API
buffers. This information can be used to follow the data through the VTAM API
interface. For details about VTAM buffer tracing and reading the trace reports, refer
to OS/390 IBM Communications Server: SNA Diagnosis V2 FFST Dumps and the
VIT.

SYSM PACKET 00000001 13:29:20.210227 Packet Trace
TO LINK = FDDIB0 DEV = LCS_FDDI FULL
TOD CLOCK = XB1B69613 5352AF02 TIME ZONE = XFFFFBCF1
PKT 11744 LOST RECORDS = 0 HDR SEQUENCE NUM = 0
IP SRC = 152.85.63.3 IP DST = 152.85.156.24
HDLEN = 5 TOS = X00 TOTLEN = 167 ID = 55401 FLAGS = (none)
FRAGOFF = 0 TTL = 64 PROTOCOL = TCP CHECKSUM = X9621 FFFF
TCP SRC PORT = 721 TCP DST PORT = 515
SEQ NUM = 1481366540 ACK NUM = 23384773 FLAGS = ACK PSH
HDLEN = 5 WINDOW = 32767 CHECKSUM = XDCAF FFFF URGENT PTR = 0
HEADER LENGTH = X0028
0000 450000A7 D8690000 40069621 98553F03 *...xQ... .o.q...│E....i..@..!
0010 98559C18 02D10203 584BDC0C 0164D2C5 *q....J........KE│.U......XK..
0020 50187FFF DCAF0000 *&."..... │P.......

DATA LENGTH = X007F
0000 48545641 5359534D 2E434841 2E545641 *.......(........│HTVASYSM.CHA
0010 2E474F56 0A505650 53503032 31370A66 *..│..&.&.&......│.GOV.PVPSP02
0020 64664138 32365456 41535953 4D2E4348 *............(...│dfA826TVASYS
0030 412E5456 412E474F 560A5564 66413832 *.......│........│A.TVA.GOV.Ud
0040 36545641 5359534D 2E434841 2E545641 *.......(........│6TVASYSM.CHA
0050 2E474F56 0A4E5359 534D2F56 50532F49 *..│..+...(..&...│.GOV.NSYSM/V
0060 444D5955 2E49444D 59552E4A 4F423033 *.(.....(....│...│DMYU.IDMYU.J
0070 3339392E 44303030 30303041 2E3F0A *............... │399.D000000A

Figure 41. A CTRACE Formatted Packet Trace Record

292 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Finding Abend and Sense Code Documentation
The following list refers to the appropriate abend and sense code documentation for
all abend and sense codes expected in the SNALINK LU6.2 network connection:

v Refer to OS/390 IBM Communications Server: IP Messages Volume 1 (EZA) and
OS/390 IBM Communications Server: IP and SNA Codes for detailed SNALU6.2
abend code descriptions.

v Sense codes in SNALINK LU6.2 error messages are generated by VTAM. Refer
to OS/390 IBM Communications Server: SNA Diagnosis V2 FFST Dumps and
the VIT and OS/390 IBM Communications Server: IP and SNA Codes for detailed
sense code descriptions.

Finding Error Message Documentation
The following list refers to the appropriate error message documentation for all error
messages expected when using SNALINK LU6.2:

v Error messages from SNALINK LU6.2 are written to the SNALINK LU6.2
SYSPRINT data set and the MVS system console. Refer to OS/390 IBM
Communications Server: IP Messages Volume 1 (EZA) and OS/390 IBM
Communications Server: IP and SNA Codes for descriptions of the SNALINK
LU6.2 error messages.

v Error messages from TCP/IP are written to the TCPIP SYSERROR data set.
Refer to OS/390 IBM Communications Server: IP Messages Volume 1 (EZA) and
OS/390 IBM Communications Server: IP and SNA Codes for descriptions of the
error messages in these data sets.

v Error messages from VTAM are written to the MVS system console. Refer to
OS/390 IBM Communications Server: SNA Diagnosis V2 FFST Dumps and the
VIT and OS/390 IBM Communications Server: IP and SNA Codes for
descriptions of the VTAM error messages written to the MVS system console.

Chapter 14. Diagnosing SNALINK LU6.2 Problems 293

294 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 15. Diagnosing Dynamic Domain Name Server
(DDNS) Problems

This chapter describes how to diagnose problems involving the BIND-based
dynamic domain name server (DNS). Problem diagnosis involving connection
optimization is also described.

Note: For additional information on diagnosing problems with a BIND-based name
server, refer to DNS and BIND, 2nd Edition, Paul Albitz and Cricket Liu
(Sebastopol, CA: O’Reilly & Associates, 1997), ISBN: 1-56592-236-0.

If, after reading this chapter and DNS and BIND, you are unable to solve a
DNS-related problem and you require the services of the IBM Software
Support Center, please have available the output from syslogd and
documentation from debug level 11.

Diagnosing Name Server Problems
The following methods are available for identifying name server problems:

v “Checking Messages Sent to the Operators Console”

v “Checking the Syslog Messages”

v “Using the onslookup and NSLOOKUP Commands” on page 296

v “Using the Debug Option with the Name Server” on page 296

v “Debugging with a Resolver Directive” on page 297

v “Using Name Server Signals” on page 297

v “Using the NSUPDATE Command” on page 298

v “Using Component Trace” on page 298

These methods are discussed in the following sections.

Checking Messages Sent to the Operators Console
Messages that display automatically on the operator’s console indicate the status of
your name server. Check console messages regularly to identify problems.

Messages fall into the following four categories:

v Name server initialization

v Name server initialization failure

v Name server initialization complete (always EZZ6475N)

v Name server termination

For explanations of console messages, refer to OS/390 IBM Communications
Server: IP Messages Volume 1 (EZA).

Checking the Syslog Messages
Error messages can also be sent to a log file. You specify the name and location of
the this file in the syslog configuration file /etc/syslog.conf. Be sure to start syslogd
before you start the named daemon.

© Copyright IBM Corp. 1994, 2000 295

For descriptions of the syslog file and the syslogd daemon, refer to the OS/390 IBM
Communications Server: IP Configuration Guide. For information about syslog
messages, refer to OS/390 IBM Communications Server: IP Messages Volume 3
(EZY-EZZ-SNM).

Using the onslookup and NSLOOKUP Commands
The onslookup and NSLOOKUP commands are helpful in diagnosing
name-resolution problems in the OS/390 UNIX and TSO environments, respectively.
Both commands query name servers with query packets similar to those of name
servers.

The amount of information a name server provides depends on the debugging level.
The lower the debugging level, the less information is provided. Level 1 provides
basic information about timeouts and response packets. To turn on debugging at
level 1, enter the following commands from the OS/390 UNIX shell:

onslookup

set debug

To turn the debugging off, enter the set nodebug command.

You can set the debugging option to level 2 by entering the following commands:

onslookup

set d2

In addition to level 1 information, level 2 displays the query packets that were sent.
To turn d2 off, enter set nod2. Turning off d2 does not turn off level 1 debug. To
turn off both d2 and debug, enter set nodebug.

For more information about the onslookup and NSLOOKUP commands, refer to the
OS/390 IBM Communications Server: IP User’s Guide.

Note: The onslookup command messages do not give a message ID for debugging
and are not documented in the IBM Communications Server for OS/390
library.

Using the Debug Option with the Name Server
You specify debugging in the JCL start procedure for the named server.
Alternatively, you can specify debugging with the -d option on the named command.
Valid levels for this option are in a range from one to 11, where 11 supplies the
most information. Debugging information is sent to the file /tmp/named.run.

If named is started from the OS/390 UNIX shell with the -d option, use the
ampersand (&) character as a shell operator at the end of the command line to run
named in the background. If you do not use the ampersand, the named tracing
process occupies the OS/390 UNIX shell.

Debug information generated during zone transfers is written to /tmp/xfer.ddt.xxxxxx,
where xxxxxx is a unique identifier. One of these files is generated for each zone
for which the named daemon is a secondary server. If the debug level is six or
greater, the debug information exchanged during the last initiated zone transfer is
written to /tmp/xfer.trace.

For details on the named command, refer to the OS/390 IBM Communications
Server: IP Configuration Reference.

296 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Debugging with a Resolver Directive
Programs that query name servers are called resolvers. To debug name-resolution
problems, you can specify the debug option in the file /etc/resolve.conf (using the
options debug directive) or in the TCP/IP configuration file. The resolver trace is
sent directly into the output stream for the command using the resolver (for
example, nslookup).

Using Name Server Signals
You can use OS/390 UNIX signals to send messages to the named daemon. The
following signals are available:

HUP Reloads the boot file, named.boot, from the disk

INT Dumps the contents of the name server database and hints (root server) file
into the /tmp/named_dump.db file

ABRT Dumps the current statistics of the name server in the /tmp/named.stats file

USR1 Starts debug tracing for the name server and causes the named daemon to
write debugging information to the file /tmp/named.run. USR1 can also be
used to increase the debug level. Every time the USR1 signal is received,
the debug level is increased until it reaches 11.

USR2 Stops debug tracing for the named daemon kill -USR2 $(cat
/etc/named.pid)

SIGWINCH
Toggles query logging on and off. Use query logging to identify resolver
configuration errors. When query logging is turned on, a running name
server logs every query with the syslog daemon. The syslog messages that
are displayed include the IP address of the host that made the query and
the query itself.

Note: Signals do not affect zone transfers in progress. If debug is on, debugging
for zone transfers occurs when the command named_xfer is invoked.

A sample MVS start procedure is included in the samples directory that lets you
issue these signals to the name server from the MVS operator’s console. The name
of the sample is nssig. It has one parameter, sig. If the sample procedure is
unaltered, a typical invocation from the operator’s console would be the following:

s nssig,sig=hup

Values for the sig parameter are the same as those for the -s parameter of the
OMVS kill command. The following examples show how to use name server signals
with the kill command. The process ID of the named daemon is stored in the
/etc/named.pid file on startup.

v To dump the contents of the name server database, enter the kill -INT $(cat
/etc/named.pid) command from the OS/390 UNIX shell, and then check the file
/tmp/named_dump.db.

v To get short status from the named daemon, enter the kill -ABRT $(cat
/etc/named.pid) command from the OS/390 UNIX shell, and then check the file
/tmp/named.stats.

v To enable debug message logging for the named daemon, enter the kill -USR1
$(cat /etc/named.pid) command from the OS/390 UNIX shell, and then check
the file /tmp.named.run.

v To disable debugging, enter the kill -USR2 $(cat /etc/named.pid) command from
the OS/390 UNIX shell.

Chapter 15. Diagnosing Dynamic Domain Name Server (DDNS) Problems 297

v To turn query logging on, enter the kill -WINCH $(cat /etc/named.pid) command
from the OS/390 UNIX shell. Before logging queries, make sure that the syslog
daemon is logging LOG_INFO messages. To turn off query logging, send another
kill -WINCH $(cat /etc/named.pid) signal to the name server.

Note: You can also turn query logging on by inserting the directive, options
query-log, in the name server boot file or by starting the name server with
-q on the command line.

Using the NSUPDATE Command
The NSUPDATE command creates and executes Domain Name System (DNS)
update operations on a host record. The -v option is used for debugging. It turns on
verbose mode and displays all requests to and responses from the name server. To
turn on debugging, enter the following commands from TSO:

NSUPDATE

set v

For details on the NSUPDATE command, refer to the OS/390 IBM Communications
Server: IP User’s Guide .

Using Component Trace
You can use the component-trace function to trace data at the TCP/IP layer. This
information can be helpful in resolving name-resolution problems. For detailed
information on the component-trace function, see “Chapter 5. TCP/IP Services
Traces and IPCS Support” on page 47.

Return Codes
Following are the return codes, origination of the return codes, and explanations for
the most common problems that you might encounter:

Return Code Origin Explanation

0 N/A Successful.

-2 Local error Input error.

-10 Local error No key found in ETC\DDNS.DAT. A key is needed
because either -f was specified or there is a KEY RR
already in the name server data.

-11 Local error Key in ETC\DDNS.DAT not valid. Does not
authenticate the user.

-12 Local error No response received from the name server.

-1 Local error Represents any other (local) error not specified
above.

1 Server error Format error. The name server was unable to
interpret the request.

2 Server error Server failure. The name server was unable to
process this request because of a problem with the
name server.

3 Server error Name error. The domain name specified does not
exist.

4 Server error Not implemented. The name server does not support
the specified Operation code.

5 Server error Refused. The name server refuses to perform the
specified operation for security or policy reasons.

298 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Return Code Origin Explanation

6 Server error Alias error. A domain name specified in an update is
an alias.

7 Server error Name Exists error. A name already exists. This return
code is only meaningful from a server in response to
an ADDNAMENEW operation.

8 Server error Record error. Indicates that a resource record (RR)
does not exist. This return code is only meaningful
from a server in response to a DELETE operation.

9 Server error Zone error. Indicates that the update is to be
performed on a zone for which the server is not
authoritative, or that the records to be updated exist in
more than one zone.

10 Server error Ordering error. If an ordering mechanism is used (for
example, a SIG RR or a SOA RR), this code indicates
an ordering error. Time-signed problems are also
indicated by this return code.

Diagnosing Problems with Connection Optimization
Connection optimization is a technique that uses DNS for balancing IP connections
and workload in a sysplex domain. You may encounter two types of problems
involving connection optimization:

v Addresses not being returned

v Connection problems

Addresses Not Being Returned
If the interface IP addresses defined for TCP/IP in the hlq.PROFILE.TCPIP data set
and in your forward domain data file are not returned to your clients, one or more of
the following situations is possible:

v The adapters associated with those addresses have not been started. If this is
the problem, start the adapters.

v The adapters are started, but the stack is not registered with Workload Manager
(WLM). This situation affects clients using the sysplex domain name (for
example, mvsplex.mycorp.com, where mvsplex is the name of the sysplex and
mycorp.com is the domain name). For information on how to register stacks,
refer to the OS/390 IBM Communications Server: IP Configuration Reference.

v WLM has not refreshed the name server since the adapters associated with
those addresses started. By default, WLM updates the name server every
minute. If the name server has not received the most recent information from
WLM, waiting at least two minutes should remedy the situation. To set the
refresh, use the -t option on the named command.

v The name server did not start and did not return any addresses. If this is the
problem, start the name server. For directions on starting the name server, refer
to the OS/390 IBM Communications Server: IP Configuration Reference.

v The CLUSTER keyword was not coded in the primary or secondary directive in
the boot file. This causes the name server to only use the statically defined
names in the forward domain data file; the name server does not add
dynamically generated names and optimization does not occur. If this is the
problem, code the CLUSTER keyword to identify the sysplex domain.

v The host that owns the addresses defined for TCP/IP in the hlq.PROFILE.TCPIP
data set and in the forward domain data file is short on capacity. If a host system

Chapter 15. Diagnosing Dynamic Domain Name Server (DDNS) Problems 299

has little or no capacity for new connections, the name server receives weights
from WLM that favor other hosts. Consequently, the overloaded host system may
not receive any new connections.

v No server applications are registered with WLM or they are not currently
available. This affects clients that attempt to use the server application group (for
example, myserver.mvsplex.mycorp.com, where myserver is the name of the
server group). For information on registering servers, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

v A server application on a particular host is not registered with WLM or is not
available. This affects clients that use the group name qualified with the server
name (for example, myserver3.myserver.mysplex.mycorp.com).

v The sysplex connections between hosts in the sysplex are not functioning.

Connection Problems
If clients attempting to reach servers in your sysplex occasionally get connection
timeouts or are unable to access servers in your sysplex, one or more of the
following situations is possible:

v The server running at the address given to the client application has been
started, but is not totally active due to hardware problems or system definition
problems. If this is the problem, refer to OS/390 IBM Communications Server: IP
Configuration Guide.

v The adapter associated with the address stopped recently, and that information
has not yet reached the name server. Because the name server and WLM
synchronize their data at one-minute intervals by default (they are not in constant
communication), the name server does not learn immediately about stopped
adapters. To change the length of the interval, use the named -t option on the
named command.

v The host owning an unusable address is unreachable in your TCP/IP network.
Because WLM and the name server communicate through the sysplex
communication mechanisms (sysplex CTCs or XCF) and your TCP/IP network
does not, it is possible that the adapter associated with the unusable address is
active, but routers in the TCP/IP network cannot reach it. Avoid this type of
problem by using VIPA addresses on your sysplex hosts.

300 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|

Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems

This chapter contains diagnosis information about the classic (non-OS/390 UNIX)
Remote Execution Protocol (REXEC), the Remote Execution Protocol Daemon
(REXECD), and the remote shell client (RSH). Refer to “General Information about
REXEC and RSH” for information about REXEC and RSH and to “General
Information about REXECD” on page 305 for information about REXECD.

General Information about REXEC and RSH
REXEC and RSH are remote execution clients that allow you to execute a
command on a remote host and receive the results on the local host. REXEC and
RSH commands can be executed from the TSO command line or as a batch
program.

Note: Refer to the OS/390 IBM Communications Server: IP Configuration
Reference for information about defining the remote execution server.

Figure 42 shows the principle behind REXECD.

Documentation for REXEC Problem Diagnosis
The following kinds of information might be required to diagnose a REXEC problem:
v REXEC console log
v REXEC debug trace

TSO Console Log
The TSO console log should be saved and made available, particularly if there are
any error messages displayed at the console.

TCP/IPnetwork

User

(512)

(514)

Server

Localhost Remotehost

REXEC

REXECD

Process

RSH

Process

Process

= start
=
=
=
=
= end

Figure 42. Remote Execution Protocol Principle

© Copyright IBM Corp. 1994, 2000 301

Activating the REXEC Debug Trace
To activate the REXEC debug trace, the following command needs to be specified:

REXEC -d

Note: Refer to the OS/390 IBM Communications Server: IP User’s Guide for more
information about REXEC commands.

REXEC Trace Example and Explanation
Figure 43 on page 303 shows an example of an REXEC trace. Short descriptions of
the numbered items in the trace follow the figure.

Note: REXEC trace output is sent to the TSO console from which the command
was submitted.

302 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of numbered items in the trace:

�1� The REXEC parameters that are entered at the console or received from
batch

�2� The command that is to be sent to the remote host

�3� The client is attempting to resolve the name to an IP address by calling
GetHostResol.

�4� The port number, user ID, password, and command sent to the REXECD

�5� Length of data being sent

�6� Length of data passed back to the REXEC client

rexec -d -l walton -p terrica red time

�1�
EZA4772I parms are -d -l walton -p terrica red time

EZA4756I Variables have the following assignments:
EZA4757I fhost : red
EZA4758I userid : walton
EZA4759I passwd : terrica

�2�
EZA4760I command : time

EZA4801I MVS TCP/IP REXEC CS/390 V2R10
�3�
EZA4780I calling GetHostResol with red

EZA4791I Connecting to red 9.67.112.25, port REXEC (512) (8900)
EZA4783I Passive Conn - OK(8520) on local port 1064
EZA4785I passive open complete on port 0
EZA4786I Active Conn - OK(8520) on local port 1065
EZA4788I active open complete on port 1
EZA4774I rexec invoked;

�4�
EZA4775I sending: 1064 walton terrica time
�5�
EZA4776I D2 len 25

EZA4738I getnextnote until DD
EZA4739I Connection state changed (8681)
EZA4740I Trying to open (8676)
EZA4739I Connection state changed (8681)
EZA4740I Open (8673)
EZA4739I Data delivered (8682)

�6�
EZA4743I Bytes in 76
�7�
TIME-02:30:32 PM. CPU-00:00:00 SERVICE-1308 SESSION-00:00:00 FEBRUARY 8,

1998
EZA4739I Data delivered (8682)
EZA4743I Bytes in 1
EZA4739I Connection state changed (8681)
EZA4740I Sending only (8675)
EZA4739I Connection state changed (8681)
EZA4740I Connection closing (8670)
EZA4739I Connection state changed (8681)
EZA4740I Sending only (8675)
EZA4739I Connection state changed (8681)
EZA4740I Connection closing (8670)
EZA4751I Returning from recv_notices.
EZA4778I returning from REXEC_UTIL
EZA4789I rexec complete

Figure 43. Example of an REXEC Trace

Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems 303

�7� Actual command output sent to the client

RSH Trace Example and Explanation
Figure 44 shows an example of an RSH trace. Short descriptions of numbered
items in the trace follow the figure.

Note: RSH trace output is sent to the RSH console.

Following are short descriptions of numbered items in the trace.

�1� The RSH parameters that are entered at the console or received from batch

�2� The command that is sent to the remote host

rsh -d -l walton/terrica tiffany time
�1�
EZA5022I parms are RSH -d -l walton/terrica tiffany time

EZA5006I Variables have the following assignments:
EZA5007I fhost : tiffiany
EZA5049I locuser : adrian
EZA5008I userid : walton/terrica

�2�
EZA5010I command : time
�3�
EZA5030I calling GetHostResol with tiffany

EZA5041I Connecting to tiffany 9.67.112.25, port RSH (514) (8902)
EZA5033I Passive Conn - OK on local port 1023
EZA5035I passive open complete on port 0
EZA5036I Active Conn - OK on local port 1023
EZA5038I active open complete on port 1
EZA5046I rsh invoked;

�4�
EZA5025I sending: 1023 adrian walton/terrica time
�5�
EZA5026I D2 len 34

EZA4988I getnextnote until DD
EZA4989I Connection state changed (8681)
EZA4990I Trying to open (8676)
EZA4989I Connection state changed (8681)
EZA4990I Open (8673)
EZA4989I Data delivered (8682)

�6�
EZA4993I Bytes in 73
�7�
TIME-07:22:19 AM. CPU-00:00:00 SERVICE-1199 SESSION-00:00:00 MARCH 4,1998

EZA4989I Data delivered (8682)
EZA4993I Bytes in 1
EZA4989I Connection state changed (8681)
EZA4990I Sending only (8675)
EZA4989I Connection state changed (8681)
EZA4990I Connection closing (8670)
EZA4989I Connection state changed (8681)
EZA4990I Nonexistent (8672)
EZA4989I Connection state changed (8681)
EZA4990I Sending only (8675)
EZA4989I Connection state changed (8681)
EZA4990I Connection closing (8670)
EZA5001I Returning from recv_notices.
EZA5047I returning from RSH_UTIL
EZA5048I rsh complete

Figure 44. Example of an RSH Trace

304 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�3� The client is attempting to resolve the name to an IP address by calling
GetHostResol.

�4� The port number, user ID, password, and command sent to the REXECD

�5� Length of data being sent

�6� Length of data passed back to the RSH client

�7� Actual command output sent to the client

General Information about REXECD
The remote execution server allows execution of a TSO batch command that has
been received from a remote host. REXECD supports both the remote execution
command (REXEC) and remote shell (RSH) client protocols.

Documentation for REXECD Problem Diagnosis
The following kinds of information might be required to diagnose a REXECD
problem:
v REXECD console log
v REXECD traces

MVS System Console Log
The MVS system console log should be saved and made available, particularly if
there are any error messages displayed at the console.

Starting REXECD Server Traces
To run the REXECD trace, REXECD must be started with one or more of the
following options on the TRACE parameter in the PROC statement:

LOG
Specifies to write trace records to the SYSPRINT data set

SEND
Specifies to send trace records to the REXEC or RSH client

CLIENT
Specifies a specific client host for which trace records are to be produced

ALLCLIENTS
Specifies that host records are to be produced for all clients

Refer to the OS/390 IBM Communications Server: IP Configuration Reference for
more information about the options.

Notes:

1. REXECD trace output is included in the job output log.

2. If more than one trace option is selected, the options must be enclosed in
parentheses.

Example of an REXECD Trace of a Client Using the SEND Command
Figure 45 on page 306 shows an example of an REXECD trace of a client using a
SEND command. Short descriptions of numbered items in the trace follow the
figure.

Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems 305

Following are short descriptions of numbered items in the trace:

�1� JOB00043 is the JES job number. The 40 indicates the job is waiting for
execution.

�2� The 80 indicates the job is currently active.

�3� The 20 indicates the job is on the output queue.

Note: Refer to the OS/390 IBM Communications Server: IP Messages
Volume 1 (EZA) for more information about the individual messages
in the trace.

�4� This line shows the return code from the dynamic allocation of the JES data
sent back to the client.

�5� Actual command output sent to the client.

�6� This is the return code expected when there is no more work to do.

Example Trace of an RSH Client Using the SEND Command
Figure 46 on page 307 shows an example of a trace of an RSH client using a
SEND command. Short descriptions of numbered items in the trace follow the
figure.

MVS TCP/IP REXEC CS/390 V2R10
�1�
EZA4383I SSCSARAY:0: JOB00043 40

EZA4383I SSCSARAY:0: JOB00043 80
�2�
EZA4383I SSCSARAY:0: JOB00043 80
�3�
EZA4383I SSCSARAY:0: JOB00043 20

EZA4385I SSSORT(CTRL): 00000000
�4�
EZA4392I S99ret: 00000000, A RSHD NEWALTON.RSHD5.JOB00043.D0000105.?
�5�
TIME-12:04:12 PM. CPU-00:00:00 SERVICE-1157 SESSION-00:00:01 MARCH 9,1998

EZA4393I S99ret: 00000000
�6�
EZA4390I SSSORT(next): 00000004

Figure 45. Example of an REXECD Trace of a Client Using a SEND Command

306 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of numbered items in the trace:

�1� JOB00043 is a previous job that has completed.

�2� The 40 indicates that job JOB00044 is waiting for execution.

�3� The 80 indicates that job JOB00044 is currently active.

�4� The 20 indicates that job JOB00044 is on the output queue.

Note: Refer to OS/390 IBM Communications Server: IP Messages Volume
1 (EZA) for more information about the individual messages in the
trace.

�5� This line shows the return code from the dynamic allocation of the JES data
sent back to the client.

�6� Actual command output sent to the client

�7� This is the return code expected when there is no more work to do.

�1�
EZA4383I SSCSARAY:0: JOB00043 20

EZA4385I SSSORT(CTRL): 00000000
EZA4389I SSSORT(init): 00000004

�2�
EZA4383I SSCSARAY:1: JOB00044 40

EZA4383I SSCSARAY:0: JOB00043 20
EZA4385I SSSORT(CTRL): 00000000
EZA4389I SSSORT(init): 00000004

�3�
EZA4383I SSCSARAY:1: JOB00044 80

EZA4383I SSCSARAY:0: JOB00043 20
EZA4385I SSSORT(CTRL): 00000000
EZA4389I SSSORT(init): 00000004

�4�
EZA4383I SSCSARAY:1: JOB00044 20

EZA4385I SSSORT(CTRL): 00000000
�5�
EZA4392I S99ret: 00000000, A RSHD NEWALTON.RSHD5.JOB00044.D0000105.?
�6�
TIME-12:07:02 PM. CPU-00:00:00 SERVICE-1134 SESSION-00:00:00 MARCH 9,1998

EZA4393I S99ret: 00000000
�7�
EZA4390I SSSORT(next): 00000004

Figure 46. Example of a Trace of an RSH Client Using a SEND Command

Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems 307

308 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 17. Diagnosing OS/390 UNIX REXEC, REXECD, and
RSHD Problems

This chapter contains diagnosis information about the OS/390 UNIX remote
execution protocol (REXEC), the remote execution protocol daemon (REXECD),
and the remote shell daemon (RSHD).

Setting Up the inetd Configuration File
The inetd program is a generic listener program used by such servers as OS/390
UNIX TELNETD and OS/390 UNIX REXECD. Other servers such as OS/390 UNIX
FTPD have their own listener program and do not used inetd.

The inetd.conf file is an example of the user’s configuration file. It is stored in the
/etc directory. Upon startup, the OS/390 UNIX TELNETD server, rshell, rlogin, and
rexec are initiated. If it does not include OS/390 UNIX TCP/IP applications, add the
information shown in Figure 47:

To establish a relationship between the servers defined in the /etc/inetd.conf file and
specific port numbers in the OS/390 UNIX environment, ensure that statements
have been added to ETC.SERVICES for each of these servers. See the sample
ETC.SERVICES installed in the /usr/lpp/tcpip/samples/services directory for how to
specify ETC.SERVICES statements for these servers.

The traces for both the OS/390 UNIX REXECD server and the OS/390 UNIX RSHD
server are enabled by options in the inetd configuration file (/etc/inetd.conf). See
Figure 48.

The traces are turned on for both servers by passing a -d argument to the server
programs. �1� is the RSHD server and �2� is the REXECD server. All commands
executed after the debug flags have been turned on in the inetd configuration file
and the inetd server has reread the file will produce trace output.

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd rshd -l
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd -LV
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -LV

Figure 47. Adding Applications to /etc/inetd.conf

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd rshd -d �1�
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd -d �2�

Figure 48. Setting Traces in /etc/inetd.conf

© Copyright IBM Corp. 1994, 2000 309

The trace is written in formatted form to the syslogd facility name daemon with a
priority of debug. The trace data can be routed to a file in your Hierarchical File
System by specifying the following definition in your syslogd configuration file
(/etc/syslogd.conf):

#
All ftp, rexecd, rshd
debug messages (and above
priority messages) go

to server.debug.a
#
daemon.debug /tmp/syslogd/server.debug.a

In this example, the trace data is written to /tmp/syslogd/daemon.debug.a in your
hierarchical file system. Refer to the OS/390 IBM Communications Server: IP
Configuration Reference for more information about syslogd.

For more information about inetd, refer to OS/390 UNIX System Services Planning
or Accessing OpenEdition MVS from the Internet.

Diagnosing OS/390 UNIX REXEC
The following kinds of information can help you diagnose an OS/390 UNIX REXEC
problem:

v A message beginning with EZYRC

v A code

v An OS/390 UNIX REXEC debug trace

v A REXECD debug trace from the foreign host

Activating the OS/390 UNIX REXEC Debug Trace
To activate the OS/390 UNIX REXEC debug trace, specify the -d option.

OS/390 UNIX REXEC Trace Example and Explanation
Enter the following command with either a dotted decimal address or a host name.

orexec -d -l user21 -p xxx 9.67.113.61 ls -l

The following is an example of the trace output:
EZYRC01I Calling function orexec with the following:
EZYRC02I Host: 9.67.113.61, user user 21, cmd ls -l, port 512
EZYRC191 Data socket = 4, Control socket = 6.

EZYRC01I shows that the OS/390 UNIX REXEC function has been called in the
run-time libraries. EZYRC02I shows the parameters that have been passed to the
REXEC() function in the run-time library. EZYRC191 shows the socket descriptor
being used for the data connection and the control (or standard error) connection.

Diagnosing OS/390 UNIX REXECD
The following kinds of information can help you diagnose OS/390 UNIX REXECD
problem:

v A message beginning with EZYRD

v A code

v An OS/390 UNIX REXECD debug trace

310 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v A trace from the OS/390 UNIX REXECD client

Activating the OS/390 UNIX REXECD Debug Trace
To activate the OS/390 UNIX REXECD debug trace, specify the -d option in the
/etc/inetd.conf file.

OS/390 UNIX REXECD Trace Example and Explanation
These examples are in the file specified in syslogd.conf.

Note: Syslogd must be running to collect these traces and the file must have been
properly specified.

Jun 12 13:31:47 rexecd.851981.: EZYRD31I MVS OE REXECD BASE

The entry is stamped with the date, time, the name of the daemon and the order
number of the daemon, the message number (EZAYRD31I) and related information,
as shown in the following example.

Jun 12 13:31:49 rexecd.851981.: EZYRD03I Remote address = 9.67.113.61
Jun 12 13:31:49 rexecd.851981.: EZYRD05I clisecport = 1029
Jun 12 13:31:49 rexecd.851981.: EZYRD08I User is: user21
Jun 12 13:31:49 rexecd.851981.: EZYRD09I Command is: ls -l
Jun 12 13:31:49 rexecd.851981.: EZYRD12I Name is: USER21, user is user21
Jun 12 13:31:49 rexecd.851981.: EZYRD13I dir is: /u/user21
Jun 12 13:31:49 rexecd.851981.: EZYRD14I uid is: 21, gid is 0

For an explanation of the messages, refer to the OS/390 IBM Communications
Server: IP Messages Volume 1 (EZA).

Diagnosing OS/390 UNIX RSHD
The following kinds of information can help you diagnose an OS/390 UNIX RSHD
problem:

v A message beginning with EZY4S01I

v A code

v A OS/390 UNIX RSHD debug trace

v A trace from the RSH client

Activating the OS/390 UNIX RSHD Debug Trace
To activate the OS/390 UNIX RSHD debug trace, specify the -d option in the
/etc/inetd.conf file.

OS/390 UNIX RSHD Trace Example and Explanation
These examples are from the file specified in syslogd.conf.

Note: Syslogd must be running to collect these traces and the file must exist and
have been properly specified.

Jun 9 12:10:04 rshd.4653080.: EZYRS01I MVS OE RSHD BASE

The entry is stamped with the date, time, name of daemon and the order number of
the daemon, the message number (EZYRS01I) and related information, as shown
in the following example.

Jun 9 12:10:06 rshd.4653080.: EZYRS12I Clisecport = 1020
Jun 9 12:10:06 rshd.4653080.: EZYRS21I Remote user is: OS2USER
Jun 9 12:10:06 rshd.4653080.: EZYRS22I Local user is: user21
Jun 9 12:10:06 rshd.4653080.: EZYRS23I Command is: ls -l

Chapter 17. Diagnosing OS/390 UNIX REXEC, REXECD, and RSHD Problems 311

For an explanation of the messages, refer to the OS/390 IBM Communications
Server: IP Messages Volume 1 (EZA).

Note: If you enable the L or d option, the entry in syslogd will include both user ID
and password in clear text. Either do not specify these flags, or make sure
your syslogd log files are properly protected

If the -U option is specified in /etc/inetd.conf, the OS/390 UNIX RSHD server will
not execute a command when the client host IP address cannot be resolved to a
host name.

Resolving Garbage Errors
There are a few situations where the OS/390 UNIX RSHD server may encounter an
error so early in the processing of a command that the server has not established a
proper EBCDIC-to-ASCII translation yet. In such a situation, the client end user may
see garbage data returned to his or her terminal. A packet trace will reveal that the
response is in fact returned in EBCDIC, which is the reason for the garbage look on
an ASCII workstation. This can happen if the OS/390 UNIX name resolution has not
been configured correctly, so the OS/390 UNIX RSHD server, for example, was not
able to resolve IP addresses and host names correctly. If your RSH clients
encounter such a problem, go back and check your name resolution setup. If you
are using a local hosts table, make sure that the syntax of the entries in your hosts
file is correct.

312 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 18. Diagnosing Network Database System (NDB)
Problems

The network database system (NDB) allows workstation or mainframe users to
issue SQL statements interactively, or to invoke NDB services from within a C
application program. NDB services can then be used to pass SQL statements to the
DB2 subsystem and handle replies from the DB2 subsystem. The NDB client uses
the remote procedure call (RPC) to package the request and issue a remote
procedure call that sends the request to the NDB server. The NDB server passes
the SQL request to the DB2 subsystem for processing. When processing is
complete, the DB2 subsystem passes data or a return code or both to the NDB
server, which returns them to the NDB client.

Note: Refer to the OS/390 IBM Communications Server: IP User’s Guide for more
information about NDB usage.

The components of the Network Database System are shown in Figure 49.

Following are a list of steps corresponding to the numbered items in the figure:

�1� Bring up the NDB port manager (PORTS). When PORTS is started, it
registers its program number with the portmapper, so that portmapper
knows on which port PORTS is listening.

�2� Bring up the NDB servers (to a maximum of 20). Note that the C

1

7

4

2

2

2

8

8

8

5 3

3

4

6

Port
Manager
Server

Client2

PORTC

NDB
Server1

NDB
Server2

NDB
Servern

DB2

PORTS

Servers

Workstation
or Mainframe

Address
Space

Address
Space

Address
Space

Clients

connected

Clientm

Client1

Figure 49. Components of the network database system

© Copyright IBM Corp. 1994, 2000 313

multitasking facility is used by PORTC. The number of NDB servers brought
up is specified as a startup parameter.

�3� Each NDB server, through the NDB port client (PORTC), issues a request
to PORTS for a program number.

�4� PORTS updates its port status and returns a program number.

�5� When an NDB client wants NDB services, it calls PORTS at its program
number and requests the program number of an available NDB server.

�6� PORTS returns the program number of an available NDB server.

�7� The NDB client then calls the NDB server with the program number and
RPC looks up the port number that is used for the connection.

�8� With the connection established, the client can use NDB services to issue
SQL requests by using the NDBCLNT command.

Multiple PORTC PROCs can be started, each supporting one to 20 NDB
servers. Each PORTC address space can access a different DB2
subsystem. A total of 100 NDB servers, across from five to 100 PORTC
address spaces, is supported.

Note: Refer to the OS/390 IBM Communications Server: IP Configuration
Reference for more information about setting up and starting the NDB
clients, the NDB port manager, the NDB servers, and the NDB port client.

Documentation for NDB Problem Diagnosis
The following kinds of information are always required to diagnose an NDB
problem:

v Environment description

– Client environment (for example, OS/2, AIX, or MVS), client level of TCP/IP,
and current CSD level for workstation environments

– Host level of TCP/IP and current maintenance level

v Console output
– Console output from the NDB server (PORTC)
– Keystrokes entered, in sequence, from the client side
– All error messages

The following trace is requested if needed:

- DB2 trace

Definitions
The following definitions are required for you to use NDB:

v The DB2 subsystem that you intend to use with NDB must be defined.

v Portmapper must be installed and functional.

v The NDB port manager address space must be started.

The NDB port manager address space consists of one module, PORTMGR.

v The NDB port client and server address spaces must be started.

– The NDB server address space consists of two modules, PORTCLNT (the
NDB port client) and NDBSS (the NDB server). The NDB server code uses
the C multitasking facility and can manage from one to 20 NDB servers within

314 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

this address space. Refer to the OS/390 IBM Communications Server: IP
Configuration Reference for information about configuring and starting the
address spaces.

– For all platforms, except MVS, the NDB client code must be moved to the
platform from which the user plans to issue SQL statements, and an
executable file must be built. Refer to the OS/390 IBM Communications
Server: IP Configuration Reference for more information.

Diagnosing NDB Problems
Most of the information you need can be gathered through return codes.

Follow these steps to gather information you need:

1. Check the return code and error message. Refer to the OS/390 IBM
Communications Server: IP User’s Guide and OS/390 IBM Communications
Server: IP Messages Volume 1 (EZA) for more information about the return
codes.

2. If the return code is +1 or -20000, make sure that the Portmapper is up and
running (use RPCINFO), that the path to the host running the DB2 subsystem is
available (use PING), and that the DB2 subsystem is up and running (check the
MVS system console). Any of these conditions could result in an RPC error or
timeout.

3. If the return code is -20100. an incompatibility exists between the NDB client
settings of and the NDB server accepted values for specific fields of the NDBC
control block. Currently accepted settings are given in the return code
explanations in the OS/390 IBM Communications Server: IP User’s Guide .
Another possible cause of the problem could be corruption of NDBC control
block on either the client or server side. If you believe this is the problem,
contact the IBM Software Support Center.

If there are problems obtaining DB2 data from the database, use SPUFI to check
the system tables by performing the following analysis steps:

1. Has a BIND has been issued for DBRM DBUTIL2?

To verify a BIND has been issued for DBRM DBUTIL2, issue the following SQL
query:
select * from sysibm.sysplan where name='EZAND320'

If the plan is not found, refer to the OS/390 IBM Communications Server: IP
Configuration Reference for information about binding the DBRM DBUTIL2
(NDBSETUP) to created the plan EZAND320.

2. Is the TSO user ID that is trying to use the plan EZAND320 authorized?

To verify that the TSO user that is trying to use NDB (trying to execute the plan
EZAND320) is authorized, issue the following SQL query:
select * from sysibm.sysplanauth where name='EZAND320'

If neither the user ID executing the plan nor PUBLIC is authorized (that is, listed
in the table under the column grantee), execute one of the following commands:

v Grant execute on plan EZAND320 to user_id

v Grant execute on plan EZAND320 to public

The user_id is the TSO user ID that will execute EZAND320.

3. Has the procedure PORTC been updated to point to the correct DB2 load
library with the suffix DSNLOAD?

Chapter 18. Diagnosing Network Database System (NDB) Problems 315

Verify that the level of DB2 being used is V2R3, or higher, and check the
PORTC PROC to ensure that it is pointing to the same subsystem that was
specified in the PORTC start up parameter DB2SSID and that the BIND for
DBUTIL2 was done.

NDB Trace Examples and Explanations
Figure 50 on page 317 is an example of a trace of the NDB port manager showing
the console trace when two NDB servers are started and one NDB client is invoked.
It corresponds to the NDB port client and server trace found in Figure 51 on
page 319.

Notes:

1. The NDB port manager tracing is off by default. To turn it on, the IBM Software
Support Center must build a module using the DEF(DEBUG) option and send it
to the customer.

2. NDB trace output is included in the job log output from the started NDB
procedure.

316 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�1� This message indicates that the NDB port manager procedure has
successfully completed startup.

�2� The following 10 messages indicate that one NDB server has been started.
These 10 messages are printed out once for each NDB server started, but
with each NDB server being assigned a unique program number.

�3� The following 10 messages are issued each time an NDB client contacts
the NDB port manager for an available NDB server. This is done when an
NDB client is first invoked.

�4� The following 11 messages are issued each time an NDB client-user issues

�1�
18:58:42 EZA3950I NDB PORT MANAGER FOR CS/390 V2R10 STARTED
�2�
NDBPS received request. Calling PORTMGR.

Entering program PORTMGR. SSCB at entry is:
who is 1. smid is MVSL. suid is SYSADM.
prognum is 0. portnum is 0. status is 1.
Entering case: who is NDBSRV(1)
Entering case: status is NEW(1) or INIT(0)
Available NDB Server found. Prognum is 536870944
Exiting program PORTMGR. SSCB at exit is:
who is 1. smid is MVSL. suid is SYSADM.
prognum is 536870944. portnum is 0. status is 3.

�2�
NDBPS received request. Calling PORTMGR.

Entering program PORTMGR. SSCB at entry is:
who is 1. smid is MVSL. suid is SYSADM.
prognum is 0. portnum is 0. status is 1.
Entering case: who is NDBSRV(1)
Entering case: status is NEW(1) or INIT(0)
Available NDB Server found. Prognum is 536870945
Exiting program PORTMGR. SSCB at exit is:
who is 1. smid is MVSL. suid is SYSADM.
prognum is 536870945. portnum is 0. status is 3.

�3�
NDBPS received request. Calling PORTMGR.

Entering program PORTMGR. SSCB at entry is:
who is 2. smid is . suid is .
prognum is 0. portnum is 0. status is 1.
Entering case: who is NDBCLNT(2)
Entering case: status is NEW(1)
Found PORTINFO entry with STATUS of NOT_BUSY. Updating WHO's SSCB fields from PORTINFO entry.
Exiting program PORTMGR. SSCB at exit is:
who is 2. smid is MVSL. suid is SYSADM.
prognum is 536870944. portnum is 0. status is 2.

�4�
NDBPS received request. Calling PORTMGR.

Entering program PORTMGR. SSCB at entry is:
who is 2. smid is . suid is .
prognum is 536870944. portnum is 0. status is 5.
Entering case: who is NDBCLNT(2)
Entering case: status is DONE(5)
Found PORTINFO entry with PROGNUM same as WHO's SSCB PROGNUM.
Setting STATUS in both to NOT_BUSY and reinitializing other fields of PORTINFO.
Exiting program PORTMGR. SSCB at exit is:
who is 2. smid is . suid is .
prognum is 536870944. portnum is 0. status is 3.

Figure 50. NDB Port Manager Trace with Two NDB Servers Started and One Client Invoked

Chapter 18. Diagnosing Network Database System (NDB) Problems 317

the NDB END command. The END command indicates to the NDB port
manager that this NDB client session has finished and the NDB server
associated with it is again available.

Figure 51 on page 319 shows a trace of the NDB port client and NDB servers when
two NDB servers are started, and one NDB client is invoked. It corresponds to the
NBD port manager trace shown in Figure 50 on page 317.

Notes:

1. NDB port client and NDB server tracing is off by default. It can be turned on by
specifying the TRACE parameter at PORTC startup with the option ON or YES.

2. NDB trace output is included in the job log output from the started NDB
procedure.

318 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�1�
18:59:07 EZA4000I PORTCLNT ENTRY FOR MVS VERSION 3
�2�
Tracing is now active. Enjoy your output!
�3�
Program PORTCLNT being executed.

The input parms from startup are as follows:
7 parms were supplied.
argv(0), hopefully name of this module, is PORTCLNT
argv(1), hopefully host name, is MVSL
argv(2), hopefully userid to run under, is SYSADM
argv(3), hopefully constant, is NDBSRV
argv(4), hopefully DB2 subsystem name, is D23
argv(5), hopefully number of servers to start, is 2
argv(6), hopefully trace on indictor, is on

�4�
About to call clnt_create

Returned from clnt_create without error
�5�
Timeout value is 300
�6�
PORTCLNT invoked with Requester NDBSRV

SSCB of PCb contents after setup:
WHO is: 1
SMID is: MVSL
SUID is: SYSADM
PROGNUM is: 0(Dec)
PORTNUM is: 0(Dec)
STATUS is: 1

�7�
PORTCLNT: DB2 name is 3 chars long.

Copied DB2 name into db2sys, D23
�8�
18:59:08 EZA4007I NUMBER OF NDB SERVERS BEING STARTED IS 2
�9�
tinit of MTF about to be called

tinit of MTF successfully called
�10�
Server number 1 is starting up

MVS only code: about to call NDB Port Manager
Successfully returned from call NDB Port Manager
SSCB of Result contents after ports_msg_1:
WHO is: 1
SMID is: MVSL
SUID is: SYSADM
PROGNUM is: 536870944(Dec)
PORTNUM is: 0(Dec)
STATUS is: 3

�11�
18:59:11 EZA4011I SERVER 1 STARTED. PROGNUM IS 20000020(HEX), 536870944(DEC).
�12�
tsched of MTF about to be called

Parms being passed are:
result->prognum is 536870944
db2sys is D23
trace is 1

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 1 of 7)

Chapter 18. Diagnosing Network Database System (NDB) Problems 319

�13�
Server number 2 is starting up

MVS only code: about to call NDB Port Manager
Successfully returned from call NDB Port Manager
SSCB of Result contents after ports_msg_1:
WHO is: 1
SMID is: MVSL
SUID is: SYSADM
PROGNUM is: 536870945(Dec)
PORTNUM is: 0(Dec)
STATUS is: 3

�14�18:59:11 EZA4011I SERVER 2 STARTED. PROGNUM
IS 20000021(HEX), 536870945(DEC).

�15�tsched of MTF about to be called Parms being passed are: result->prognum is 536870945
db2sys is D23 trace is 1

�16�18:59:13 EZA4150I NDB SERVER STARTED WITH PROGNUM 20000020(HEX), 536870944(DEC)
�17�Got DB2 name into NDBSS. It is: D23 Now have copied it into db2ssid. It is: D23

Value of Trace global variable is 1
�18�NDBSRV about to be called on behalf of NDB Client 18:59:36 EZA4151I MVS NDB SERVER

RECEIVED A CALL FROM HOST USERID user1
�19�Entering program NDBSRV

Static var NewUser is 1
NDBC contents at NDBSRV entry is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 0
ndbappl is 1
ndbstat is 0
ndbsname is netdbsrv
ndbusrid is user1
ndbpswd is not echoed in trace
ndbrqdln is 77
ndbrqd is 3bb4668 (Hex)
ndbrpdln is 8192
ndbrpd is 3bc9ff8 (Hex)
ndbrqd contents is:
create table empinfo (empno int, name char(15),salary dec(8,2),hiredate date)
�20�NDBC Reply buffer has been initialized

NDBC Host userid and password verified
NDBC Control Block header fields verified

�21�Entered NewUser conditional code
Calling DBOpen from NDBSRV. name is D23

Entering DBOpen function
DBUTIL2: ssid is D23 and plan is DBUTIL2
DB OPEN: rtc is 0 and rsc is 0
Exiting DBOpen function
In NDBSRV:Open: rtc is 0. rsc is 0(Hex).
CAF OPEN DB was successful.
End of NewUser conditional code. NewUser is 0.

�22�Processing SQL statement. Calling SQLOpen.
Entering SQLOpen function
Value of Init_Done is 0
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 0
Value of numBytes is 0

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 2 of 7)

320 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�23�In SQLOpen, in conditional code for not Init_Done
End of not Init_Done conditional code
Value of Init_Done is 1
Value of numEntries is 60
Value of numBytes is 2656

�24�SQL variables set up. SQLLEN is 77
and SQLSTR is <create table empinfo (empno int, name char(15),salary dec(8,2),hiredate date)>
token, representing type of SQL stmt, is 7

�25�Exiting SQLOpen function
Value of Init_Done is 1
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 60
Value of numBytes is 2656
Back from SQLOpen. RC is 0. NDBSRC is 0

�26�Exiting program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV exit is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 0
ndbappl is 1
ndbstat is 0
ndbsname is netdbsrv
ndbusrid is USER1
ndbpswd is not echoed in trace
ndbrqdln is 77
ndbrqd is 3bb4668 (Hex)
ndbrpdln is 8192
ndbrpd is 3bc9ff8 (Hex)

�27�NDBSRV about to be called on behalf of NDB Client
18:59:43 EZA4151I MVS NDB SERVER RECEIVED A CALL FROM HOST USERID user1

�19�Entering program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV entry is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 0
ndbappl is 1
ndbstat is 0
ndbsname is netdbsrv
ndbusrid is user1
ndbpswd is not echoed in trace
ndbrqdln is 69
ndbrqd is 3bcbf60 (Hex)
ndbrpdln is 8192
ndbrpd is 3bd7ff8 (Hex)
ndbrqd contents is:
insert into empinfo values (10001, 'Andersen', 23456.78,'01/02/1983')

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 3 of 7)

Chapter 18. Diagnosing Network Database System (NDB) Problems 321

�20�NDBC Reply buffer has been initialized
NDBC Host userid and password verified
NDBC Control Block header fields verified

�22�Processing SQL statement. Calling SQLOpen.
Entering SQLOpen function
Value of Init_Done is 1
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 60
Value of numBytes is 2656

�28�In SQLOpen, in else code, therefore Init_Done
End of Init_Done code
Value of Init_Done is 1
Value of numEntries is 60
Value of numBytes is 2656

�24�SQL variables set up. SQLLEN is 69
and SQLSTR is <insert into empinfo values (10001, 'Andersen', 23456.78,'01/02/1983')>
token, representing type of SQL stmt, is 6

�25�Exiting SQLOpen function
Value of Init_Done is 1
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 60
Value of numBytes is 2656
Back from SQLOpen. RC is 0. NDBSRC is 0

�26�Exiting program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV exit is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 0
ndbappl is 1
ndbstat is 0
ndbsname is netdbsrv
ndbusrid is USER1
ndbpswd is not echoed in trace
ndbrqdln is 69
ndbrqd is 3bcbf60 (Hex)
ndbrpdln is 1
ndbrpd is 3bd7ff8 (Hex)

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 4 of 7)

322 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�27�NDBSRV about to be called on behalf of NDB Client
18:59:44 EZA4151I MVS NDB SERVER RECEIVED A CALL FROM HOST USERID user1

�19�Entering program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV entry is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 0
ndbappl is 1
ndbstat is 0
ndbsname is netdbsrv
ndbusrid is user1
ndbpswd is not echoed in trace
ndbrqdln is 21
ndbrqd is 3bcbf90 (Hex)
ndbrpdln is 8192
ndbrpd is 3bd7ff8 (Hex)
ndbrqd contents is:
select * from empinfo

�20�NDBC Reply buffer has been initialized
NDBC Host userid and password verified
NDBC Control Block header fields verified

�22�Processing SQL statement. Calling SQLOpen.
Entering SQLOpen function
Value of Init_Done is 1
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 60
Value of numBytes is 2656

�28�In SQLOpen, in else code, therefore Init_Done
End of Init_Done code
Value of Init_Done is 1
Value of numEntries is 60
Value of numBytes is 2656

�24�SQL variables set up. SQLLEN is 21
and SQLSTR is <select * from empinfo>
token, representing type of SQL stmt, is 5

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 5 of 7)

Chapter 18. Diagnosing Network Database System (NDB) Problems 323

�29�token, representing an SQL SELECT, is 5
SQL PREPARE using SQLDA was successful
SQL DECLARE CURSOR was successful
SQL OPEN CURSOR was successful
Storage for one row plus indicator vars obtained
colBytes is 50. rowBuffer is 58.
Entering SQLFetch function
Value of LocalStat is 0
Value of rowBuffer is 58
rowBufferp is set at 3bd7fb0
Value of colBytes is 50
Top of SQLFetch, RowsInBuff is 0, BufferLeft is 8192
moveRPDp is 3bd7ff8, ndbrpdln is 0
Starting Do Forever loop
rowBufferp storage initialized, moveBufferp is 3bd7fb0, and moveBuffer is 0
SQL FETCH was successful and have formatted a row
AnyRows is 1, RowsInBuff is 1, moveBuffer is 50, BufferLeft is 8142
moveRPDp is 3bd802a, and ndbrpdln is 50
(rowBuffer is 58, rowBufferp is 3bd7fb0)
Starting Do Forever loop
rowBufferp storage initialized, moveBufferp is 3bd7fb0, and moveBuffer is 0
In SQLFetch, after SQL FETCH, sqlcode is 100...but rows were found
Entering SQLClose function
Exiting SQLClose function
End of query, either by EOQ or by error.
Before reinitializing:
rowBufferp is 3bd7fb0, LocalStat is 0, AnyRows is 1
rowBuffer is 58, colBytes is 50
Exiting SQLFetch function
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0

�25�Exiting SQLOpen function
Value of Init_Done is 1
Value of LocalStat is 0
Value of rowBuffer is 0
rowBufferp is set at 0
Value of colBytes is 0
Value of numEntries is 60
Value of numBytes is 2656
Back from SQLOpen. RC is 0. NDBSRC is 100

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 6 of 7)

324 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace.

�1� This message indicates that the NDB port client is starting up.

�2� This trace message indicates that tracing is now active.

�3� The following 10 trace messages show the JCL startup parameters
specified at PORTC startup.

�4� The following two trace messages indicate that the NDB port client was
successful at initiating remote procedure call (RPC) communication with the
NDB port manager.

�5� This trace message indicates that the NDB servers run with an RPC
timeout value of five minutes.

�26�Exiting program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV exit is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 100
ndbappl is 1
ndbstat is 5
ndbsname is netdbsrv
ndbusrid is USER1
ndbpswd is not echoed in trace
ndbrqdln is 21
ndbrqd is 3bcbf90 (Hex)
ndbrpdln is 50
ndbrpd is 3bd7ff8 (Hex)

�27�NDBSRV about to be called on behalf of NDB Client
18:59:46 EZA4151I MVS NDB SERVER RECEIVED A CALL FROM HOST USERID user1

�19�Entering program NDBSRV
Static var NewUser is 0
NDBC contents at NDBSRV entry is:

ndbrel is 1
ndbver is 2
ndbcb is NDBC
ndbsrc is 100
ndbappl is 1
ndbstat is 99
ndbsname is netdbsrv
ndbusrid is user1
ndbpswd is not echoed in trace
ndbrqdln is 3
ndbrqd is 3bcbfa0 (Hex)
ndbrpdln is 8192
ndbrpd is 3bd7ff8 (Hex)
ndbrqd contents is: end

�20�NDBC Reply buffer has been initialized
NDBC Host userid and password verified
NDBC Control Block header fields verified

�30�Processing NDB END command
Entering DBClose function
DBUTIL2:DB CLOSE: rtc is 0 and rsc is 0
Exiting DBClose function
In NDBSRV:Close: rtc is 0. rsc is 0(Hex).
CAF CLOSE DB was successful.
End of END command. NewUser is 1. Return.

�16�18:59:13 EZA4150I NDB SERVER STARTED WITH PROGNUM 20000021(HEX), 536870945(DEC)

Figure 51. NDB Port Client Trace with Two NDB Servers Started and One Client Invoked (Part 7 of 7)

Chapter 18. Diagnosing Network Database System (NDB) Problems 325

�6� The following eight trace messages show the input control block SSCB that
will be used when calling the NDB port manager through RPC.

�7� The following two trace messages indicate that the NDB port client was
able to obtain the DB2 subsystem name passed by the parameter
DB2SSID= of the PORTC procedure and show what value was obtained.

�8� This line shows the number of NDB servers specified on the parameter
NUMSRV= of the PORTC procedure.

�9� The following two trace messages indicate that initialization of NDB servers
startup has successfully completed.

�10� The following 10 trace messages indicate that NDB server 1 was
successfully assigned a program number by the NDB port manager. The
resulting SSCB contents is also shown.

�11� The first NDB server has started up. Its assigned program number is shown
in hexadecimal and decimal notations.

�12� The following five trace messages indicate that NDB server one has been
started up and show the values of the parameters passed to it.

�13� The following 10 trace messages indicate that NDB server 2 was
successfully assigned a program number by the NDB port manager. The
resulting SSCB contents is also shown.

�14� The second NDB server has started up. Its assigned program number is
shown in hexadecimal and decimal notations.

�15� The following five trace messages indicate that NDB server 2 has been
started up and show the values of the parameters passed to it.

�16� The NDB server has started up and is waiting to be assigned to an NDB
client.

�17� The following three trace messages indicate that the parameters passed to
the NDB server were received and what the values of two of those
parameters are. (The third parameter value, program number, is displayed
in the previous message.)

�18� The following two trace messages indicate the NDB server 1 was assigned
to an NDB client and that it has received a request. The host userid the
NDB server is to use when sending the user’s request to DB2 is user1.

�19� The following 19 trace messages show the contents of the input NDBC
control block as received by NDB server 1.

�20� The following three trace messages indicate that the NDB server is ready to
start processing the user’s request. The host userid and password supplied
by the user with the NDB client have passed the security check and the
NDBC control block has been verified as valid.

�21� The following nine trace messages indicate that this is the first call for this
NDB session. The NDB server must establish a connection with DB2. This
is accomplished by opening the plan DBUTIL2 using the DB2 Call
Attachment Facility (CAF). The open of DBUTIL2 was successful.

�22� The following nine trace messages show the initial values of various internal
control fields used in processing the user’s request as they are set at the
start of request processing.

�23� The following five trace messages indicate that this is the first time this
NDB server has been called since being started up. An SQLDA (a control

326 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

block DB2 uses to pass information back to the NDB server about SQL
statements sent to DB2) must be allocated and various initial values set.

�24� The following three trace messages show the user’s SQL statement that will
be sent to DB2.

�25� The following nine trace messages indicate that the user’s SQL statement
was processed successfully. Also, they show the resulting values of various
internal control fields used in processing user requests as they are set at
the end of request processing.

�26� The following 17 trace messages show the contents of the output NDBC
control block that is being sent back to the NDB client.

�27� The following two trace messages indicate that NDB server one has
received another request from the NDB client.

�28� The following five trace messages indicate that NDB server one has been
called previously and so only needs to reinitialize certain fields of the
SQLDA used by DB2 to pass information to the NDB server.

�29� The following 33 trace messages show the path taken to process an SQL
SELECT statement. The number of messages and their content vary
according to the number of rows returned and columns retrieved by the
SQL query. This sequence of messages shows that one row at a time is
retrieved from DB2, is formatted and is placed in the NDBC reply buffer.
The values of various internal fields used to control processing of the SQL
query are displayed.

�30� The following seven trace messages indicate that the user has entered the
NDB END command to end this NDB session. NDB server 1 closes the
connection with DB2 by issuing a DB2 CAF close call for the plan
DBUTIL2. It was successful. An internal indicator is reset so that the next
time this NDB server is invoked, it knows it is starting a new NDB session
with a new or different assigned NDB client.

Chapter 18. Diagnosing Network Database System (NDB) Problems 327

328 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 19. Diagnosing X Window System and OSF/Motif
Problems

An environment variable, XWTRACE, controls the generation of traces of the socket
level communication between Xlib and the X Window System Server.

v XWTRACE undefined or zero — No trace generated.

v XWTRACE=1 — Error messages

v XWTRACE>=2 — API function tracing for TRANS functions

Another environment variable, XWTRACELC, causes a trace of various
locale-sensitive routines. If XWTRACELC is defined, a routine flow trace is
generated. If XWTRACELC=2, more detailed information is provided.

Note: There are no special post-install activities for GDDMXD in CS for OS/390.
(GDDM APAR (PN77391) eliminated these activities for TC/IP Version 3
Release 1.) However, if you have an old GDDMXD load library
(tcpip.v3r1.SEZALNKG) in your LNKLSTxx member in SYSx.PARMLIB, you
need to remove that library from the MVS link list, because it is no longer
needed.

Following are some examples of X Window System traces.

Trace Output When XWTRACE=2
Figure 52 shows a typical stream of socket level activity that is generated when an
X application running on OS/390 UNIX MVS exchanges information with an X
Server.

TRANS(OpenCOTSClient) (/9.2.104.56:0)
TRANS(Open) (1,/9.2.104.56:0)
TRANS(SocketOpenCOTSClient) (inet,9.2.104.56,0)
TRANS(Connect) (3,/9.2.104.56:0)
TRANS(SocketINETConnect) (3,9.2.104.56,0)
TRANS(GetPeerAddr) (3)
TRANS(ConvertAddress)(2,16,7f9d288)
TRANS(SetOption) (3,2,1)
TRANS(SocketWritev) (3,225bc,1)
TRANS(SetOption) (3,1,1)
TRANS(SocketRead) (3,22344,8)
TRANS(SocketRead) (3,22344,8)
TRANS(SocketRead) (3,7f9d368,224)
TRANS(SocketWrite) (3,7f9eb88,60)
TRANS(SocketRead) (3,2249c,32)
TRANS(SocketRead) (3,2249c,32)
TRANS(SocketRead) (3,2249c,32)
TRANS(SocketWrite) (3,7f9eb88,56)
TRANS(SocketRead) (3,22518,32)
TRANS(SocketRead) (3,22518,32)
TRANS(SocketWrite) (3,7f9eb88,80)
TRANS(SocketWrite) (3,7f9eb88,20)
TRANS(SocketRead) (3,223e8,32)
TRANS(SocketRead) (3,223e8,32)
TRANS(SocketDisconnect) (7f9d2c0,3)
TRANS(Close) (3)
TRANS(SocketINETClose) (7f9d2c0,3)

Figure 52. Example of X Application Trace Output When XWTRACE=2

© Copyright IBM Corp. 1994, 2000 329

Each line of the trace provides:

v The name of the function involved from x11trans

v Values of the parameters passed to the function

Trace Output When XWTRACELC=2
Figure 53 is a partial trace showing typical types of information displayed by
locale-sensitive routines.

lcPubWrap:_XlcCreateLC(C)
lcCT:_XlcAddCT(ISO8859-1:GL,"(B)
lcCT:_XlcParseCT
lcCT:_XlcGetCharSetFromEncoding((B)
lcCT:_XlcParseCT returning: 28 charset 0
lcCharSet:_XlcCreateDefaultCharSet(ISO8859-1:GL,""a)
lcCT:_XlcParseCharSet
lcCT:_XlcParseCT
lcCT:_XlcGetCharSetFromEncoding((B)
lcCT:_XlcParseCT returning: 28 charset 0
lcCharSet:_XlcAddCharSet(ISO8859-1:GL)
lcCharSet:_XlcGetCharSet(ISO8859-1:GL)

returned NULL
lcCT:_XlcAddCT returning: 7f994d8...
(trace statements in this section have been deleted)
lcCT:_XlcAddCT(CNS11643.1986-1:GL,"$(H)
lcCT:_XlcParseCT
lcCT:_XlcGetCharSetFromEncoding($(H)
lcCT:_XlcParseCT returning: 2428 charset 0
lcCharSet:_XlcCreateDefaultCharSet(CNS11643.1986-1:GL,"""+)
lcCT:_XlcParseCharSet
lcCT:_XlcParseCT
lcCT:_XlcGetCharSetFromEncoding($(H)
lcCT:_XlcParseCT returning: 2428 charset 0
lcCharSet:_XlcAddCharSet(CNS11643.1986-1:GL)
lcCharSet:_XlcGetCharSet(CNS11643.1986-1:GL)

returned NULL
lcCT:_XlcAddCT returning: 7f9c4e0
lcCT:_XlcAddCT(TIS620.2533-1:GR,"-T)
lcCT:_XlcParseCT
lcCT:_XlcParseCT returning: 80 charset 0
lcFile:_XlcResolveLocaleName(C,""," ""},"2h",)
lcFile:_XlcResolveName(C,/usr/lib/X11/locale/locale.alias)
lcFile:_XlcFileName(7f99420,locale)
lcFile:_XlcResolveLocaleName(C,,"","","")
lcFile:_XlcResolveName(C,/usr/lib/X11/locale/locale.alias)
lcFile:_XlcResolveName(C,/usr/lib/X11/locale/locale.dir)
lcDB:CreateDatabase(/usr/lib/X11/locale/C/XLC_LOCALE)

Figure 53. Example of X Application Trace Output When XWTRACELC=2 (Part 1 of 2)

330 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Each line of trace provides:

v The name of the locale routine

v The function invoked within that locale routine

v Where pertinent, charset name or encoding information or both

v If exiting the invoked function, the trace statement indicates that the function is
returning

0: XLC_XLOCALE, cs0.ct_encoding, 1: ISO8859-1: GL,
1: XLC_XLOCALE, cs0.wc_encoding, 1: \x00000000,
2: XLC_XLOCALE, cs0.length, 1: 1,
3: XLC_XLOCALE, cs0.side, 1: GL:Default,
4: XLC_XLOCALE, wc_shift_bits, 1: 8,
5: XLC_XLOCALE, wc_encoding_mask, 1: \x00008080,
6: XLC_XLOCALE, state_depend_encoding, 1: False,
7: XLC_XLOCALE, mb_cur_max, 1: 1,
8: XLC_XLOCALE, encoding_name, 1: STRING,
9: XLC_FONTSET, fs0.font, 1: ISO8859-1:GL,
10: XLC_FONTSET, fs0.charset, 1: ISO8859-1:GL,

lcDB:_XlcGetResource(7f99420,XLC_XLOCALE,mb_cur_max)
lcDB:_XlcGetLocaleDataBase(7f99420,XLC_XLOCALE,mb_cur_max)
lcDB:_XlcGetResource(7f99420,XLC_XLOCALE,state_dependent)
lcDB:_XlcGetLocaleDataBase(7f99420,XLC_XLOCALE,state_dependent)

returning NULL
lcDB:_XlcGetResource(7f99420,XLC_XLOCALE,encoding_name)
lcDB:_XlcGetLocaleDataBase(7f99420,XLC_XLOCALE,encoding_name)

returning lcd=7f99420
lcFile:_XlcResolveLocaleName(C,"",,"",)
lcFile:_XlcResolveName(C,/usr/lib/X11/locale/locale.alias)

Figure 53. Example of X Application Trace Output When XWTRACELC=2 (Part 2 of 2)

Chapter 19. Diagnosing X Window System and OSF/Motif Problems 331

332 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 20. Diagnosing Simple Network Management Protocol
(SNMP) Problems

The SNMP protocol provides a standardized interface, through which a program on
one host (running an SNMP manager) can monitor the resources of another host
(running an SNMP agent).

Overview
This section provides explanations for SNMP-related concepts and terms.

Management Information Base (MIB)
The information maintained at each agent is defined by a set of variables known as
the management information base, or MIB. In addition to the architected list of
variables that must be supported by each SNMP agent, an SNMP agent can also
support user-defined variables. These user-defined variables that are not part of the
architected MIB are known as enterprise-specific MIB variables.

On CS for OS/390, the majority of the MIB variables are maintained outside the
SNMP agent address space by programs known as SNMP subagents. The
subagent program for the TCP/IP-related MIB variables executes in the TCP/IP
address space. The subagent program for OMPROUTE-related MIB variables runs
as part of OMPROUTE, not as a separate application. The subagent program for
SLA-related MIB variables runs as a separate application. For a list of all the MIB
objects supported by the agent and subagents shipped as part of CS for OS/390,
refer to the OS/390 IBM Communications Server: IP User’s Guide.

In addition, user-written subagent programs can also exist. All subagent programs,
whether provided by CS for OS/390 or user-written, communicate with the SNMP
agent over an architected interface known as the Distributed Protocol Interface, or
DPI.

When the SNMP agent receives and authenticates a request, it passes the request
to the DPI subagent that has registered as the target of the request. You can see
this exchange by enabling DPI tracing within the agent.

PDUs
The SNMP protocol is based on the exchange of protocol data units, or PDUs,
between the SNMP manager and the SNMP agent. SNMP has seven types of
PDUs:

GetRequest-PDU
Sent from the manager to request information from the agent.

GetNextRequest-PDU
Requests the next variable in the MIB tree.

GetBulkRequest-PDU
Requests the next variable in the MIB tree and can also be used to specify
multiple successors.

GetResponse-PDU
Sent from the agent to return information to the manager.

SetRequest-PDU
Sent from the manager to alter information at the agent.

© Copyright IBM Corp. 1994, 2000 333

|
|

|
|

|
|
|

Trap-PDU
Sent from the agent to report network events to the manager. A trap is an
unconfirmed notification.

Inform-PDU
Sent from an agent to a manager or from a manager to another manager to
report a network event. Attempts to confirm delivery are made for
Inform-PDUs, not Trap-PDUs.

Functional Components
The following sections provide detailed descriptions of the SNMP functional
components.

Managers
A manager is a client application that requests management data. CS for OS/390
supports two management applications, the OS/390 UNIX SNMP command
(osnmp) and the NetView SNMP command. The osnmp command is a
management application used from the OS/390 UNIX shell to monitor and control
network elements. The NetView SNMP command provides the same type of
functions from the NetView environment.

The osnmp command runs in a user address space that is created and removed
as osnmp is issued and completed. The NetView SNMP client requires the
following started tasks:

v SNMPIUCV subtask of NetView, which runs in the NetView address space and
provides the operator interface to SNMP.

v SNMP query engine address space, which provides the protocol support for the
SNMP PDUs.

The SNMPIUCV subtask in the NetView address space and the SNMP query
engine address space communicate over an IUCV connection.

Agents
An agent is the server that responds to requests from managers. The agent
maintains the MIB. CS for OS/390 supports a tri-lingual SNMP agent which can
understand SNMPv1, SNMPv2C, and SNMPv3 versions of the SNMP protocol. It
also communicates with the subagents using DPI1.1 and DPI2.0 protocols.

Subagents
Subagents help the agent by managing a part of the MIB. CS for OS/390 supports
the following subagents:

v TCP/IP subagent that manages TCP/IP-related standard MIB objects and several
enterprise-specific MIBs

v OMPROUTE subagent that manages the ospf MIB

v SLA subagent that manages the sla MIB

These subagents communicate with the SNMP agent using the DPI 2.0 protocol.

Trap Forwarder Daemon
The Trap Forwarder daemon on CS for OS/390, listens for SNMP traps on a
specified port and forwards them to other configured ports. This eliminates the port
contention problem when multiple managers want to receive notifications at the
same well-known port (162) at the same IP address.

334 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|

|

|

|
|
|
|
|

Definitions
The SNMP agent, subagents and clients must be configured to TCP/IP before use.
If the NetView SNMP client is used, Netview configuration is also required.

Several configuration data sets are required. Most of the configuration data can be
configured in several places. Details on the syntax of the statements in the files and
the search orders for the files are in the OS/390 IBM Communications Server: IP
Configuration Reference. In the text that follows, upper case file names (such as
OSNMP.CONF) indicate the generic name for the file, which can be any of the
places in the search order for the file.

TCP/IP configuration files for SNMP are summarized below. For use of the NetView
SNMP command, changes are required for the NetView start procedure and the
DSIDMN and DSICMD NCCFLST members of the NetView DSIPARM data set. For
additional information, refer to the OS/390 IBM Communications Server: IP
Configuration Guide.

osnmp
To use osnmp, the following files might be needed:

OSNMP.CONF
Defines configuration data for sending SNMPv1, SNMPv2, and SNMPv3
requests to SNMP agents. You can name this file as either an HFS file or
an MVS data set (partitioned or sequential).

MIBS.DATA
Defines textual names for user variables not included in the compiled MIB
shipped with the product. You can name this file as either an HFS file or an
MVS data set (partitioned or sequential).

SNMP Agent
The SNMP agent (osnmpd) uses the following configuration data sets.

OSNMPD.DATA
Defines initial settings for some MIB variables.

PW.SRC Defines community names, if the SNMPD.CONF file is not being
used. Note that community name is a mixed-case, case-sensitive
field.

SNMPD.BOOTS
Defines SNMPv3 initialization parameters to the SNMP agent if
SNMPv3 security is used.

SNMPD.CONF
Defines security configurations and trap destinations to the SNMP
agent. Required if SNMPv3 security is used. May also be used for
community-based (SNMPv1 and SNMPv2c) security.

SNMPTRAP.DEST
Defines trap destinations, if the SNMPD.CONF file is not being
used.

With CS for OS/390, the SNMP agent allows the use of user-based security
(SNMPv3) in addition to, or instead of, community-based security (SNMPv1 and
SNMPv2c). The choice of configuration data sets depends on the security methods
chosen, as shown in Table 32 on page 336.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 335

|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

||
|
|

|
|
|

|
|
|
|

|
|
|

|

Table 32. Configuration Files and Security Types

Data Set SNMPv1 and SNMPv2c SNMPv1, SNMPv2c, and
SNMPv3

PW.SRC Yes No

SNMPTRAP.DEST Yes No

OSNMPD.DATA Yes Yes

SNMPD.CONF No Yes

SNMPD.BOOTS No Yes

TCP/IP Subagent
The TCP/IP subagent is controlled by statements in the TCP/IP profile. The
following statements are particularly important:

SACONFIG
Defines configuration parameters for the TCP/IP subagent

ITRACE
Specifies the level of tracing used by the TCP/IP subagent

ATM DEVICE and LINK statements
Used when SNMP is to monitor ATM network information

OMPROUTE Subagent
The SNMP OMPROUTE subagent is controlled by statements in the OMPROUTE
configuration file. The following statements are particularly important:

ROUTESA_CONFIG
Defines configuration parameters for the OMPROUTE subagent.
You can also use the command MODIFY ROUTESA.

OMPROUTE start option -s<n>
Specifies the level of tracing used by the OMPROUTE subagent.
You can also use the MODIFY SADEBUG command.

OSPF_INTERFACE
Defines an OSPF interface. The OMPROUTE subagent supports
only OSPF MIB (RFC 1850).

Note: At least one OSPF_INTERFACE must be defined.

SLA Subagent
The SLA subagent is controlled by start options specified when the subagent is
started. The following statements are particularly important:

PAGTSNMP start option -c <community>
Defines the community name to be used in connecting to the
SNMP agent

PAGTSNMP start option -P <port>
Defines the port to be used in connecting to the SNMP agent.

PAGTSNMP start option -d <n>
Specifies the level of tracing used by the SLA subagent. You can
also use the MODIFY TRACE,LEVEL command.

336 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

|||
|

|||

|||

|||

|||

|||
|

|

|
|
|

|
|

SNMP Socket Call Settings
Finally, SNMP makes socket calls that require correct settings in the TCPIP.DATA
file. Statements used by SNMP include:

DATASETPREFIX
Can be used in determining the high-level qualifier for agent configuration
data sets.

MESSAGECASE
Controls whether messages sent to the MVS operator console are
displayed in mixed case or uppercase.

TCPIPJOBNAME
Determines the TCP/IP instance in which SNMP attempts to establish its
relationship through the SETIBMOPT socket call. For more information
about TCPIPJOBNAME, see “Appendix B. Search Paths” on page 521 or
refer to the OS/390 IBM Communications Server: IP Configuration
Reference.

Trap Forwarder Daemon
The Trap Forwarder daemon is controlled by the TRAPFWD.CONF file.
TRAPFWD.CONF defines the configuration data to forward trap datagrams received
on a port to other management applications listening on different ports.

Diagnosing SNMP Problems
Problems with SNMP are generally reported under one of the following categories:
v “Abends” on page 338
v Connection problems

– “Problems Connecting to the SNMPIUCV Subtask” on page 338
– “Problems Connecting the SNMP Query Engine to the TCP/IP Address Space”

on page 339
– “Problems Connecting the SNMP Agent to the TCP/IP Address Space” on

page 340
– “Problems Connecting SNMP Agents to Multiple TCP/IP Stacks” on page 340
– “Problems Connecting Subagents to the SNMP Agent” on page 341

v Incorrect output
– “Unknown Variable” on page 344
– “Variable Format Incorrect” on page 347
– “Variable Value Incorrect” on page 348

v “No Response from the SNMP Agent” on page 349
v “Report Received from SNMP Agent” on page 350
v “I/O Error for SNMP PING” on page 351
v “Traps Not Forwarded by Trap Forwarder Daemon” on page 351
v “Incorrect Address in Forwarded Trap” on page 352

Note: A nonzero return code from the SNMP agent indicates an abnormal
termination. For more information, use the SNMP agent traces sent to the
SYSLOGD output.

Use the information provided in the following sections for problem determination
and diagnosis of errors reported against SNMP.

For additional information, refer to OS/390 IBM Communications Server: IP
Configuration Guide and OS/390 IBM Communications Server: IP Configuration
Reference.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 337

|

|
|
|

|
|

|
|
|

|

Abends
An abend during SNMP processing should result in messages and error-related
information sent to the system console. A dump of the error will be needed unless
the symptoms match a known problem.

Documentation
Code a CEEDUMP DD statement in the PROC used to start the SNMP agent to
ensure that a useful dump is obtained in the event of an abend.

Analysis
Refer to OS/390 MVS Diagnosis: Procedures or “Chapter 3. Diagnosing Abends,
Loops, and Hangs” on page 21, for information about debugging dumps produced
during SNMP processing.

SNMP Connection Problems
This section describes how to diagnosis and correct SNMP connection problems.

Problems Connecting to the SNMPIUCV Subtask
Problems in connecting the SNMPIUCV subtask of NetView to the SNMP query
engine address space are usually indicated by an error message at the NetView
operator console in response to an SNMP request or an attempt to start the
SNMPIUCV subtask.

Documentation: The following documentation should be available for initial
diagnosis of problems connecting the SNMPIUCV subtask to the SNMP query
engine:
v PROFILE.TCPIP data set
v SNMP query engine job output, including SYSPRINT output
v NetView log
v SNMPARMS member of DSIPARMS data set

Analysis: Check for problems connecting the SNMP query engine to the NetView
SNMPIUCV subtask:

1. Has the SNMP query engine job started successfully?
v Check the SNMP query engine job output for errors. If the SNMP query

engine is started successfully, you should see the message:
SQEI001 -- SNMP Query Engine running and awaiting queries...

Otherwise, check for errors that might have occurred during socket
processing (socket, bind, accept, select, and so on).

2. Is the SNMPIUCV subtask started?
v If not, start the subtask by issuing the command:

START TASK=SNMPIUCV

from a NetView operator console.

3. Was the following message received at the NetView operator console?
SNM101W SNMP task (SNMPIUCV) found Query Engine (name) not ready
v Is the name that the SNMPIUCV subtask is trying to connect to the correct

name for the SNMP query engine address space?

– If not, check the SNMPARMS member of the DSIPARMS data set to make
sure that the value specified for the SNMPQE keyword is the correct
SNMP query engine address space name.

338 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

If the problem still occurs after checking the preceding items and making any
needed changes, obtain the following documentation:
v SNMP query engine level 2 trace output
v SNMP query engine IUCV communication trace output

The following documentation might also be needed in some cases, but it is
suggested that the IBM Software Support Center be contacted before this
documentation is obtained:
v Dump of SNMP query engine address space
v Dump of NetView address space

Information about obtaining a dump can be found in the OS/390 MVS Diagnosis:
Tools and Service Aids manual for your release of OS/390. Obtaining SNMP traces
is discussed in “SNMP Traces” on page 353.

Problems Connecting the SNMP Query Engine to the TCP/IP
Address Space
Problems connecting the SNMP query engine to the TCP/IP address space are
usually indicated by an error message in the SNMP client output, indicating either a
socket or IUCV error.

Documentation: The following documentation should be available for initial
diagnosis of problems connecting the SNMP query engine to the TCP/IP address
space:
v PROFILE.TCPIP data set
v SNMP client output, including SYSPRINT output
v TCPIP.DATA data set

Analysis: Check the following for problems connecting the SNMP client address
space to the TCP/IP address space:

1. Did any socket-related errors occur?

Check the SNMP query engine job output for socket(), bind(), accept(), or other
socket error messages.

2. Does job output indicate RC=1011 received for IUCV_CONNECT to tcpip_name?

Is the tcpip_name indicated by the IUCV_CONNECT error the correct name for
the TCP/IP address space?
v Is the correct TCPIP DATA data set being used? (The job output should

indicate which data set is being used).
– Is the SYSTCPD DD statement coded in the PROC JCL?

v Does the TCPIPJOBNAME keyword in the TCPIP DATA data set being used
have the correct TCP/IP address space name?

If the problem still occurs after checking the preceding items and making any
needed changes, obtain SNMP query engine IUCV communication trace output for
problems connecting the client.

The following documentation might also be needed in some cases, but it is
suggested that the TCP/IP IBM Software Support Center be contacted before this
documentation is obtained:
v Dump of SNMP client address space
v Dump of TCP/IP address space

Information on obtaining a dump can be found in the OS/390 MVS Diagnosis: Tools
and Service Aids manual for your release of OS/390. Obtaining SNMP traces is
discussed in “SNMP Traces” on page 353.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 339

Problems Connecting the SNMP Agent to the TCP/IP Address
Space
Problems connecting the SNMP agent to the TCP/IP address space are usually
indicated by an error message in the agent traces in the syslog daemon output,
indicating a socket error. For more information on reading the syslogd traces, refer
to the OS/390 IBM Communications Server: IP Configuration Guide.

Documentation: The following documentation should be available for initial
diagnosis of problems connecting the SNMP agent to the TCP/IP address space:
v PROFILE.TCPIP information
v SNMP agent tracing (at level 255) to the syslog daemon output
v TCPIP.DATA information
v OMVS console output for any command responses and traces

Analysis: Check the following for problems connecting the SNMP client or agent
address space to the TCP/IP address space:

1. Are you connected to the correct TCP/IP address space? This is obviously a
concern when running multiple stacks. See “Problems Connecting SNMP
Agents to Multiple TCP/IP Stacks”.

v If you get a message “unable to connect to TCPIP JOBNAME,” you are not
connected to the correct address space. If you have defined two or more
stacks, make sure your TCPIPjobname in the TCPIP.DATA data set used by
the SNMP agent matches the NAME field on the SUBFILESYSTYPE
statement for ENTRYPOINT(EZBPFIN) in the BPZPRMxx member you used
to start OS/390 UNIX MVS.

2. Did any socket-related errors occur?

Check the SNMP agent syslogd for socket(), bind(), accept(), or other socket
error messages. For example, a bind() failure will occur when one or more of
the ports needed by the SNMP agent is already in use. Refer to the OS/390
IBM Communications Server: IP Configuration Guide for more information about
syslogd.

3. Is the correct TCPIP.DATA information being used? Is the SYSTCPD DD
statement coded in the PROC JCL? Is the RESOLVER_CONFIG environment
variable passed on the SNMP agent initialization parameters?

If the problem still occurs after checking the preceding items and making any
needed changes, obtain the following documentation for problems connecting the
agent.

v Dump of SNMP agent address space

v Dump of OMPROUTE address space (for OMPROUTE subagent problems)

v Dump of SLA subagent address space (for SLA subagent problems)

v Dump of TCP/IP address space

v The syslogd traces from the agent (using trace level 255). Refer to the OS/390
IBM Communications Server: IP Configuration Guide for more information about
reading the syslogd.

Information on obtaining a dump can be found in the OS/390 MVS Diagnosis: Tools
and Service Aids manual for your release of MVS. Obtaining SNMP traces is
discussed “SNMP Traces” on page 353.

Problems Connecting SNMP Agents to Multiple TCP/IP Stacks
To receive TCP/IP related management data, each TCP/IP stack that is started
must run its own SNMP agent. This requires that each agent can find the TCP/IP
jobname of the TCP/IP stack that it wants to associate with.

340 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

Analysis: Check the following for problems connecting the SNMP agent to the
correct TCP/IP stack.

1. Message EZZ6205I indicates that when _iptcpn() was called, it did not return
the correct TCPIPjobname for that agent. Check _iptcpn()’s search path, as
indicated in “Appendix B. Search Paths” on page 521.

2. Message EZZ6272I indicates that the setibmopt call failed. This means that
_iptcpn() returned a name that OS/390 UNIX did not recognize as a PFS.
Check the BPXPRMxx member (in SYS1.PARMLIB) used to configure OS/390
UNIX.

Problems Connecting Subagents to the SNMP Agent
Problems connecting an SNMP subagent to the SNMP agent are generally
indicated by one of the following:

v A socket error at the subagent

v Authentication failures when the subagent attempts to open a connection

v A “no such name” response from the SNMP agent when an SNMPv1 manager
requests a variable owned by the subagent

v A “no such object” response from the SNMP agent when an SNMPv2 or
SNMPv3 manager requests a variable owned by the subagent

Documentation: The following documentation should be available for initial
diagnosis of interface connection problems:
v PROFILE.TCPIP information
v SNMP agent job output, including syslogd output
v TCP/IP subagent syslogd output obtained by specifying the profile statement

ITRACE ON SUBAGENT 2 (if the subagent is the TCP/IP subagent)
v Output of the Netstat HOME/-h command
v TCPIP.DATA information
v OMPROUTE subagent syslogd output obtained by starting OMPROUTE with the

-s1 option or by issuing the MODIFY SADEBUG command to start OMPROUTE
subagent tracing (if the subagent is the OMPROUTE subagent)

v SLA subagent syslogd output obtained by starting the SLA subagent with the -d 2
option or by issuing the MODIFY TRACE,LEVEL command to start SLA subagent
tracing (if the subagent is the SLA subagent).

Analysis: Check the following for problems connecting an SNMP subagent
program to the SNMP agent:

1. Is the subagent in question the TCP/IP subagent? If so,

v Is the SACONFIG statement configured correctly?

v Is SACONFIG disabled?

2. Is the subagent in question the OMPROUTE subagent?

v Is the OMPROUTE ROUTESA_CONFIG statement configured correctly?

v Is the OMPROUTE subagent (ROUTESA) disabled?

v Does the port number match the SNMP agent and OMPROUTE application
for the OMPROUTE ROUTESA_CONFIG parameter AGENT=<agent port
number>?

v Does the community name (or password) match with the SNMP agent and
OMPROUTE application for the OMPROUTE ROUTESA_CONFIG parameter
COMMUNITY=<community string>?

3. Is the subagent in question the SLA subagent?

v Does the port number specified on the -P parameter of the SLA subagent
match the port number specified by the SNMP agent?

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 341

|

v Does the community name (or password) specified on the -c parameter of the
SLA subagent match the community name (or password) specified by the
SNMP agent?

4. If you are using an hlq.HOSTS.SITEINFO file (or its HFS equivalent, /etc/hosts),
you must ensure that the IP address in this file for the system on which the
agent/subagent are executing matches an interface IP address of the TCP/IP
stack to which the agent/subagent are connected. The interface IP addresses
for a TCP/IP stack are defined on the HOME profile statement.

5. Is the subagent using the correct IP address to send the connection request to
the SNMP agent? The subagent uses the primary interface IP address of this
stack when sending the connection request to the SNMP agent. The primary
interface IPS address is either the first IP address in the HOME list or the IP
address specified on a PRIMARYINTERFACE TCP/IP profile statement. Check
the Netstat HOME/-h output to verify the primary interface address of the stack.
This IP address is the one that will be used by the SNMP agent, along with the
community name to verify the subagents authority to connect to the SNMP
agent.

6. Is the port number correct?

7. Is the community name (or password) correct?

Note: Note that community name is a mixed-case, case-sensitive field. Many
times the client cannot get a response from an agent because the agent
has a community string of PUBLIC. Most clients default their community
string to public.

8. If the SNMP agent is configured for SNMPv3, is the community name
configured in the agent SNMPD.CONF file? The subagent can use the
community name only if VACM_GROUP, VACM_VIEW, and VACM_ACCESS
are defined. For the subagent to connect, the VACM_VIEW must include the
dpiPort objects.

9. Did any socket-related errors occur?

Check the SNMP agent/subagent syslogd for socket(), bind(), accept(), or other
socket error messages, particularly error messages related to the DPI
connection.

If the problem still occurs after checking the preceding items and making any
needed changes, obtain the following documentation:

v SNMP agent 255 (trace all) output

v If the problem is with the TCP/IP subagent, get the subagent traces. These are
turned on by specifying the ITRACE statement in the PROFILE.TCPIP file. This
can be done as part of the initial TCP/IP start-up. It can also be done after
TCP/IP has been started by using the VARY TCPIP command, which is
documented in OS/390 IBM Communications Server: IP Configuration Reference.

v If the problem is with the OMPROUTE subagent, get the OMPROUTE subagent
traces. Turn these on by starting OMPROUTE with the -s1 option or by issuing
the MODIFY SADEBUG command to start OMPROUTE subagent tracing.

v If the problem is with the SLA subagent, get the SLA subagent traces. Turn these
on by starting the SLA subagent with the -d 2 option or by issuing the MODIFY
TRACE,LEVEL command to start SLA subagent tracing.

v If the problem is with a user-written subagent program, use the DPIdebug() DPI
library routine to collect dpi traces in the user-written subagent program.
DPIdebug() sends output to the syslogd.

The following is a list of things to look for in the SNMP agent trace:

342 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

1. One of the following incoming SNMP GetRequest-PDU

v dpiPortForTcp (1.3.6.1.4.1.2.2.1.1.1) for TCP connect. This is caused by
DPIconnect_to_agent_TCP

v dpiPathNameForUnixStream (1.3.6.1.4.1.2.2.1.1.3) for UNIX connect. This is
caused by DPIconnect_to_agent_UNIXstream

Some questions to consider:

v Was the GetRequest-PDU received? If the GetRequest was not received,
was it sent to the right port?

In the case of the TCP/IP subagent, the value of the AGENT keyword on the
SACONFIG statement in the profile must match the value of −p that was
specified (or defaulted) when the agent was invoked.

v Does it have a valid community name in the request?
– SNMP subagents must use a valid (including correct case) community

name as defined in the PW.SRC data set (or hlq.SNMPD.CONF data set
when using SNMPv3 security) when requesting the dpiPort or dpiPath
variable.

– Note that community name is a mixed-case, case-sensitive field. Specify
as follows:

- For the TCP/IP subagent, specify the community name in the
SACONFIG statement.

- For the OMPROUTE subagent, specify the community name in the
ROUTESA_CONFIG statement.

- For the SLA subagent, specify the community name by way of the -c
parameter.

v If SNMPv3 is being used, the community name must be defined in the
VACM_GROUP statement in the SNMPD.CONF file for the SNMP agent. A
VACM_ACCESS statement also needs to be defined to give that group read
access to a VACM_VIEW that includes dpiPort objects.

v dpiPathNameForUnixStream defaults to /tmp/dpi_socket and provides an
HFS pathname used in connecting a DPI subagent with the SNMP agent.
The default can be overridden by using the -s parameter when starting the
agent or by adding an entry for dpiPathNameForUnixStream in the
OSNMPD.DATA file.

A user-written subagent running from a nonprivileged user ID needs write
access to the file. Otherwise, a subagent using
DPIconnect_to_agent_UNIXstream() would have to be run from an OMVS
superuser user ID or other user ID with the appropriate privilege.

2. Outgoing GetResponse-PDU for the dpiPort variable
v Was the SNMP GetResponse-PDU sent back to the SNMP subagent?
v Was it sent to the correct IP address?
v Did it have the correct value for the DPI port?

– The actual value for the DPI port for TCP can be determined by issuing an
onetstat -A command at the SNMP agent. This will display the port on
which the agent is accepting incoming UDP requests.

– To display the dpiPath name, issue an osnmp get request for
dpiPathNameForUnixStream.

3. One of the following- incoming subagent connection
v Message EZZ6244I Accepted new DPI inet subagent connection on fd

fd=xx from inet address xxxx port xxxx.
v EZZ6246I Accepted new DPI inet socket connection on fd=xx

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 343

|
|

Note: fd=xx is the number associated with this specific subagent connection.
Use it to correlate with later DPI trace messages. The name and number
of the port xxxxx port xxxx.

4. DPI packets transferred for this FD number

The following documentation might also be needed in some cases, but it is
suggested that the IBM Software Support Center be contacted before this
documentation is obtained:
v Dump of SNMP agent address space
v Dump of TCP/IP address space (for TCP/IP subagent problems)
v Dump of OMPROUTE address space (for OMPROUTE subagent problems)
v Dump of SLA subagent address space (for SLA subagent problems)
v Dump of user SNMP subagent address space
v Trace from subagent in syslogd

Information on obtaining a dump can be found in OS/390 MVS Diagnosis: Tools and
Service Aids. Obtaining SNMP agent traces is discussed in “Starting SNMP Agent
Traces” on page 353.

Incorrect Output

Unknown Variable
Unknown variable problems are indicated by a noSuchName or noSuchObject
response on an SNMP request. The noSuchName response indicates an error
returned on an SNMPv1 request. For SNMPv2 and SNMPv3, more specific errors
are returned, such as noSuchObject and noSuchInstance.

Unknown variable problems are usually caused by one of the following:

v A typographical error in the name or OID

v An incorrect instance number

Note: A common mistake is forgetting to add a dot-zero (.0) to an object that is
not part of a table. For example, a GET for ifNumber returns with “no such
object” while performing a GET on ifNumber 0. If unsure how to proceed,
try a GETNEXT on ifNumber. This will return the point-zero (.0) version of
the OID along with its value.

v The subagent supporting the MIB object is not started or is not completely
connected to the SNMP agent.

v When SNMPv3 is configured, the object is not within the MIB view the user or
community can access.

When the NetView SNMP client is used, unknown variable problems are reported
when the SNMP client receives either a major error code 2 (internally detected
error), minor error code 7 (unknown MIB variable), or a major error code 1 (SNMP
agent reported error), minor error code 2 (no such name) in response to an SNMP
request.

Documentation: The following documentation should be available for initial
diagnosis of unknown variable problems:
v SNMP syslogd output with traces for both the agent and subagent. Refer to the

OS/390 IBM Communications Server: IP Configuration Guide for more
information about syslogd.

v MIBS.DATA, when osnmp is used.
v SNMP query engine job output, when NetView SNMP is used.
v NetView log, when NetView SNMP is used.

344 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v hlq.MIBDESC.DATA data set, when NetView SNMP is used.
v If SNMPv3 security is being used, the SNMP agent configuration file

(SNMPD.CONF). If the osnmp command is the client being used, the osnmp
command configuration file (OSNMP.CONF) may also be needed.

v Include all the configuration files described earlier under “Definitions” on
page 335.

Analysis: Check the following for unknown variables at the SNMP agent:
1. Was the variable requested with the correct instance number?

Variables that are not in a table have an instance number of 0. Variables that
are part of a table may have more than one occurrence of the variable value. To
get the value of the variable, you will need to request a specific instance of the
variable. To find the instance number, issue a GET NEXT request; the first
occurrence of the variable should be returned.

2. If the variable is not defined in any compiled MIB, is the variable name included
in the MIBS.DATA file for the osnmp command) or the hlq.MIBDESC.DATA file
(for the Netview SNMP command)?

3. Did the DPI connection come up successfully?
v Check the SNMP agent job output for messages indicating a problem in

create_DPI_port.
v If the DPI port was not successful, no SNMP subagents will be able to

register MIB variables. The SNMP agent will have no knowledge of these
unregistered variables and will report them as “noSuchName” for SNMPv1
requests or “noSuchObject” for SNMPv2 and SNMPv3 requests.

4. Has the subagent successfully connected to the SNMP agent?

v For subagents shipped as part of CS for OS/390, check the MVS operator
console for a message indicating that the subagent has completed its
initialization.

v Issue an osnmp walk command on the SNMP agent subagent status table.
For example, the following commands display the subagents that are
connected to the CS for OS/390 SNMP agent and the status of their
connections:
osnmp -v walk saDescription

or
osnmp -v walk saStatus

A value of 1 for saStatus indicates that the subagent connection to the SNMP
agent is valid. Following are other possible status values:
invalid (2)
connecting (3)
disconnecting (4)
closedByManager (5)
closedByAgent (6)
closedBySubagent (7)
closedBySubAgentTimeout (8)
closedBySubAgentError (9)

5. If the SNMP agent was configured with SNMPv3 security, is the object within
the MIB view of that allowed for that user or community?

v Look at the agent SNMPD.CONF file to determine to which VACM_GROUP
the user or community name on the failing request belongs. Then examine
the VACM_ACCESS statements for that group for the level of security
requested on the failing request to determine which MIB views have been
permitted to the user or community name.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 345

v Alternatively, SNMP agent configuration can be determined from SNMP agent
traces if they were set to level 255 at agent initialization.

v SNMP agent configuration can also be determined dynamically by issuing
osnmp walk requests against the agent configuration MIB objects, such as
the vacmSecurityToGroupTable and the vacmAcessTable. Reading the values
in these tables requires an understanding of how the tables are indexed.
Refer to Requests for Comments (RFCs) 2573, 2574, and 2575 for an
explanation of the MIB objects containing the SNMP agent configuration.

If the problem still occurs after checking the preceding items and making any
needed changes, obtain the following documentation:

For “variable not recognized by manager” messages:

v If the manager is the osnmp command, use the -d 4 flag to get level 4 manager
traces.

v If the manager is the NetView SNMP command, obtain the SNMP query engine
level 2 output.

The SNMP query engine level 2 trace shows the information flowing between the
SNMP query engine and the SNMPIUCV subtask of NetView. Verify in the trace that
the variable name being requested is being passed correctly to the SNMP query
engine.

For “agent unknown variable”:
v SNMP agent level 15 trace output
v Traces from SNMP subagent programs (if the variable is supported by a CS for

OS/390 subagent)

The SNMP agent level 15 trace will show PDUs between the manager and agent,
as well as between the agent and any existing subagents. Things to look for in the
trace:
1. Is the ASN.1 number received from the manager in the SNMP GetRequest-PDU

correct?
2. Has a DPI packet registering the requested variable been received?

v If not, if you know which subagent program owns the variable, check the
subagent program for errors.

v If the DPI register has been received, make a note of the FD number for
further trace information.

3. Were any errors reported for this FD number after the DPI register request was
received?

4. Was there a DPI information exchange over this FD number as a result of the
incoming SNMP GetRequest-PDU?

Another approach to this problem is to look at the agent saMIB variables. This
information can be useful when traces are not available. The saMIB variables
include the following information:

v An entry for each subagent (including a field for subagent status)

v A table of all trees registered, including

– Subagent to which the tree is registered

– Status of the tree (valid, not valid, and so on)

A description of the saMIB objects can be found in the file samib.mib in the
/usr/lpp/tcpip/samples directory.

346 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

The following documentation might also be needed in some cases, but it is
suggested that the IBM Software Support Center be contacted before this
documentation is obtained:
v Dump of SNMP agent address space
v Dump of TCP/IP address space (for CS for OS/390 subagent variables)
v Dump of OMPROUTE address space (for OMPROUTE subagent problems)
v Dump of SLA subagent address space (for SLA subagent problems)
v Dump of user subagent address space

Information on obtaining a dump can be found in OS/390 MVS Diagnosis: Tools and
Service Aids. Obtaining SNMP traces is discussed later in “SNMP Traces” on
page 353.

Variable Format Incorrect
Problems with incorrectly formatted variables are generally reported when the
variable value from the GetResponse-PDU is displayed at the manager in the
incorrect format (for example, as hexadecimal digits instead of a decimal value or a
display string).

Documentation: The following documentation should be available for initial
diagnosis of incorrectly formatted variables:
v MIBS.DATA, when osnmp is used
v NetView log, when the NetView SNMP command is used
v hlq.MIBDESC.DATA data set, when NetView SNMP is used

Analysis: Check the following:
1. Is the variable contained in the hlq.MIBDESC.DATA data set or MIBS.DATA file?

v The SNMP query engine will use the hlq.MIBDESC.DATA data set to
determine the display syntax of the variable value. NetView SNMP requires
that all MIB object names be included in the hlq.MIBDESC.DATA data set.

v osnmp searches the MIBS.DATA file for a MIB name definition. If it is not
found, the value in the compiled MIB is used.

2. Is the value listed in the syntax position of the hlq.MIBDESC.DATA data set or
MIBS.DATA file record for this variable the correct syntax?

Note that the value specified for syntax (for NetView) is case-sensitive and must
be specified in lowercase.

3. For NetView SNMP, is the variable value type specified in message SNM043I
Variable value type: correct?

Refer to the OS/390 IBM Communications Server: IP User’s Guide section
about “Managing TCP/IP Network Resources Using SNMP” for the meanings of
the variable value types.

If the problem still occurs after checking the preceding and making any needed
changes, obtain the following documentation:
v For the TCP/IP subagent, subagent ITRACE level 4 output to show that the

subagent returned to the SNMP agent.
v For the OMPROUTE subagent, syslogd output obtained by starting OMPROUTE

with the -s1 option or by issuing the MODIFY SADEBUG command to start
OMPROUTE subagent tracing.

v For the SLA subagent, syslogd output obtained by the SLA subagent with the -d
2 option or the MODIFY TRACE,LEVEL command to start SLA subagent tracing.

v For user-written subagents, DPIdebug(2) output, which is sent to the syslogd. For
more information on reading the syslogd traces, refer to the OS/390 IBM
Communications Server: IP Configuration Guide.

v SNMP query engine level 4 trace output or osnmp command trace level 4.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 347

|

v SNMP manager command output showing incorrectly formatted variable.
v SNMP agent level 31 trace output shows the DPI packet exchanges between the

agent and subagent, as well as the value returned to the manager.

In the traces, verify that the variable value and syntax are passed correctly in the
SNMP GetResponse-PDU from the agent to the SNMP manager.

The following documentation might also be needed in some cases, but it is
suggested that the Software Support Center be contacted before this
documentation is obtained:
v Dump of SNMP subagent address space
v Dump of SNMP agent address space
v Dump of SNMP query engine address space
v Dump of OMPROUTE address space (for OMPROUTE subagent problems)
v Dump of SLA subagent address space (for SLA subagent problems)

Information on obtaining a dump can be found in OS/390 MVS Diagnosis: Tools and
Service Aids. Obtaining SNMP traces is discussed in “SNMP Traces” on page 353.

Variable Value Incorrect
Problems with incorrect variable values are generally reported when the variable
value from the GetResponse-PDU displayed at the manager contains incorrect
information.

Documentation: The following documentation should be available for initial
diagnosis of variables with incorrect values:
v SNMP agent syslogd trace output.
v If the object is supported by the TCP/IP subagent, the syslogd output. Obtain the

syslogd output using the profile statement ITRACE ON SUBAGENT 4.
v MIBS.DATA, if osnmp is being used.
v hlq.MIBDESC.DATA, if NetView SNMP is being used.
v NetView log, if NetView SNMP is used.

Analysis: Check the following:
1. Is the object identifier in the MIB description file correct?
2. Were any errors reported at the SNMP agent when the variable was requested?
3. Is the variable being cached at the SNMP query engine?

The SNMP query engine uses the hlq.MIBDESC.DATA data set to determine the
length of time to cache the variable value (or a default time length if the variable
is not found in the hlq.MIBDESC.DATA data set). If the variable is requested
before the caching time is up, the cached value is used instead of obtaining a
new value.

4. Is the variable cached at the TCP/IP subagent?

The TCP/IP subagent caches variable values for the length of time specified by
the ibmMvsSubagentCacheTime MIB object, set by default to 30 seconds.

5. Is the variable supported by the SLA subagent? If so, is it being cached? The
SLA subagent caches MIB objects for 5 minutes by default, but the cache time
can be overridden at subagent initialization time with the -t parameter.

If the problem still occurs after checking the preceding items and making any
needed changes, obtain the following documentation:
v SNMP agent level 3 will show what was returned to the client.
v For the TCP/IP subagent, ITRACE level 4 trace output to show what the

subagent returned to the SNMP agent

348 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

v For the OMPROUTE subagent, syslogd output obtained by starting OMPROUTE
with the -s1 option or by issuing the MODIFY SADEBUG command to start
OMPROUTE subagent tracing

v For the SLA subagent, syslogd output obtained by the SLA subagent with the -d
2 option or the MODIFY TRACE,LEVEL command to start SLA subagent tracing.

v For user-written subagents, DPIdebug(2) output which is sent to the syslogd. For
more information on reading the syslogd traces, refer to the OS/390 IBM
Communications Server: IP Configuration Guide.

In the traces, verify that the variable value is passed correctly from the SNMP
subagent to the SNMP agent and from the SNMP agent to the client.

The following documentation might also be needed in some cases, but it is
suggested that the IBM Software Support Center be contacted before this
documentation is obtained:
v Dump of TCP/IP address space (for CS for OS/390 subagent variables)
v Incorrect values from the TCP/IP subagent are probably due to an error in the

TCP/IP stack. In this case, a dump of the TCP/IP address space and a CTRACE
from the engine might be useful. You can also use the onetstat command to
verify that the TCP/IP subagent is reporting what the TCP/IP engine believes the
value to be.

Information on obtaining a dump can be found in OS/390 MVS Diagnosis: Tools and
Service Aids. Obtaining SNMP traces is discussed in “SNMP Traces” on page 353.

No Response from the SNMP Agent
Problems receiving a response from the SNMP agent are generally reported when
an SNMP request is issued from a manager but no response from the agent is
received. This is usually reported as a timeout message.

Documentation
The following documentation should be available for initial diagnosis when no
response is received from the agent:

v OMVS console output for any command responses and traces, if osnmp is being
used

v NetView console output or command responses if NetView SNMP is used

v SNMP agent syslogd output

v The OSNMP.CONF file (if the osnmp command is the manager)

v PW.SRC or SNMPD.CONF file being used by the SNMP agent

Analysis
Check the following when no response is received from an agent:
1. Is the SNMP agent running?
2. Is a path to the agent available? Try issuing a PING request to the IP address

of the agent.
3. What is the timeout value? For example, the timeout value on the osnmp

command defaults to three seconds. Trying the request again with a larger
timeout value, such as 15 seconds, may result in an answer.

4. Does the request use the correct port number and IP address?
5. Were any errors reported at the SNMP agent when the variable was requested?
6. If community-based security is being used, is the correct community name

(including correct case) being used in the request?
7. If the manager is the osnmp command, was the command destination specified

using the -h parameter? Did the -h value have an entry in the OSNMP.CONF
file? If so, and the destination agent only supports SNMPv1, the request will be

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 349

|

|
|

discarded. Try reissuing the command using an IP address as the value of the
-h parameter. If an entry with the value specified on the -h parameter does not
exist in the OSNMP.CONF file, an SNMPv1 request will be sent. An SNMPv2 or
SNMPv3 agent can process SNMPv1 requests, but an SNMPv1 agent cannot
process SNMPv2 or SNMPv3 requests.

If the problem still occurs after checking the preceding items and making any
needed changes, obtain SNMP agent level 7 trace output documentation.

Check the following in the SNMP agent traces:
1. Was the SNMP request PDU received by the agent?
2. Did it have a valid community name? Note that community name is

case-sensitive and mixed-case.
3. Was the IP address of the manager the expected IP address?
4. Was an SNMP GetResponse-PDU sent back to the manager?
5. Was an AuthenticationFailure trap generated?

Note: For these traps to be generated, you must first provide the trap
destination information in either the SNMPTRAP.DEST or SNMPD.CONF
file, then set the snmpEnableAuthenTraps MIB variable to 1, signifying
traps are enabled. For detailed information on enabling traps, refer to
OS/390 IBM Communications Server: IP Configuration Reference.

The following documentation might also be needed in some cases, but contact the
IBM Software Support Center before this documentation is obtained:
v Dump of SNMP agent address space
v Dump of OMPROUTE address space (for OMPROUTE subagent problems)
v Dump of SLA subagent address space (for SLA subagent problems)

Information on obtaining a dump can be found in OS/390 MVS Diagnosis: Tools and
Service Aids. Obtaining SNMP traces is discussed in “SNMP Traces” on page 353.

Report Received from SNMP Agent
With SNMPv3, certain error conditions detected on a request will be sent back from
the SNMP agent to the SNMP manager as a report. Some reports are expected as
part of normal processing, but most often they indicate an error condition.

For the osnmp command, some reports occur during normal processing, such as
the usmStatsUnknownEngineIDs condition which occurs as the osnmp command
performs discovery processing to learn the SNMP engineID of the agent with which
it is communicating. Normal processing reports are not displayed by osnmp unless
debug tracing is active. Reports that indicate error conditions are typically displayed
using the EZZ33431 message. For example, when an attempt is made to use a
USM user with an authentication key that does not match the key that is configured
at the SNMP agent, the usmStatsWrongDigests report will be received.

Figure 56 on page 357 shows the output received by an SNMP manager when the
authentication key sent by an osnmp command did not match the key defined at the
agent. The command issued in the OS/390 UNIX shell was:
$ osnmp -h v374 -v walk usmUserStatus

EZZ33431 Report received : usmStatsWrongDigests
EZZ33011 Error return from SnmpRecvMsg()

Following are other common reports:

350 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

usmStatsUnknownUserNames
Indicates a request was received for a user that is
not defined at the SNMP agent.

usmStatsUnsupportedSecLevels
Indicates a request was received for a defined user,
but the user was not configured at the SNMP agent
to use the security level specified in the request.

usmStatsDecryptionErrors Indicates an encrypted request was received at the
SNMP agent, but the request could not be
decrypted. This can be the result of an invalid
privacy key.

I/O Error for SNMP PING
NetView users can issue a PING request using SNMP PING. SNMP I/O error
problems are reported when a major return code of 2 (internally-detected error) and
a minor return code of 4 (some I/O error occurred) are received when issuing an
SNMP PING. This type of problem is generally caused by an error in the
PROFILE.TCPIP data set.

Documentation
The PROFILE.TCPIP data set should be available for initial diagnosis of SNMP I/O
problems.

Additional documentation that might be needed later is discussed in “Analysis” .

Analysis
Obtain the following documentation:
v SNMP query engine job SYSPRINT output
v SNMP query engine level 2 trace output
v SNMP query engine IUCV communication trace output

The following documentation might also be needed in some cases, but it is
suggested that TCP/IP customer support be contacted before this documentation is
obtained:
v Dump of SNMP address space
v TCP/IP packet trace

Information on obtaining a dump can be found in the OS/390 MVS Diagnosis: Tools
and Service Aids manual for your release of MVS. Obtaining SNMP traces is
discussed “SNMP Traces” on page 353

Traps Not Forwarded by Trap Forwarder Daemon
Problems with traps not getting forwarded by the trap forwarder daemon are most
likely the result of configuration errors or problems in the network.

Documentation
The following documentation should be available for initial diagnosis:

v TRAPFWD.CONF file

v Trapfwd traces, level 3

v Traces from the sending agent (the originator of the trap)

v Trace from the receiving client (the target of the forwarded trap)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 351

|

|
|

|
|

|

|

|

|

Analysis
Check the following:

1. Is the target address correctly configured in the TRAPFWD.CONF file?

If the target is designated by a host name, check the trapfwd trace to determine
whether or not the hostname was correctly resolved to an IP address.

2. Is the trap being received at the trap forwarder daemon?

If trapfwd traces indicate the trap is not being received at the trapfwd daemon,
examine traces from the SNMP agent sending the trap. Determine whether or
not the SNMP agent did in fact send the trap.

3. Are there network problems between the trap forward daemon and the target
client?

By issuing an SNMP GET request at the target client to the SNMP agent on the
same host as the trap forward daemon, you can determine whether or not UDP
packets are correctly reaching the client.

4. Are the UDP packets being discarded due to congestion at the TCP/IP stack?

If the trapfwd trace indicates that the trap is correctly being sent from the trap
forwarder daemon to the target client, but the trap is not being received,
consider setting NOUDPQueuelimit on the UDPCONFIG statement. This is used
to specify that UDP should not have a queue limit and would prevent traps from
being lost due to congestion.

If the above analysis does not correct the problem, the following documentation
should be gathered and the IBM Software Support Center should be contacted:

v UDP packet trace on the TCP/IP stacks where the originating SNMP agent, the
trap forwarder daemon, and the target client are running.

Incorrect Address in Forwarded Trap

Documentation
The following documentation should be available for initial diagnosis:

v TRAPFWD.CONF file

v Trapfwd traces, level 3

v Traces from the sending agent (the originator of the trap)

v Trace from the receiving client (the target of the forwarded trap)

Analysis
Check the following:

1. What is the version of the SNMP trap?

In the case of SNMPv1 traps the address from which the trap is originated is
encoded within the trap packet. A manager that needs the originating address
should look into the SNMP packet to get the address. In the case of SNMPv2
traps, the originating address is not encoded within the trap PDU. If a manager
uses the address from which the trap packet was received it would not be the
originating address but the address at which the trap forwarder daemon is
running. If the manager needs the originating address in the case of SNMPv2
traps, the trap forwarder should be configured to append the originating address
to the trap and the manager should be capable of reading the address from the
end of the received trap packet. For more information on the format in which the
address is appended, refer to the OS/390 IBM Communications Server: IP
User’s Guide.

2. Is it a SNMPv2 trap?

352 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

|

|
|

|

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

Check to see if the ADD_RECVFROM_INFO is specified correctly in the
TRAPFWD.CONF file. If it is not specified then add the option to the
configuration file. Note, the receiving manager must be capable of processing
the RECVFROM information at the end of the trap packet.

If the above analysis does not correct the problem, collect the above documentation
and contact the IBM Software Support Center.

SNMP Traces
There are several types of traces that can be useful in identifying the cause of
SNMP problems:

v Manager traces

v Agent traces

v Subagent traces

v TRAPFWD traces

These traces are discussed in the following sections.

Starting Manager Traces
To obtain traces when the SNMP manager being used is the osnmp command,
issue osnmp with the -d option. You an specify a trace level of 0 to 4. A trace level of
0 provides no tracing, while a level 4 provides the most. Tracing for osnmp is done
on a per-request basis. Traces return to the console, but they can be redirected to a
file issuing the OMVS redirect operand (>).

When NetView SNMP is being used, traces for the SNMP Query Engine can be
obtained by starting the SNMP Query Engine and specifying -d trace_level where
trace_level is 1 of the following:

1 Display errors

2 In addition to 1, also display SNMP query engine protocol packets
exchanged between the SNMP query engine and the SNMPIUCV subtask,
with the exception of TRAP packets sent to NetView from the query engine.

3 In addition to 2, also display decoded SNMP protocol packets sent and
received along with some additional informational messages.

4 In addition to three, display the BER-encoded packets received from
NetView or from an SNMP agent. Also, add display of SNMP query engine
protocol packets for TRAPs sent from the query engine to NetView.

For example:
//SNMPQE EXEC PGM=SQESERV,REGION=4096K,TIME=1440,PARM='-d 3'

Also, the -it option can be used to obtain a trace of IUCV communication.

SNMP Query Engine trace output is sent to the SYSPRINT DD specified in the
Query Engine JCL.

Starting SNMP Agent Traces

If Agent Is Not Running
If the SNMP agent is not already running, specify the -d parameter when you
invoke the agent. You can start the SNMP agent in one of two ways:

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 353

|
|
|
|

|
|

|

v Through the start options in the JCL used to start the SNMP agent (more
common). For example,
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=1440,PARM='-d 8'

v Through OMVS, using the osnmpd command. For example:
osnmpd -d 255 &

Use one of the following trace levels or a combination of them:

1 Trace SNMP requests

2 Trace SNMP responses

4 Trace SNMP traps

8 Trace DPI packets level 1

16 Trace DPI internals level 2

32 Internal trace (debug level 1)

64 Extended trace (debug level 2)

128 Trace DPI internals level 2

Combining trace levels: To combine trace levels, add trace level numbers. For
example, to request SNMP requests (level 1) and SNMP
responses (level 2), you would request trace level 3.

Trace records are sent to the file specified by the daemon.debug entry in the
SYSLOG configuration file. For more information refer to the OS/390 IBM
Communications Server: IP Configuration Guide.

If Agent Is Already Running
You can use the MVS MODIFY command to start and stop trace dynamically. Use
of this support is restricted to the users with MODIFY command privilege.

If you start the agent from JCL, you have no difficulty knowing the procname.
However, if you start the agent from OMVS, the agent generates a message to
syslogd. This message indicates the jobname the agent is running; this is the
jobname to specify on the MODIFY command.

Note: While most agent tracing can be modified dynamically, tracing of SNMPv3
requests in and responses out can be enabled only at agent initialization.

For example, assume the procname is OSNMPD and you want to change the trace
level to 3 (tracing SNMP requests and responses). You would enter
MODIFY OSNMPD,trace,level=3

For more information on using the MVS MODIFY command, refer to the OS/390
IBM Communications Server: IP Configuration Reference.

Starting TCP/IP Subagent Traces
To start the TCP/IP subagent traces, code the ITRACE statement in the
PROFILE.TCPIP file or in a file to be used by the OS/390 IBM Communications
Server: IP Configuration Reference.
ITRACE ON SUBAGENT level

where level is one of the following values:

354 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

1 General subagent trace information

2 General subagent trace information plus DPI traces

3 General subagent trace information plus extended dump trace. This level
provides storage dumps of useful information, such as storage returned by
the IOCTL calls.

4 General subagent trace information, plus extended dump trace and DPI
traces.

The trace output is sent to the syslogd. Trace records are found in the file specified
by the daemon.debug entry in the SYSLOG configuration file. For more information
refer to the OS/390 IBM Communications Server: IP Configuration Guide.

To stop TCP/IP subagent traces, code the ITRACE statement in the
PROFILE.TCPIP or the obey file to be used by the VARY TCPIP command:
ITRACE OFF SUBAGENT

For more information on the VARY command, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

Starting OMPROUTE Subagent Traces
To start OMPROUTE subagent tracing, start OMPROUTE with the -s1 option or
issue the MODIFY SADEBUG command. Output is sent to syslogd. For details, see
“Starting OMPROUTE Tracing and Debugging from the OS/390 Shell” on page 438
and “Starting OMPROUTE Tracing and Debugging Using the MODIFY Command”
on page 439.

Starting SLA Subagent Traces
To start SLA subagent tracing, start the SLA subagent with the -d 2 option or by
issuing the MODIFY TRACE,LEVEL command. Output is sent to syslogd.

The following are valid SLA subagent trace levels:

1 General subagent trace information

2 General subagent trace information, plus extended dump trace and DPI
traces. Extended dump trace provides storage dumps of useful information,
such as storage returned by the IOCTL calls.

Starting TRAPFWD Traces
The following sections provide information about starting TRAPFWD traces.

If TRAPFWD is Not Running
If TRAPFWD is not already running, specify the -d parameter during startup. You
can start the TRAPFWD trace in one of the following ways:

v Through the start options in the JCL used to start the TRAPFWD. For example,
//TRAPFWD EXEC PGM=EZASNTRA,REGION=4096K,TIME=NOLIMIT,
//PARM='POSIX(ON) ALL31(ON)/-d 3'

v Through OMVS, using the trapfwd command. For example,
trapfwd -d 3 &

Use one of the following trace levels:

1 Minimal tracing. Trace address from which the trap is received.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 355

|

|

|
|
|

|

|
|

|

|

|

||

2 In addition to 1, Trace addresses to which the trap packet is forwarded.

3 In addition to 2, Trace trap packets.

Trace records are sent to the file specified by the daemon.debug entry in the
SYSLOG configuration file. For more information refer to the OS/390 IBM
Communications Server: IP Configuration Guide.

If TRAPFWD is Already Running
You can use the MVS MODIFY command to start and stop the trace dynamically.
Use of this support is restricted to users with MODIFY command privilege.

If you start the trapfwd from JCL, you have no difficulty knowing the procname.
However, if you start the trapfwd from OMVS, the trapfwd generates a message to
syslogd. This message indicates the jobname the trapfwd is running; this is the
jobname to specify on the MODIFY command.

For example, assume that the procname is TRAPFWD and you want to change the
trace level to 3. You would enter the following:
MODIFY TRAPFWD,trace,level=3

For more information on using the MVS MODIFY command, refer to the OS/390
IBM Communications Server: IP Configuration Reference.

Trace Examples and Explanations
The following examples are shown in this section:
v Agent trace
v Subagent traces
v TRAPFWD trace
v NetView SNMP Query Engine trace
v NetView SNMP Query Engine IUCV Communication trace

SNMP Agent Traces

Figure 54 on page 357 was produced by using osnmp get sysUpTime.0. When the
SNMP agent is tracing responses, it makes the following entry in the syslogd output
file:

356 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

||

||

|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|

In the following scenario, the SNMP agent attempted to initialize, but it was not
successful. The port it was using was already in use. The trace shown in Figure 55
was obtained with SNMP agent tracing set to 7.

Note: Errno 112 translates to “Resource temporarily unavailable”. The errno is used
primarily by IBM service in diagnosing the error. In this case, issue the
onetstat -c command to determine if TCP/IP is running and, if so, which ports
are in use.

Figure 56 shows the trace produced for the agent when the authentication key sent
by a manager does not match the key defined at the agent. The command will
receive a report indicating usmStatsWrongDigests.

Figure 57 on page 358 shows the output received by an SNMP manager and the
trace produced for the agent when the operator attempted to retrieve data not within
the defined view. The command issued in the OS/390 UNIX shell was:
osnmp -h v374a -v get usmUserStatus.12.0.0.0.2.0.0.0.0.9.67.35.37.2.117.49

Dec 19 15:55:38 snmpagent.9.: SNMP logging data follows ==============

Dec 19 15:55:39 snmpagent.9.: Log_type: snmpLOGresponse_out
Dec 19 15:55:39 snmpagent.9.: send rc: 0
Dec 19 15:55:39 snmpagent.9.: destination: UDP 127.0.0.1 port 5000
Dec 19 15:55:39 snmpagent.9.: version: SNMPv1
Dec 19 15:55:39 snmpagent.9.: community: public
Dec 19 15:55:39 snmpagent.9.: ('70 75 62 6c 69 63'h)
Dec 19 15:55:39 snmpagent.9.: addressInfo: UDP 127.0.0.1 port 5000
Dec 19 15:55:39 snmpagent.9.: PDUtype: GetResponse ('a2'h)
Dec 19 15:55:39 snmpagent.9.: request: 1
Dec 19 15:55:39 snmpagent.9.: error-status: noError (0)
Dec 19 15:55:39 snmpagent.9.: error-index: 0
Dec 19 15:55:39 snmpagent.9.: varBind oid:
Dec 19 15:55:39 snmpagent.9.: OBJECT_IDENTIFIER
Dec 19 15:55:39 snmpagent.9.: 1.3.6.1.2.1.1.3.0
Dec 19 15:55:39 snmpagent.9.: name: sysUpTime.0
Dec 19 15:55:39 snmpagent.9.: value:
Dec 19 15:55:39 snmpagent.9.: TimeTicks
Dec 19 15:55:39 snmpagent.9.: 5900 - 59.00 seconds
Dec 19 15:55:39 snmpagent.9.: End of SNMP logging data:

Figure 54. SNMP Agent Response Trace

Dec 19 11:57:52 snmpagent.16777227.: EZZ6235I socket function failed for
SNMP inet udp socket; EDC5112I Resource temporarily unavailable.
Dec 19 11:57:52 snmpagent.16777227.: ... errno = 112, errno2 =12fc0296

Figure 55. SNMP Agent Trace of Unsuccessful Initialization

IDSTMVS.S@AU1104.SOURCE.S@AGV123(1624): rc=-65 (SNMP_RC_USM_WRONG_DIGEST)
from snmp_process_message()

Figure 56. SNMP Messages and Agent Trace for Nonmatching Key

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 357

Subagent Trace
When requests for MIB variables supported by the TCP/IP subagent fail with an
indication that the variable is not supported (noSuchName or noSuchObject), one
possibility is that the TCP/IP subagent was unable to connect to the SNMP agent.

Figure 58 illustrates a scenario where the subagent is unable to connect because
the password it is using is not accepted by the SNMP agent. (The password used
by the subagent is defined or defaulted on the SACONFIG statement in the TCP/IP
profile.) The following traces were obtained with SNMP agent traces set to 15 and
the subagent traces (as set on the ITRACE profile statement) set to 3.

SNMP Query Engine Trace
This section discusses the output produced by the SNMP query engine trace.

Figure 59 on page 360 shows an example of the output produced by the SNMP
query engine trace. This trace was produced by starting the SNMP query engine
address space with start option -d 4, which is the maximum amount of trace records
produced. In the figure, the column labeled “trc lvl” shows the lowest trace level
required to see that particular trace entry. For example, lines five through nine have
a “trc lvl” of four. This means that only the -d 4 trace option will show this type of
trace entry. On the other hand, lines 10 through 17 have a “trc lvl” of 2. This means
that trace level 2 or higher will produce this trace information. The column headed
“line no.” numbers the trace records for reference in the discussion that follows the
figure. Neither the “trc lvl” nor the “line no.” column appear in the actual trace
output.

The following sequence of events occurred to create the trace output:
1. Started the SNMP query engine address space

Trace output lines in the range 1–3
2. Started the SNMPIUCV subtask at the NetView host (attempted connection to

the query engine when started)

Trace output line 4

OUTPUT RECEIVED BY THE MANAGER
usmUserStatus.12.0.0.0.2.0.0.0.0.9.67.35.37.2.117.49 = noSuchObject

AGENT TRACE
IDSTMVS.S@AU1104.SOURCE.S@AGV123(1624): RC=-30 (SNMP_RC_NOT_IN_VIEW)
from snmp_process_message()

Figure 57. SNMP Messages and Agent Trace When Data Not in Defined View

Apr 4 16:28:17 MVS097 snmpagent[67108869]: EZZ6225I SNMP agent: Initialization complete
Apr 4 16:28:21 MVS097 M2SubA[50331651]: VS.2575 do_connect_and_open: DPIconnect_to_agent_UNIXstream rc -2.
Apr 4 16:28:21 MVS097 M2SubA[50331651]: VS.1320 do_open_and_register: Connect to SNMP agent failed, will keep trying
Apr 4 16:28:21 MVS097 M2SubA[50331651]: VS.1340 do_open_and_register: issue selectex, interval = 10 seconds
Apr 4 16:28:31 MVS097 M2SubA[50331651]: VS.2543 do_connect_and_open getting agent info from config
Apr 4 16:28:31 MVS097 M2SubA[50331651]: 08B7A4A0 82818497 A6404040 40404040 40404040 *badpw *
Apr 4 16:28:31 MVS097 M2SubA[50331651]: 08B7A4B0 40404040 40404040 40404040 40404040 * *
Apr 4 16:28:31 MVS097 M2SubA[50331651]: 08B7A49C 000000A1 *.... *
Apr 4 16:28:31 MVS097 M2SubA[50331651]: VS.2556 do_connect_and_open: port 161
Apr 4 16:28:31 MVS097 M2SubA[50331651]: VS.2567 do_connect_and open: hostname_p => 9.67.35.37
Apr 4 16:28:31 MVS097 snmpagent[67108869]: IDSTMVS.SO064350.SOURCE.S@AGV123(1623): rc=-14 (SNMP_RC_NOT_AUTHENTICATED) from
Apr 4 16:28:34 MVS097 snmpagent[67108869]: IDSTMVS.SO064350.SOURCE.S@AGV123(1623): rc=-14 (SNMP_RC_NOT_AUTHENTICATED) from

Figure 58. SNMP Subagent Trace

358 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|

|

3. Issued an SNMP TRAPSON request (request 1001)

Trace output lines in the range 5–27
4. Incoming SNMP Trap-PDU received from SNMP agent

Trace output lines in the range 28–61
5. Issued an SNMP TRAPSOFF request (request 1002)

Trace output lines in the range 62–82
6. Incoming SNMP Trap-PDU received from SNMP agent

Trace output lines in the range 83–104
7. Issued an SNMP GET request (request 1003)

Trace output lines in the range 105–148
8. Received the response to request 1003

Trace output lines in the range 149–191
9. Issued an SNMP GETNEXT request (request 1004)

Trace output lines in the range 192–235
10. Received the response to request 1004

Trace output lines in the range 236–278
11. Issued an SNMP SET request (request 1005)

Trace output lines in the range 279–326
12. Received the response to request 1005

Trace output lines in the range 327–369
13. Issued an SNMP MIBVNAME request (request 1006)

Trace output lines in the range 370–397
14. Issued an SNMP PING request (request 1007)

Trace output lines in the range 398–429
15. Issued an SNMP GET request for a variable name not defined in the

hlq.MIBDESC.DATA data set (request 1008)

Trace output lines in the range 430–462
16. Stopped the SNMPIUCV subtask of the NetView program

Trace output line 463

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 359

trc line
lvl no.

3 1 EZA6322I Using 'TCPCS.mibdesc.data' as MIB description file
0 2 EZA6275I SNMP Query Engine running and awaiting queries...
2 3 EZA6276I There are 56 client connections possible
0 4 EZA6290I Accepted new client connection
4 5 EZA6292I Received following NVquery packet:

6 EZA6305I dumping packet of 19 bytes:
7 00 11 01 01 01 02 06 00 00 03 e9 00 00 00 00 00
8 00 00 00

2 9 EZA6359I major version: 1
10 EZA6360I minor version: 1
11 EZA6361I release: 1
12 EZA6363I native set: EBCDIC
13 EZA6364I packet type: TRAP REQUEST
14 EZA6394I filter id: 1001
15 EZA6396I network mask: 0.0.0.0
16 EZA6397I desired network: 0.0.0.0

2 17 EZA6359I major version: 1
18 EZA6360I minor version: 1
19 EZA6361I release: 1
20 EZA6363I native set: EBCDIC
21 EZA6364I packet type: RESPONSE
22 EZA6367I sequence id: 1001
23 EZA6388I major error: 0
24 EZA6389I minor error: 0
25 EZA6390I error index: 0
26 EZA6391I error text len: 9
27 EZA6392I error text: no error

4 28 EZA6301I Received following SNMP_trap packet:
29 EZA6305I dumping packet of 43 bytes:
30 30 29 02 01 00 04 04 4d 56 53 4c a4 1e 06 0a 2b
31 06 01 04 01 02 02 01 02 04 40 04 09 43 72 25 02
32 01 04 02 01 00 43 02 25 80 30 00

3 33 EZA6424I Decoded SNMP PDU :
34 {
35 version version-1,
36 community '4d56534c'H,
37 data {
38 trap {
39 enterprise 1.3.6.1.4.1.2.2.1.2.4,
40 agent-addr {
41 internet '09437225'H
42 },
43 generic-trap authenticationFailure,
44 specific-trap 0,
45 time-stamp 9600,
46 variable-bindings {}
47 }
48 }
49 }

4 50 EZA6359I major version: 1
51 EZA6360I minor version: 1
52 EZA6361I release: 1
53 EZA6363I native set: EBCDIC

Figure 59. SNMP Query Engine Traces (Part 1 of 10)

360 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

54 EZA6364I packet type: TRAP
55 EZA6394I filter id: 1001
56 EZA6395I agent address: 9.67.114.37
57 EZA6399I generic trap: 4 (0X4)
58 EZA6400I specific trap: 0 (0X0)
59 EZA6401I time stamp: 9600
60 EZA6402I enterprise len: 22
61 EZA6403I enterprise: 1.3.6.1.4.1.2.2.1.2.4

4 62 EZA6292I Received following NVquery packet:
63 EZA6305I dumping packet of 15 bytes:
64 00 0d 01 01 01 02 07 00 00 03 ea 00 00 03 e9

2 65 EZA6359I major version: 1
66 EZA6360I minor version: 1
67 EZA6361I release: 1
68 EZA6363I native set: EBCDIC
69 EZA6364I packet type: TRAP UN-REQUEST
70 EZA6367I sequence id: 1002
71 EZA6394I filter id: 1001

2 72 EZA6359I major version: 1
73 EZA6360I minor version: 1
74 EZA6361I release: 1
75 EZA6363I native set: EBCDIC
76 EZA6364I packet type: RESPONSE
77 EZA6367I sequence id: 1002
78 EZA6388I major error: 0
79 EZA6389I minor error: 0
80 EZA6390I error index: 0
81 EZA6391I error text len: 9
82 EZA6392I error text: no error

4 83 EZA6301I Received following SNMP_trap packet:
84 EZA6305I dumping packet of 43 bytes:
85 30 29 02 01 00 04 04 4d 56 53 4c a4 1e 06 0a 2b
86 06 01 04 01 02 02 01 02 04 40 04 09 43 72 25 02
87 01 04 02 01 00 43 02 38 40 30 00

3 88 EZA6424I Decoded SNMP PDU :
89 {
90 version version-1,
91 community '4d56534c'H,
92 data {
93 trap {
94 enterprise 1.3.6.1.4.1.2.2.1.2.4,
95 agent-addr {
96 internet '09437225'H
97 },
98 generic-trap authenticationFailure,
99 specific-trap 0,
100 time-stamp 14400,

Figure 59. SNMP Query Engine Traces (Part 2 of 10)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 361

101 variable-bindings {}
102 }
103 }
104 }

4 105 EZA6292I Received following NVquery packet:
106 EZA6305I dumping packet of 42 bytes:
107 00 28 01 01 01 02 01 00 00 03 eb 00 05 d4 e5 e2
108 d3 00 00 05 e2 d5 d4 d7 00 00 03 01 ff 01 00 0a
109 e2 e8 e2 e4 d7 e3 c9 d4 c5 00

2 110 EZA6359I major version: 1
111 EZA6360I minor version: 1
112 EZA6361I release: 1
113 EZA6363I native set: EBCDIC
114 EZA6364I packet type: GET
115 EZA6367I sequence id: 1003
116 EZA6368I hostname len: 5
117 EZA6370I hostname: MVSL
118 EZA6371I community len: 5
119 EZA6373I community: SNMP
120 EZA6374I optional length: 3
121 EZA6375I max. retries: 1
122 EZA6376I initial timeout: 255
123 EZA6377I backoff exponent: 1
124 EZA6380I name length: 16
125 EZA6381I name: 1.3.6.1.2.1.1.3

3 126 EZA6424I Decoded SNMP PDU :
127 {
128 version version-1,
129 community '534e4d50'H,
130 data {
131 get-request {
132 request-id 1,
133 error-status noError,
134 error-index 0,
135 variable-bindings {
136 {
137 name 1.3.6.1.2.1.1.3,
138 value {
139 simple {
140 empty {}
141 }
142 }
143 }
144 }
145 }
146 }
147 }
148 EZA6308I sending SNMP request to 9.67.114.37

4 149 EZA6295I Received following SNMP_response packet:
150 EZA6305I dumping packet of 39 bytes:
151 30 25 02 01 00 04 04 53 4e 4d 50 a2 1a 02 01 01
152 02 01 00 02 01 00 30 0f 30 0d 06 07 2b 06 01 02
153 01 01 03 43 02 48 a8

3 154 EZA6424I Decoded SNMP PDU :

Figure 59. SNMP Query Engine Traces (Part 3 of 10)

362 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

155 {
156 version version-1,
157 community '534e4d50'H,
158 data {
159 get-response {
160 request-id 1,
161 error-status noError,
162 error-index 0,
163 variable-bindings {
164 {
165 name 1.3.6.1.2.1.1.3,
166 value {
167 application-wide {
168 ticks 18600
169 }
170 }
171 }
172 }
173 }
174 }
175 }

2 176 EZA6359I major version: 1
177 EZA6360I minor version: 1
178 EZA6361I release: 1
179 EZA6363I native set: EBCDIC
180 EZA6364I packet type: RESPONSE
181 EZA6367I sequence id: 1003
182 EZA6388I major error: 0
183 EZA6389I minor error: 0
184 EZA6390I error index: 0
185 EZA6391I error text len: 9
186 EZA6392I error text: no error
187 EZA6380I name length: 16
188 EZA6381I name: 1.3.6.1.2.1.1.3
189 EZA6382I value type: time ticks
190 EZA6384I value length: 4
191 EZA6387I value: 18600

4 192 EZA6292I Received following NVquery packet:
193 EZA6305I dumping packet of 42 bytes:
194 00 28 01 01 01 02 02 00 00 03 ec 00 05 d4 e5 e2
195 d3 00 00 05 e2 d5 d4 d7 00 00 03 01 ff 01 00 0a
196 c9 c6 c4 c5 e2 c3 d9 4b f0 00

2 197 EZA6359I major version: 1
198 EZA6360I minor version: 1
199 EZA6361I release: 1
200 EZA6363I native set: EBCDIC
201 EZA6364I packet type: GET-NEXT
202 EZA6367I sequence id: 1004
203 EZA6368I hostname len: 5
204 EZA6370I hostname: MVSL
205 EZA6371I community len: 5
206 EZA6373I community: SNMP
207 EZA6374I optional length: 3
208 EZA6375I max. retries: 1
209 EZA6376I initial timeout: 255

Figure 59. SNMP Query Engine Traces (Part 4 of 10)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 363

210 EZA6377I backoff exponent: 1
211 EZA6380I name length: 22
212 EZA6381I name: 1.3.6.1.2.1.2.2.1.2.0

3 213 EZA6424I Decoded SNMP PDU :
214 {
215 version version-1,
216 community '534e4d50'H,
217 data {
218 get-next-request {
219 request-id 2,
220 error-status noError,
221 error-index 0,
222 variable-bindings {
223 {
224 name 1.3.6.1.2.1.2.2.1.2.0,
225 value {
226 simple {
227 empty {}
228 }
229 }
230 }
231 }
232 }
233 }
234 }
235 EZA6308I sending SNMP request to 9.67.114.37

4 236 EZA6295I Received following SNMP_response packet:
237 EZA6305I dumping packet of 47 bytes:
238 30 2d 02 01 00 04 04 53 4e 4d 50 a2 22 02 01 02
239 02 01 00 02 01 00 30 17 30 15 06 0a 2b 06 01 02
240 01 02 02 01 02 01 04 07 49 42 4d 20 4c 43 53

3 241 EZA6424I Decoded SNMP PDU :
242 {
243 version version-1,
244 community '534e4d50'H,
245 data {
246 get-response {
247 request-id 2,
248 error-status noError,
249 error-index 0,
250 variable-bindings {
251 {
252 name 1.3.6.1.2.1.2.2.1.2.1,
253 value {
254 simple {
255 string '49424d204c4353'H
256 }
257 }
258 }
259 }
260 }
261 }
262 }

2 263 EZA6359I major version: 1
264 EZA6360I minor version: 1
265 EZA6361I release: 1

Figure 59. SNMP Query Engine Traces (Part 5 of 10)

364 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

266 EZA6363I native set: EBCDIC
267 EZA6364I packet type: RESPONSE
268 EZA6367I sequence id: 1004
269 EZA6388I major error: 0
270 EZA6389I minor error: 0
271 EZA6390I error index: 0
272 EZA6391I error text len: 9
273 EZA6392I error text: no error
274 EZA6380I name length: 22
275 EZA6381I name: 1.3.6.1.2.1.2.2.1.2.1
276 EZA6382I value type: display string
277 EZA6384I value length: 7
278 EZA6385I value: IBM LCS

4 279 EZA6292I Received following NVquery packet:
280 EZA6305I dumping packet of 57 bytes:
281 00 37 01 01 01 02 03 00 00 03 ed 00 05 d4 e5 e2
282 d3 00 00 05 e2 d5 d4 d7 00 00 03 01 ff 01 00 10
283 c4 d7 c9 e2 c1 d4 d7 d3 c5 d5 e4 d4 c2 c5 d9 00
284 00 00 06 f1 f2 f3 f4 f5 00

2 285 EZA6359I major version: 1
286 EZA6360I minor version: 1
287 EZA6361I release: 1
288 EZA6363I native set: EBCDIC
289 EZA6364I packet type: SET
290 EZA6367I sequence id: 1005
291 EZA6368I hostname len: 5
292 EZA6370I hostname: MVSL
293 EZA6371I community len: 5
294 EZA6373I community: SNMP
295 EZA6374I optional length: 3
296 EZA6375I max. retries: 1
297 EZA6376I initial timeout: 255
298 EZA6377I backoff exponent: 1
299 EZA6380I name length: 22

Figure 59. SNMP Query Engine Traces (Part 6 of 10)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 365

300 EZA6381I name: 1.3.6.1.4.1.2.2.1.4.1
301 EZA6382I value type: number
302 EZA6384I value length: 4
303 EZA6386I value: 12345

3 304 EZA6424I Decoded SNMP PDU :
305 {
306 version version-1,
307 community '534e4d50'H,
308 data {
309 set-request {
310 request-id 3,
311 error-status noError,
312 error-index 0,
313 variable-bindings {
314 {
315 name 1.3.6.1.4.1.2.2.1.4.1,
316 value {
317 simple {
318 number 12345
319 }
320 }
321 }
322 }
323 }
324 }
325 }
326 EZA6308I sending SNMP request to 9.67.114.37

4 327 EZA6295I Received following SNMP_response packet:
328 EZA6305I dumping packet of 42 bytes:
329 30 28 02 01 00 04 04 53 4e 4d 50 a2 1d 02 01 03
330 02 01 00 02 01 00 30 12 30 10 06 0a 2b 06 01 04
331 01 02 02 01 04 01 02 02 30 39

3 332 EZA6424I Decoded SNMP PDU :
333 {
334 version version-1,
335 community '534e4d50'H,
336 data {
337 get-response {
338 request-id 3,
339 error-status noError,
340 error-index 0,
341 variable-bindings {
342 {
343 name 1.3.6.1.4.1.2.2.1.4.1,
344 value {
345 simple {
346 number 12345

Figure 59. SNMP Query Engine Traces (Part 7 of 10)

366 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

347 }
348 }
349 }
350 }
351 }
352 }
353 }

2 354 EZA6359I major version: 1
355 EZA6360I minor version: 1
356 EZA6361I release: 1
357 EZA6363I native set: EBCDIC
358 EZA6364I packet type: RESPONSE
359 EZA6367I sequence id: 1005
360 EZA6388I major error: 0
361 EZA6389I minor error: 0
362 EZA6390I error index: 0
363 EZA6391I error text len: 9
364 EZA6392I error text: no error
365 EZA6380I name length: 22
366 EZA6381I name: 1.3.6.1.4.1.2.2.1.4.1
367 EZA6382I value type: number
368 EZA6384I value length: 4
369 EZA6386I value: 12345

4 370 EZA6292I Received following NVquery packet:
371 EZA6305I dumping packet of 29 bytes:
372 00 1b 01 01 01 02 08 00 00 03 ee 00 10 f1 4b f3
373 4b f6 4b f1 4b f2 4b f1 4b f1 4b f1 00

2 374 EZA6359I major version: 1
375 EZA6360I minor version: 1
376 EZA6361I release: 1
377 EZA6363I native set: EBCDIC
378 EZA6364I packet type: VAR_NAME
379 EZA6367I sequence id: 1006
380 EZA6405I object id len: 16
381 EZA6406I object id: 1.3.6.1.2.1.1.1

2 382 EZA6359I major version: 1
383 EZA6360I minor version: 1
384 EZA6361I release: 1
385 EZA6363I native set: EBCDIC
386 EZA6364I packet type: RESPONSE
387 EZA6367I sequence id: 1006
388 EZA6388I major error: 0
389 EZA6389I minor error: 0
390 EZA6390I error index: 0
391 EZA6391I error text len: 9
392 EZA6392I error text: no error
393 EZA6380I name length: 16
394 EZA6381I name: 1.3.6.1.2.1.1.1
395 EZA6382I value type: display string
396 EZA6384I value length: 9
397 EZA6385I value: sysDescr

4 398 EZA6292I Received following NVquery packet:
399 EZA6305I dumping packet of 23 bytes:
400 00 15 01 01 01 02 0a 00 00 03 ef 00 05 d4 e5 e2

Figure 59. SNMP Query Engine Traces (Part 8 of 10)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 367

401 d3 00 00 03 01 ff 01
2 402 EZA6359I major version: 1

403 EZA6360I minor version: 1
404 EZA6361I release: 1
405 EZA6363I native set: EBCDIC
406 EZA6364I packet type: PING REQUEST
407 EZA6367I sequence id: 1007
408 EZA6368I hostname len: 5
409 EZA6370I hostname: MVSL
410 EZA6374I optional length: 3
411 EZA6375I max. retries: 1
412 EZA6376I initial timeout: 255
413 EZA6377I backoff exponent: 1

2 414 EZA6359I major version: 1
415 EZA6360I minor version: 1
416 EZA6361I release: 1
417 EZA6363I native set: EBCDIC
418 EZA6364I packet type: RESPONSE
419 EZA6367I sequence id: 1007
420 EZA6388I major error: 0
421 EZA6389I minor error: 0
422 EZA6390I error index: 0
423 EZA6391I error text len: 9
424 EZA6392I error text: no error
425 EZA6380I name length: 34
426 EZA6381I name: 1.3.6.1.4.1.2.2.1.3.2.9.67.114.37
427 EZA6382I value type: number
428 EZA6384I value length: 4
429 EZA6386I value: 76

4 430 EZA6292I Received following NVquery packet:
431 EZA6305I dumping packet of 39 bytes:
432 00 25 01 01 01 02 01 00 00 03 f0 00 05 d4 e5 e2
433 d3 00 00 05 e2 d5 d4 d7 00 00 03 01 ff 01 00 07
434 c2 c1 c4 e5 c1 d9 00

1 435 EZA6356E error code 7: unknown MIB variable
2 436 EZA6359I major version: 1

437 EZA6360I minor version: 1
438 EZA6361I release: 1
439 EZA6363I native set: EBCDIC
440 EZA6364I packet type: GET
441 EZA6367I sequence id: 1008
442 EZA6368I hostname len: 5
443 EZA6370I hostname: MVSL
444 EZA6371I community len: 5
445 EZA6373I community: SNMP
446 EZA6374I optional length: 3
447 EZA6375I max. retries: 1
448 EZA6376I initial timeout: 255
449 EZA6377I backoff exponent: 1
450 EZA6380I name length: 2
451 EZA6381I name: ?

Figure 59. SNMP Query Engine Traces (Part 9 of 10)

368 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

The following is an explanation of the traces in Figure 59 on page 360.

v Line 1 is an information message listing the actual name of the data set being
used as the hlq.MIBDESC.DATA data set.

v Line 2 is an informational message indicating that the SNMP query engine has
been successfully started.

v Line 3 is an informational message indicating the number of client connections
the query engine will allow. (A client connection is a connection from a program
using the query engine protocol to communicate with the SNMP query engine to
initiate SNMP requests. For example, the SNMPIUCV subtask of the NetView
program is a client connection).

v Line 4 is an information message indicating that the SNMPIUCV subtask of the
NetView program has successfully contacted the query engine.

v Lines 5–8 are the encoded packet received from the client (the SNMPIUCV
subtask) by the query engine. This particular packet is the TRAPSON request.

v Lines 9–16 are the decoded SNMPIUCV request. The decoded packet indicates
that this request is number 1001 (line 14), and was a TRAPSON request (line
13) for network mask 0.0.0.0 (line 15) with the desired network 0.0.0.0 (line 16).

v Lines 17–27 are the response sent back to SNMPIUCV from the query engine.
The response (line 21) is to request number 1001 (line 22) and indicates that the
TRAPSON request was successful (lines 23–27).

v Line 28 indicates that an SNMP Trap-PDU was received. Lines 29–32 are the
actual BER encoded SNMP packet as it was received by the query engine.

v Lines 33–49 are the decoded version of the trap packet reported by lines 28–32.

v Lines 50–61 are the trap information being passed from the query engine up to
the SNMPIUCV subtask to be displayed to the NetView operator. This trap is
being forwarded to the NetView program because the IP address of the agent
sending the trap (line 56), when ANDed with the network mask (line 15) matches
the desired network (line 16) of filter number 1001 (line 55) that was set by the
TRAPSON request 1001 (line 14) received previously (lines 9–16).

v Lines 62–64 show an incoming query engine packet sent from SNMPIUCV to the
query engine.

v Lines 65–71 are the decoded packet received in lines 62–64. This packet is the
TRAPSOFF request (line 69). It requests that trap filter 1001 (line 71) be turned
off.

v Lines 72–82 are the response from the query engine to the SNMPIUCV subtask.
The response indicates that the TRAPSOFF request was completed successfully
(lines 78–82).

v Lines 83–87 indicate that another SNMP Trap-PDU was received from an agent.

2 452 EZA6359I major version: 1
453 EZA6360I minor version: 1
454 EZA6361I release: 1
455 EZA6363I native set: EBCDIC
456 EZA6364I packet type: RESPONSE
457 EZA6367I sequence id: 1008
458 EZA6388I major error: 2
459 EZA6389I minor error: 7
460 EZA6390I error index: 0
461 EZA6391I error text len: 17
462 EZA6392I error text: unknown variable

0 463 EZA6293I Terminated client connection

Figure 59. SNMP Query Engine Traces (Part 10 of 10)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 369

v Lines 88–104 are the decoded Trap-PDU. Note that following this decoded PDU,
there is no indication of the trap being forwarded to SNMPIUCV. This is because
the trap filter has been turned off, so the query engine receives the trap but does
not forward the information to SNMPIUCV.

v Lines 105–109 indicate another request from SNMPIUCV being received by the
query engine.

v Lines 110–125 are the decoded query engine request. The request from
SNMPIUCV was to issue a GetRequest-PDU (line 114) to host MVSL (line 117),
using community name SNMP (line 119) and requesting variable 1.3.6.1.2.1.1.3
(line 125). Lines 121–123 are the retry information that SNMPIUCV has gotten
from the SNMPARMS member of the DSIPARMS data set.

v Lines 126–147 are the decoded SNMP GetRequest-PDU that the query engine
has built as a result of the SNMPIUCV request received in lines 110–125. This
PDU has been assigned request number 1 (line 132). This number will be used
to correlate the response when it is received.

v Line 148 indicates that the encoded SNMP GetRequest-PDU has been sent to
the SNMP agent at the specified IP address. This should be the IP address of
the host specified in line 117.

v Line 149 indicates that an SNMP GetResponse-PDU was received. Lines
150–153 are the encoded GetResponse-PDU.

v Lines 154–175 are the decoded GetResponse-PDU. This was a GetResponse
(line 159) in response to request number 1 (line 160, matches up to the request
number in the request, line 132). The request was completed with no errors
(lines 161–162). The requested variable 1.3.6.1.2.1.1.3 (line 165) has a value of
18600 timeticks (line 168).

v Lines 176–191 are the query engine response to SNMPIUCV request number
1003 (lines 115 and 181). The response contains the information received from
the agent in the GetResponse-PDU in lines 154–175.

v Lines 192–196 are the next query engine protocol requests received from
SNMPIUCV by the query engine.

v Lines 197–212 are the decoded version of the query engine request. This is a
GetNext request (line 201) to host MVSL (line 204) for variable
1.3.6.1.2.1.2.2.1.2.0 (line 212). The request number associated with this request
is 1004 (line 202).

v Lines 213–234 are the decoded SNMP GetRequest-PDU built as a result of the
query engine request received in lines 197–212. This GetRequest-PDU is
request number 2 (line 219).

v Line 235 indicates that the encoded GetRequest-PDU has been sent to the
requested host.

v Lines 236–240 indicate that a GetResponse-PDU has been received.

v Lines 241–262 are the decoded GetResponse-PDU. This is the response to
request number 2 (line 247) for variable 1.3.6.1.2.1.2.2.1.2.1 (line 252). The
value of the variable is a display string with the ASCII value of
X'49424D204C4353' (line 255). The GetNext request completed successfully
(lines 248–249).

v Lines 263–278 are the query engine response to SNMPIUCV request 1004 (line
268). The response contains the information from the GetResponse-PDU (lines
241–262). Note that the variable value in line 255 has been converted to the
proper display format in line 278.

v Lines 279–284 are the next query engine protocol request from SNMPIUCV to
the query engine.

370 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v Lines 285–303 are the decoded query engine request. It is a SET request (line
289) to host MVSL to set variable 1.3.6.1.4.1.2.2.1.4.1 (line 300) to 12345 (line
303). This is request number 1005 (line 290).

v Lines 304–325 are the decoded SNMP SetRequest-PDU built as a result of the
request received in lines 285–303. This is request number 3 (line 310).

v Line 326 indicates that the SetRequest-PDU has been sent to the specified host.

v Lines 327–331 indicate that a GetResponse-PDU has been received.

v Lines 332–353 are the decoded GetResponse-PDU. This PDU is the response to
the SetRequest-PDU number 3 (line 338). It was completed successfully (lines
339–340) and variable 1.3.6.1.4.1.2.2.1.4.1 (line 343) was set to 12345 (line
346).

v Lines 354–369 are the query engine response to request 1005 (line 359)
containing the information received in the GetResponse-PDU received in lines
332–353.

v Lines 370–373 are the next query engine request packet from SNMPIUCV.

v Lines 374–381 are the decoded query engine request. This is a MIBVNAME
request (line 378) requesting the name of variable 1.3.6.1.2.1.1.1 (line 381). The
request number is 1006 (line 379).

v Lines 382–397 are the query engine response (line 386) to request 1006 (line
387). The request completed successfully (lines 388–392) and the name of
variable 1.3.6.1.2.1.1.1 (line 394) is sysDescr (line 397).

v Lines 398–401 are the next query engine request packet from SNMPIUCV.

v Lines 402–413 are the decoded query engine request packet. This is a PING
request (line 406) to ping host MVSL (line 409). The request number is 1007 (line
407).

v Lines 414–429 are the query engine response (line 418) to request 1007 (line
419). The PING completed successfully (lines 420–424) and the round-trip
response time was 76 milliseconds (line 429). Note that no SNMP PDUs were
generated as a result of the PING request. The SNMP query engine uses a raw
socket to send a PING to the requested host and SNMP protocols are not
involved.

v Lines 430–434 are the next query engine request packet received from
SNMPIUCV.

v Line 435 indicates that an error occurred while the query engine was decoding
the request packet. The MIB variable name in the request was unknown to the
query engine.

v Lines 435–451 are the decoded query engine request. This is a GET request
(line 440). The variable name is unknown (line 451). This is request 1008 (line
441).

v Lines 452–462 are the query engine response (line 456) to SNMPIUCV request
1008 (line 457). The request was unsuccessful. The query engine returns major
error code 2 (line 458), minor error code 7 (line 459), unknown variable (line
462). Note that no SNMP PDUs were generated since the query engine could
not resolve the variable name.

v Line 463 indicates that the client connection (SNMPIUCV) has been terminated.
This is the result of the STOP TASK=SNMPIUCV command.

SNMP Query Engine IUCV Communication Trace
Figure 60 on page 372 shows an example of the output produced by the IUCV
communication trace. This trace was produced by starting the SNMP query engine
address space with start option -it.

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 371

descarray is at 3985ab8, size is 4 bytes
descarray has 50 entries, entry size is 928
iucvdesc is at 32508
Rc=0 on IUCV_CLR to TCPCS , fd=-254, path=0, iprcode=0, ipmsgid=0, iucvname=00032508

ciucv_data area (ipbfadr2) is at 00000000
Rc=0 on IUCV_SET to TCPCS , fd=-254, path=0, iprcode=0, ipmsgid=0, iucvname=00032508

ciucv_data area (ipbfadr2) is at 00005480
Rc=0 on IUCV_CONNECT to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=A0000,
iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00005494

IUCV interrupt from TCPIP, fd=-254, path=1 type=2 (Connection Complete)
sock_request_inet entry parms:

f=0 d=-254 rl=00000000 rd=0005ddfc rdl=20 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=C, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 000054bc

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=0 d=-254 rl=00000000 rd=0005ddfc rdl=20 pdh=0 pdl=0
rc=0 err=49 rpl=00000000 rpb=00000000 rpbl=0

sock_request_inet entry parms:
f=25 d=3 rl=00000000 rd=0005db2c rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=3, path=1, iprcode=0, ipmsgid=D, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 000054e4

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=25 d=3 rl=00000000 rd=0005db2c rdl=16 pdh=0 pdl=0
rc=3 err=0 rpl=00000000 rpb=00000000 rpbl=0

sock_request_inet entry parms:
f=2 d=3 rl=00000000 rd=0001d0d8 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=3, path=1, iprcode=0, ipmsgid=E, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=3 buf (ipbfadr2) is at 0000550c

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=2 d=3 rl=00000000 rd=0001d0d8 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
sock_request_inet entry parms:

f=25 d=4 rl=00000000 rd=0005db44 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=4, path=1, iprcode=0, ipmsgid=F, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00005534

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)

Figure 60. SNMP IUCV Communication Traces (Part 1 of 5)

372 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

sock_request_inet return parms:
f=25 d=4 rl=00000000 rd=0005db44 rdl=16 pdh=0 pdl=0
rc=4 err=0 rpl=00000000 rpb=00000000 rpbl=0

sock_request_inet entry parms:
f=2 d=4 rl=00000000 rd=0005da9c rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=4, path=1, iprcode=0, ipmsgid=10, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 0000555c

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=2 d=4 rl=00000000 rd=0005da9c rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
sock_request_inet entry parms:

f=25 d=5 rl=00000000 rd=0005db64 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=5, path=1, iprcode=0, ipmsgid=11, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00005584

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=25 d=5 rl=00000000 rd=0005db64 rdl=16 pdh=0 pdl=0
rc=5 err=0 rpl=00000000 rpb=00000000 rpbl=0

sock_request_inet entry parms:
f=2 d=5 rl=00000000 rd=0005daa8 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=5, path=1, iprcode=0, ipmsgid=12, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 000055ac

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=2 d=5 rl=00000000 rd=0005daa8 rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

sock_request_inet entry parms:
f=13 d=5 rl=00000000 rd=00000000 rdl=0 pdh=0 pdl=5
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=5, path=1, iprcode=0, ipmsgid=13, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=5 buf (ipbfadr2) is at 000055d4

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=13 d=5 rl=00000000 rd=00000000 rdl=0 pdh=0 pdl=5
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Rc=0 on IUCV_SET to , fd=6, path=0, iprcode=0, ipmsgid=0, iucvname=SNMPQE
ciucv_data area (ipbfadr2) is at 00005480

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
sock_request_inet entry parms:

f=25 d=7 rl=00000000 rd=0005db2c rdl=16 pdh=0 pdl=0
rc=0 err=0 rpl=00000000 rpb=00000000 rpbl=0

Figure 60. SNMP IUCV Communication Traces (Part 2 of 5)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 373

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=7, path=1, iprcode=0, ipmsgid=14, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=7 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=7 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=7 buf (ipbfadr2) is at 000055fc

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=25 d=7 rl=00000000 rd=0005db2c rdl=16 pdh=0 pdl=0
rc=7 err=0 rpl=00000000 rpb=00000000 rpbl=0

SQEI001 -- SNMP Query Engine running and awaiting queries...
fd=3 in callers rmask
fd=4 in callers rmask
fd=5 in callers rmask
fd=6 in callers rmask
fd=7 in callers rmask
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
in inetselect
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=15, iucvname=00032508
wait ecblist=5dc5c, ecbcount=2
iucvposted=1073741824, waitposted=0, callposted=0
in iucvposted
Rc=1 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00005624

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
in gotmsgcomp
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
nfds=0, return=1
sock_request_inet entry parms:

f=16 d=4 rl=00000000 rd=00000000 rdl=0 pdh=0 pdl=0
rc=0 err=0 rpl=0005ed88 rpb=00000000 rpbl=4120

Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=4, path=1, iprcode=0, ipmsgid=16, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 00000000
Rc=1 on IUCV_NEXTBUFF, fd=4 buf (ipbfadr2) is at 0000564c

IUCV interrupt from TCPIP, fd=-254, path=1 type=7 (Incoming Reply)
sock_request_inet return parms:

f=16 d=4 rl=00000000 rd=00000000 rdl=0 pdh=0 pdl=0
rc=0 err=0 rpl=0005ed88 rpb=00000000 rpbl=68

fd=3 in callers rmask
fd=4 in callers rmask
fd=5 in callers rmask
fd=6 in callers rmask
fd=7 in callers rmask
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
in inetselect
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=17, iucvname=00032508
wait ecblist=5dc5c, ecbcount=2
iucvposted=1073741824, waitposted=0, callposted=0
in iucvposted

Figure 60. SNMP IUCV Communication Traces (Part 3 of 5)

374 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Rc=1 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00005674
IUCV interrupt, fd=6, path=2 type=1 (Pending Connection)

iucvcomp is now TRUE
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
in iucvcom && iucvselect
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
Rc=0 on IUCV_PURGE to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=17, iucvname=00032508
Rc=0 on IUCV_NEXTBUFF, fd=6 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_ACCEPT to CNMR3X , fd=8, path=2, iprcode=0, ipmsgid=10000, iucvname=SNMPQE
SQEI002 -- Accepted new client connection
fd=3 in callers rmask
fd=4 in callers rmask
fd=5 in callers rmask
fd=6 in callers rmask
fd=7 in callers rmask
fd=8 in callers rmask
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
in inetselect
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=18, iucvname=00032508
wait ecblist=5dc5c, ecbcount=2
iucvposted=1073741824, waitposted=0, callposted=0
in iucvposted
Rc=1 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 0000569c

IUCV interrupt, fd=8, path=2 type=3 (Connection Severed)
iucvcomp is now TRUE
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
in iucvcom && iucvselect
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
Rc=0 on IUCV_PURGE to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=18, iucvname=00032508
fd=8 in callers rmask
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
fd=8 iucvselect now TRUE
in iucvselect, iucvnfds=1
Rc=0 on IUCV_SEVER to CNMR3X , fd=8, path=2, iprcode=0, ipmsgid=0, iucvname=SNMPQE
SQEI003 -- Terminated client connection

Figure 60. SNMP IUCV Communication Traces (Part 4 of 5)

Chapter 20. Diagnosing Simple Network Management Protocol (SNMP) Problems 375

The following sequence of events occurred to create the trace output:
1. Started the SNMP query engine
2. Connected to the query engine from the SNMPIUCV subtask
3. Disconnected the SNMPIUCV subtask from the query engine

TRAPFWD Trace
The trap forwarder daemon uses syslog functions to write out debug information
and traces. Diagnostic data is written using ″trapfwd″ as identifier.

Figure 61 illustrates a TRAPFWD trace.

fd=3 in callers rmask
fd=4 in callers rmask
fd=5 in callers rmask
fd=6 in callers rmask
fd=7 in callers rmask
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
fd=3 inetselect now TRUE
fd=6 iucvselect now TRUE
in inetselect
Rc=0 on IUCV_NEXTBUFF, fd=-254 buf (ipbfadr2) is at 00000000
Rc=0 on IUCV_SEND to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=19, iucvname=00032508
wait ecblist=5dc5c, ecbcount=2
iucvposted=0, waitposted=0, callposted=1073741824
callers ECB posted
Rc=0 on IUCV_PURGE to TCPCS , fd=-254, path=1, iprcode=0, ipmsgid=19, iucvname=00032508
Rc=0 on IUCV_CLR to , fd=6, path=0, iprcode=0, ipmsgid=0, iucvname=SNMPQE

ciucv_data area (ipbfadr2) is at 00005480
Rc=0 on IUCV_CLR to TCPCS , fd=-254, path=0, iprcode=0, ipmsgid=0, iucvname=00032508

ciucv_data area (ipbfadr2) is at 00000000

Figure 60. SNMP IUCV Communication Traces (Part 5 of 5)

Oct 15 14:06:06 trapfwd[16777250]: EZZ8420I The Trap Forwarder daemon is running as USER17
Oct 15 14:06:06 trapfwd[16777250]: Establishing affinity with the TCPIP stack
Oct 15 14:06:06 trapfwd[16777250]: Issuing setibmopt for TCPCS
Oct 15 14:06:06 trapfwd[16777250]: Checking if TCP/IP stack is enabled
Oct 15 14:06:06 trapfwd[16777250]: Reading the configuration file : /etc/trapfwd.conf
Oct 15 14:06:06 trapfwd[16777250]: Line 1 : 9.67.113.79 2162
Oct 15 14:06:06 trapfwd[16777250]: Added entry with host: 9.67.113.79 port: 2162
Oct 15 14:06:06 trapfwd[16777250]: Line 2 : 9.67.113.79 1062
Oct 15 14:06:06 trapfwd[16777250]: Added entry with host: 9.67.113.79 port: 1062
Oct 15 14:06:06 trapfwd[16777250]: Line 3 : 9.67.113.79 169
Oct 15 14:06:06 trapfwd[16777250]: Added entry with host: 9.67.113.79 port: 169
Oct 15 14:06:06 trapfwd[16777250]: Line 4 : 9.67.113.79 179
Oct 15 14:06:06 trapfwd[16777250]: Added entry with host: 9.67.113.79 port: 179
Oct 15 14:06:06 trapfwd[16777250]: Creating sockets...
Oct 15 14:06:07 trapfwd[16777250]: EZZ8409I TRAPFWD: INITIALIZATION COMPLETE
Oct 15 14:06:07 trapfwd[16777250]: Ready to receive and forward traps....

Figure 61. TRAPFWD Trace

376 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|

Chapter 21. Diagnosing Policy Agent Problems

Overview
The OS/390 UNIX Policy Agent provides administrative control for service policies.
The following terms must be defined to understand service policies:

Quality of Service (QoS)
The overall service that a user or application receives from a network, in
terms of throughput, delay, etc.

Service Differentiation
The ability of a network to provide different levels of QoS to different users
or applications based on their needs.

Service Level Agreement (SLA)
A contract in business terms provided by a network service provider that
details the QoS that users or applications are expected to receive.

Service Policy
Administrative controls for a network, in order to achieve the QoS promised
by a given SLA.

Integrated Services
A type of service that provides end-to-end QoS to an application, using the
methodology of resource reservation along the data path from a receiver to
a sender.

Differentiated Services
A type of service that provides QoS to broad classes of traffic or users, for
example all FTP traffic to a given subnet.

Resource ReSerVation Protocol (RSVP)
A protocol that provides for resource reservation in support of Integrated
Services.

The Policy Agent reads service policies defined in a local file, or read by way of the
Lightweight Directory Access Protocol (LDAP) from an LDAP server. These service
policies are then installed in one or more TCP/IP stacks. The Policy Agent can be
configured to install identical policies to multiple (or all) stacks, or can install
different sets of policies to each stack individually. The Policy Agent can also
monitor its configuration files and the LDAP server periodically for changed policies,
and install new or changed policies as changes occur. Refer to the OS/390 IBM
Communications Server: IP Configuration Guide for more information on configuring
and starting the Policy Agent, as well as defining service policies.

Service Policy Scopes
Service policies can be defined with different scopes. The supported scopes are:

DataTraffic
The policy applies to generic data traffic. This type of policy is in support of
Differentiated Services.

RSVP The policy applies to RSVP data traffic. This type of policy is in support of
Integrated Services.

TR The policy applies to Traffic Regulation Management. This type of policy is
in support of the TRM daemon.

© Copyright IBM Corp. 1994, 2000 377

|

||
|

The TCP/IP stack maps TCP, UDP, and RAW traffic to service policies based on the
selection criteria defined in the policy. Search criteria can include, but is not limited
to, items such as source and destination IP addresses and ports, protocol, and
interfaces. The mapping of DataTraffic scoped policies occurs at connect time for
TCP traffic, and for each packet for UDP and RAW traffic. For UDP and RAW,
however, the mappings are cached such that subsequent packets sent to the same
destination will use the cached mapping. RSVP scoped policies are only mapped
when the RSVP Agent adds a reservation requested by an RSVP application. The
mapping is removed when the reservation is removed. See “Chapter 22. Diagnosing
RSVP Agent Problems” on page 395 for more information on the operation of RSVP.
TR policy only applies to TCP, and is also mapped at connection time.

You can see the effect of defined service policies in either of the following ways.

v The SLA Subagent can be used to display service policy and mapped application
information, as well as to manage and display SLA performance monitoring.

v Using the UNIX pasearch and TSO NETSTAT commands.

– The pasearch command shows defined service policies.

– The NETSTAT SLAP or netstat -j command shows performance metrics for
active policy rules.

– The NETSTAT ALL or onetstat -A command has additional information for
each active connection that shows the service policy rule name if the
connection maps to a service policy.

Refer to the OS/390 IBM Communications Server: IP User’s Guide for more
information on the NETSTAT/onetstat commands, the pasearch command, and the
SLA Subagent.

Gathering Diagnostic Information
The Policy Agent writes logging information to a log file. The level of logged
information is controlled by the LogLevel configuration statement and the -d startup
option. By default, only error and warning messages are written. To gather more
diagnostic information, you can specify a LogLevel value and/or start the Policy
Agent with the -d startup option. When the -d startup option is used, the maximum
amount of information is logged. Use the debug levels as follows:

v Use debug level 1 for most debugging.

v Use debug level 2 to verify Pagent processing of LDAP objects, or if a problem is
suspected in how LDAP objects are defined.

Log output can be directed either to a set of log files or to the syslog daemon
(syslogd). This can be accomplished with the -l startup option or the
PAGENT_LOG_FILE environment variable. If output is directed to log files, the
number and size of the files can be controlled using the
PAGENT_LOG_FILE_CONTROL environment variable. This environment variable
can be used to extend the size of the log information collected if necessary. For
example, if a large LDAP configuration is used with debug level 2, the default log
file size and number may not be sufficient to capture all of the information needed.
In this case, use the environment variable to increase the number and/or size of the
log files. Refer to the OS/390 IBM Communications Server: IP Configuration Guide
for more details on using LogLevel, the -d startup option, and the environment
variables, as well as the location of the log file.

Certain other information may be useful in diagnosing Policy Agent problems:

v Output from the pasearch command

v Output from the NETSTAT SLAP or onetstat -j commands

378 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

v Output from the NETSTAT ALL or onetstat -A commands for active connections
mapped to service policies

v SNMP output from walks of the SLA subagent MIB tables

v TCP/IP CTRACE output, using the INTERNET and IOCTL CTRACE options

v RSVP Agent log output if RSVP scoped policies are defined

Diagnosing Policy Agent Problems
Problems with the Policy Agent will generally fall into one of the following
categories:

v Initialization

v Policy definition

v LDAP

Initialization Problems
If the Policy Agent does not complete initialization, run it with the -d startup option
and check the log file for error conditions. If the Policy Agent fails to initialize,
message EZZ8434I is issued to the console. Check the log file for the specific error
encountered. Common problems could include:

v Policy Agent started from a userid without superuser authority.

The Policy Agent must be started from a superuser. The symptoms for this are
the EZZ8434I message, along with messages in the log file indicating that
superuser authority is required and showing an exit code value of 27.

v Policy Agent not authorized to security product.

The Policy Agent must be authorized to a security product profile. Refer to the
OS/390 IBM Communications Server: IP Configuration Guide for details on
setting up the proper authorization. The symptoms for this are the EZZ8434I
message, along with messages in the log file indicating that the user is not
authorized to start PAGENT and showing an exit code value of 18.

v Unable to read configuration file.

The symptoms for this are the EZZ8434I message, along with messages in the
log file indicating that the configuration file could not be opened and showing an
exit code value of 1.

– Is the correct configuration file specified? Refer to OS/390 IBM
Communications Server: IP Configuration Guide for the search order used to
locate the main configuration file.

– Does the file exist?

– Are the permission bits correctly set for an HFS file?

– The main configuration file may also include other configuration files for
specific TCP/IP stacks. Check these files as well if necessary.

v Timing windows when using the TcpImage FLUSH parameter.

When FLUSH is specified on the TcpImage configuration statement, the Policy
Agent deletes all policies from its own internal database and from the TCP/IP
stack whenever it needs to reprocess policy definitions. This reprocessing occurs
at the following times:

– At each refresh interval specified on the TcpImage statement, if the
configuration file is an MVS data set.

– At each refresh interval specified on the TcpImage statement, if the
configuration file is an HFS file that has been changed since the last refresh
interval.

Chapter 21. Diagnosing Policy Agent Problems 379

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|

|
|
|

Depending on the number of policy definitions and other factors, there may be a
delay between the time the previous policies are deleted and the new policies
are re-installed. During this time, no policies are installed in the stack. If this is
unacceptable, specify the NOFLUSH parameter on the TcpImage statement.
However, be aware that the entire set of policies is never deleted when
NOFLUSH is specified. If you use NOFLUSH and policy definitions are frequently
changing, unused policies may accumulate in the stack. In this situation, consider
periodically flushing old policies by starting the Policy Agent with a configuration
file that only contains a TcpImage statement with FLUSH specified.

v Timing windows when switching policies based on time.

If policy rules are defined such that different sets of policies are activated at
different times (for example at each shift), be aware of non-overlapping vs.
overlapping time specifications.

For example: if Rule1 is active from 00:00 to 07:29, and Rule2 is active from
07:30 to 04:00, there is a one minute interval gap between these 2 rules. Since
the minimum time resolution used by the Policy Agent is one minute, there will be
a period of one minute when neither policy is active.

Policy Definition Problems
If you don’t see the expected results when defining policies, check the following.
Use the pasearch command to display policies (active or inactive) known by the
Policy Agent. This command can be used to check if policies are active or inactive,
and whether or not they contain the specifications that were expected.

Notes:

1. Misspelled attributes are treated by the Policy Agent as unknown attributes, and
are not flagged in error, so it’s the same as if the misspelled attribute were not
specified at all.

2. Policy rules with complex conditions (using CNF/DNF logic) are processed by
the Policy Agent to arrive at a ″working″ set of conditions. These are the only
conditions displayed by default using pasearch (use the -o option to display the
original set of conditions as specified).

3. The pasearch output displays overall time ranges and time of day ranges in
UTC format, as well as the specified time zone if other than UTC.

Another way to check if policies are being installed and used correctly is to use the
NETSTAT commands. Use the NETSTAT SLAP or onetstat -j command to display
active policy statistics for policies installed in the stack, as opposed to the policies
in the Policy Agent. The NETSTAT ALL or onetstat -A command shows which policy
rule (if any) is mapped to active connections.

Some of the problems you may encounter include the following.

v Problems with converting version 1 policies to version 2 policies.

There are some semantic differences between version 1 and version 2 policy
definitions. Only the version 2 semantics are currently supported, so version 1
policy semantics are converted to version 2 semantics when the policies are
processed by the Policy Agent. Be aware of the following processing:

– In version 1, source always meant local, while destination always meant
remote. In version 2, source and destination mean exactly what they imply.
When version 1 policies specify Direction Inbound, the semantics for source
and destination are opposite between the two versions. As a result, although
the specified source and destination attributes are displayed as they are
specified by the pasearch command, the attributes are swapped when the
policies are installed in the stack. When converting such policies to version 2,

380 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

be sure to also swap the source and destination attributes when the version 1
Direction is Inbound. The specified interface is also related to Direction. In
version 1 only a single interface is specified, while both inbound and outbound
interfaces are specified in version 2. When migrating a version 1 policy, be
sure to specify an InboundInterface for Direction Inbound, and an
OutboundInterface for Direction Outbound.

– Similarly to the above, when Direction Both is specified in a version 1 policy,
two policies are installed in the stack - one for the outbound direction with
source/destination attributes intact, and one for the inbound direction with the
attributes swapped. When converting version 1 rules with Direction Both
specified, be sure to create two version 2 rules, one for each direction. Also,
specify InboundInterface for the inbound rule and OutboundInterface for the
outbound rule, if the version 1 rule specified both Interface and Direction Both.

– PolicyScope values exist in both the policy rule and action in version 1, but
only in the policy action in version 2. For any policies that specified different
PolicyScope values for the rule and the associated action in version 1, the
scope values are merged in the policy action. For example, if the rule
specified PolicyScope Both, and the associated action specified PolicyScope
DataTraffic, the resulting scope value in the policy action is Both. When
converting policies with different PolicyScope values, be sure to logically
merge the scopes in the version 2 policy action. Any such merge should
always result in a PolicyScope value of Both.

v Policy groups or rules are discarded when defined on an LDAP server.

Policy groups and policy rules defined on an LDAP server may refer to other
LDAP objects (such as policy actions or time periods). When any referenced
object cannot be found on the LDAP server, the referencing object is discarded.
Be sure to specify the correct reference Distinguished Names on LDAP objects
that reference other objects.

v Policies with complex conditions (using CNF or DNF) are not mapping correctly.

Complex policy conditions using CNF or DNF can be difficult to properly
configure. Since some conditions are logically ANDed, the result may be invalid.
For example, two or more distinct interfaces cannot be ANDed and still be true.
Or two non-overlapping port ranges also cannot be ANDed. The Policy Agent
tries to detect these types of errors and discard the policy rules with an error
message, but there are cases that can’t be detected (for example logical ANDs
between CNF/DNF levels, or when negated conditions are used). In these cases,
a policy rule may well be installed that can never be true. Similar problems could
occur when ORing conditions. For example, a very broad condition may map
much more traffic than was intended, simply because it’s one of a set of
conditions that is ORed together. Use the pasearch command to display policy
rules with complex conditions. By default, the ″working″ set of conditions is
displayed (after the Policy Agent has attempted to collapse and summarize the
complex conditions). This working set includes the summary of each condition
level, as well as the overall ″global″ summary condition. Use the pasearch -o
option to also display the original set of specified conditions. This will help to
understand how the working set was derived.

v Wrong policy being mapped to traffic.

There may be times when two or more policy rules are logically mapped to the
same set of traffic packets. When this happens, the rule with the highest ″weight″
is selected. The weight depends on two factors. When the policy rule priority is
not specified, the weight depends on the number of attributes specified in the
policy conditions. When policy rule priority is specified, the weight is the specified
priority plus 100, which is always higher than the weight derived from counting
the number of attributes. If more than one rule is found with the same weight, the

Chapter 21. Diagnosing Policy Agent Problems 381

first such rule is selected to be mapped. Be sure to specify priority in policy rules
to better control situations where multiple rules map to the same set of traffic.

v Policies not installed in the TCP/IP stack. The symptom for this is an unexpected
or missing set of policies displayed by the NETSTAT SLAP or onetstat -j
command.

Is the stack in question configured via a TcpImage statement in the Policy Agent
configuration file? Check that day of week and/or time of day specifications are
correct. Verify the specified time zone. For time zones other than local time, the
specified time periods may not be currently active. Has the stack been started or
restarted after the Policy Agent was started? If so, check that the temporary file
used by the stack to inform the Policy Agent of restarts has not been deleted.
Refer to the OS/390 IBM Communications Server: IP Configuration Guide for
more details.

v Policies not mapping to the expected traffic. The symptom for this is a blank
policy rule name displayed for an active connection using the NETSTAT ALL or
onetstat -A command.

If you think data traffic should be mapped to certain policies, but isn’t, then check
to make sure you’ve specified the selection criteria correctly on the PolicyRule
statement for the policy. For example, TCP policies are mapped on a per
connection basis, whereas for UDP and RAW, the policy is mapped on a per
packet basis. As an example of TCP traffic, consider an ftp GET request from a
remote client. The connection request from the client will be mapped as inbound
data, while the data flow will be mapped as outbound data. You can use either
source or destination fields in the policy rule to map both traffic flows, but the
definitions must be consistent with this way of mapping. Check that the policy
isn’t unnecessarily restrictive in its specification of IP addresses and ports. For
RSVP scoped policies, remember that the policy is only mapped to data traffic
while an RSVP reservation is in effect.

v Policies defined in an MVS data set are not being installed

When an MVS data set is used to define policies, be careful that sequence
numbers are not part of the file, as these will cause parsing errors. In ISPF, use
the NUMBER OFF and/or UNNUM commands to remove sequence numbers.

LDAP Problems
Service policies can be defined on an LDAP server using the appropriate
definitions, known as schemas. The policies are defined as object classes with
certain attributes, which are a superset of the attributes that can be defined in a
local file using the PolicyAction and PolicyRule statements. The Policy Agent acts
as an LDAP client to communicate with and retrieve policies from an LDAP server.
The Policy Agent uses an LDAP DLL to perform its LDAP client functions.

If you’re having problems receiving policies from an LDAP server, run the Policy
Agent with the -d startup option, and check the following:

v Unable to connect to the LDAP server.

The symptom for this is message EZZ8440I issued to the console. If the Policy
Agent fails to connect to the LDAP server, check the log file for the specific error
encountered. The Policy Agent keeps trying to connect to the server, using a
sliding time window (1 minute, then at 5 minute intervals, with the maximum time
between connect attempts being 30 minutes). Note that if a backup LDAP server
is configured, the EZZ8440I message is only issued if neither the primary or
backup server can be connected.

If you receive message EZZ8440I, check the attributes specified on the
ReadFromDirectory statement in the configuration file that relate to the LDAP

382 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|

server connection. These include the primary and backup server addresses and
ports, the userid and password, and SSL parameters. Also check that the
specified protocol version matches the protocol version being run on the server.

v No objects, or incorrect objects, retrieved from the LDAP server.

The symptoms for this are missing or incorrect policies displayed by the
pasearch command, or the NETSTAT SLAP or onetstat -j commands. Check that
the schema version specified on the ReadFromDirectory statement in the
configuration file matches the version defined on the LDAP server. The different
versions are distinguished by the set of supported object classes. Refer to the
sample file /usr/lpp/tcpip/samples/pagent_oc.conf for the version 2 schema object
classes.

v Wrong set of objects retrieved from the LDAP server. The symptoms for this are
missing or incorrect policies displayed by the pasearch command, or the
NETSTAT SLAP or onetstat -j commands.

Check that the search and selection criteria specified on the ReadFromDirectory
statement in the configuration file are correct. For version 1 policies, verify the
correct Base and SelectedTag attributes are used. For version 2 policies, check
the SearchPolicyBaseDN, SearchPolicyGroupKeyword, and
SearchPolicyRuleKeyword attributes.

v LDAP DLL not found

The Policy Agent must have access to the LDAP DLL at run time. The symptom
for this is that the Policy Agent terminates unexpectedly with a CEEDUMP. The
reason for termination in the CEEDUMP indicates that the LDAP DLL
(GLDCLDAP) was not found. The Policy Agent accesses the LDAP DLL using
the LIBPATH environment variable. Check that the LIBPATH environment variable
is specified, and that it contains the directory in which the LDAP DLL
(GLDCLDAP) resides. This is normally /usr/lib.

v Version 1 policies not shared among multiple TCP/IP stacks

The Policy Agent uses two attributes when it searches an LDAP server for
version 1 policies that apply to a given TCP/IP image. One attribute is the TCP/IP
image name and the other is a selector tag. The selector tag attribute can be
defined such that LDAP will scope the search. The TCP/IP image name attribute
is set by default to scope the search for a particular image.

Each of the two attributes (TCPImageName and SelectorTag) is a multi-value
field, meaning you can specify TCPImpageName/SelectorTag multiple times in
one object defined to LDAP. Both multiple MVS images and multiple TCP/IP
stacks can exist. If a policy object is to be used in multiple MVS LPARs, that
object can have multiple SelectorTag attributes defined, one for each LPAR. If a
policy object is to be used in multiple TCP/IP images, that object can have
multiple TCPImageName attributes defined, one for each image.

Example Log File
Figure 62 on page 386 demonstrates some of the Policy Agent processing. This log
file was created using the -d startup option. The following configuration files were
used to produce this output:

v Main configuration file:
TcpImage TCPCS FLUSH 120
TcpImage TCPCS2 /u/user10/pagent.conf

LogLevel 511

ReadFromDirectory
{

LDAP_Server 9.37.83.93

Chapter 21. Diagnosing Policy Agent Problems 383

|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|

LDAP_Port 9000
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password secret
LDAP_SchemaVersion 2
LDAP_ProtocolVersion 2
SearchPolicyBaseDN o=ibm, c=us

}

PolicyPerfMonitorForSDR Enable
{

SamplingInterval 60
LossRatioAndWeightFr 20 25
TimeoutRatioAndWeightFr 50 50
LossMaxWeightFr 95
TimeoutMaxWeightFr 100

}

SetSubnetPrioTosMask
{

SubnetAddr 9.37.65.139
SubnetTosMask 11100000
PriorityTosMapping 1 11100000
PriorityTosMapping 1 11000000
PriorityTosMapping 2 10100000
PriorityTosMapping 2 10000000
PriorityTosMapping 3 01100000
PriorityTosMapping 3 01000000
PriorityTosMapping 4 00100000
PriorityTosMapping 4 00000000

}

PolicyRule DiffServRule
{

ProtocolNumberRange 6:42
OutboundInterface 9.37.65.139
SourceAddressRange 9.67.100.0 9.67.100.255
SourcePortRange 20:21
DayOfWeekMask 0111110
TimeOfDayRange 08:00-12:00
PolicyActionReference DiffServAction1
PolicyRulePriority 8
ApplicationName FTP*
ApplicationData /u/user10
DayOfMonthMask 1111111111111110000000000000000

}

PolicyAction DiffServAction1
{

PolicyScope DataTraffic
MaxRate 10000
MinRate 2000
OutboundInterface 9.67.116.90
OutboundInterface 9.67.116.91
OutboundInterface 9.67.116.92
OutboundInterface 9.67.116.93
OutboundInterface 9.67.116.94
OutboundInterface 9.67.116.95
OutboundInterface 9.67.116.96
OutboundInterface 9.67.116.97
OutboundInterface 9.67.116.98
OutboundInterface 9.67.116.99
OutboundInterface 9.67.117.90
OutboundInterface 9.67.117.91
OutboundInterface 9.67.117.92
OutboundInterface 0.0.0.0
OutgoingTOS 10000000
MaxDelay 50

384 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MaxConnections 100
DiffServInProfileRate 128
DiffServInProfileTokenBucket 32
DiffServOutProfileTransmittedTOSByte 00100000
DiffServExcessTrafficTreatment BestEffort

}

PolicyRule TRRule
{

DestinationPortRange 10000:10100
DayOfWeekMask 0111111
PolicyActionReference TRAction

}

PolicyAction TRAction
{

PolicyScope TR
TypeActions Statistics Log
TotalConnections 500
Percentage 80
TimeInterval 120
LoggingLevel 7

}

PolicyRule BothRule
{

DestinationAddressRange 9.67.116.0 9.67.116.255
SourcePortRange 8000:9000
ProtocolNumberRange 6
PolicyActionReference DiffServAction2
PolicyActionReference RSVPAction

}

PolicyAction DiffServAction2
{

PolicyScope Both
MaxRate 1000000
MinRate 10000
OutgoingTOS 11000000

}

PolicyAction RSVPAction
{

PolicyScope RSVP
Permission Allowed
OutgoingTOS 10100000
FlowServiceType ControlledLoad
MaxRatePerFlow 440 # 55000 bytes/second
MaxTokenBucketPerFlow 48 # 6000 bytes
MaxFlows 10

}

v Policy Agent Processing Log:

Chapter 21. Diagnosing Policy Agent Problems 385

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

�(01)�
03/22 16:33:56 INFO :.log_init[31]: Log File Size = 300, Number of Log Files = 3
03/22 16:33:56 INFO :.main[31]: OS/390 Service Policy Agent
�(02)�
03/22 16:33:56 INFO :.main[31]: Specified configuration file: /u/user10/diagnose.conf
03/22 16:33:56 LOG :.main[31]: EZZ8431I PAGENT STARTING

03/22 16:33:56 INFO :.main[31]: Using log level 511
03/22 16:33:56 INFO :..reg_process[30]: registering process with the system
03/22 16:33:56 INFO :..reg_process[30]: attempt OS/390 registration
03/22 16:33:56 INFO :..reg_process[30]: return from registration rc=0
03/22 16:33:56 INFO :....mailslot_create[30]: creating mailslot for timer
03/22 16:33:56 INFO :...mailbox_register[30]: mailbox allocated for timer
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for terminate
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for terminate
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for (broken) pipe
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for pipe
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for process abend
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for abend
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for process abort
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for abort
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for reconfig
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for config
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for process quit
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for quit
03/22 16:33:56 INFO :..profile_initialize[30]: Pagent threads created installation(/flush) and initialization.
�(03)�
03/22 16:33:56 INFO :.check_main_config_file[29]: Main config file thread active
03/22 16:33:56 INFO :...pinit_create_tmpFile[29]: Creating temporary working file /tmp/TCPCS.Pagent.tmp
03/22 16:33:56 INFO :...pagent_mvs_command_handler[31]: Command handler thread active
03/22 16:33:56 INFO :..pinit_init_tcpimages[29]: processed TcpImage statement: TcpImage

TCPCS FLUSH 120

03/22 16:33:56 INFO :...pinit_create_tmpFile[29]: Creating temporary working file /tmp/TCPCS2.Pagent.tmp
03/22 16:33:56 INFO :..pinit_init_tcpimages[29]: processed TcpImage statement: TcpImage

TCPCS2 /u/user10/pagent.conf

03/22 16:33:56 INFO :..pinit_init_tcpimages[29]: Main config file refresh interval = 120 seconds
03/22 16:33:56 INFO :.check_main_config_file[29]: Start up a config event update thread
03/22 16:33:56 INFO :.check_main_config_file[29]: Finish starting policy profile installation(/flush) and
initialization.
�(04)�
03/22 16:33:56 INFO :.check_config_files[28]: Config processing thread active for image 'TCPCS2', index 1
03/22 16:33:56 INFO :...settcpimage[28]: Associate with TCP/IP image name = TCPCS2
03/22 16:33:56 INFO :...mailslot_create[30]: creating mailslot for dump
03/22 16:33:56 INFO :.listen_thread[27]: PAPI server thread active
03/22 16:33:56 INFO :.check_config_files[26]: Config processing thread active for image 'TCPCS', index 0
�(05)�
03/22 16:33:56 INFO :.config_files_update_event[25]: Config files update event thread active
03/22 16:33:56 INFO :..mailbox_register[30]: mailbox allocated for dump
03/22 16:33:56 INFO :.config_files_update_event[25]: IPC message queue id obtained, qid =10
�(06)�
03/22 16:33:57 LOG :.main[30]: EZZ8432I PAGENT INITIALIZATION COMPLETE

�(07)�
03/22 16:33:57 SYSERR :..S390KernelInit[28]: socket(INET, DGRAM, 0) failed - errno EDC5112I Resource temporarily
unavailable.
03/22 16:33:57 INFO :...settcpimage[26]: Associate with TCP/IP image name = TCPCS
03/22 16:33:57 SYSERR :..S390KernelInit[26]: socket(INET, DGRAM, 0) failed - errno EDC5112I Resource temporarily
unavailable.
�(08)�
03/22 16:34:24 TRACE :.config_files_update_event[25]: File Event notification is (__rfim_event)= 1, (__rfim_type)= 9
03/22 16:34:24 INFO :.config_files_update_event[25]: Image TCPCS has been recycled

Figure 62. Policy Agent (Part 1 of 6)

386 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�(09)�
03/22 16:34:24 INFO :.config_files_update_event[25]: Restarting config processing thread for image 'TCPCS'
03/22 16:34:24 INFO :.check_config_files[26]: Thread cleanup completed
03/22 16:34:25 INFO :.check_config_files[26]: Config processing thread active for image 'TCPCS', index 0
03/22 16:34:25 INFO :...settcpimage[26]: Associate with TCP/IP image name = TCPCS
�(10)�
03/22 16:34:25 INFO :..FlushAllPolicies[26]: Start first by flushing all policies
03/22 16:34:25 INFO :...profile_delete_ALL_ServiceClass[26]: Image name: TCPCS
03/22 16:34:25 OBJERR :...profile_delete_ALL_ServiceClass[26]: Failed reason code =70
03/22 16:34:25 WARNING:...profile_delete_ALL_ServiceClass[26]: ... reason is: P_RC_POLICY_NOT_FOUND
03/22 16:34:25 INFO :...profile_delete_ALL_ServiceClass[26]: Finished deleting ALL Service Class in image 0
03/22 16:34:25 INFO :...profile_delete_ALL_PolicyRule[26]: Image name: TCPCS
03/22 16:34:25 OBJERR :...profile_delete_ALL_PolicyRule[26]: Failed reason code =70
03/22 16:34:25 WARNING:...profile_delete_ALL_PolicyRule[26]: ... reason is: P_RC_POLICY_NOT_FOUND
03/22 16:34:25 INFO :...profile_delete_ALL_PolicyRule[26]: Finished deleting ALL Policy Rules
�(11)�
03/22 16:34:25 INFO :..pinit_fetch_policy_profile[26]: Processing policy config data file: /u/user10/diagnose.conf
for image TCPCS
03/22 16:34:25 INFO :...processing_Stmt_UseLDAPRules[26]: (Re)starting LDAP processing thread for image 'TCPCS'
�(12)�
03/22 16:34:25 INFO :...processing_Stmt_PolicyPerfMonit[26]: processing: PolicyPerfMonitorForSDR

Enable

03/22 16:34:25 TRACE :...processing_Stmt_PolicyPerfMonit[26]: Turn ON policy performance monitor
�(13)�
03/22 16:34:26 INFO :.ReadLdapRules[24]: LDAP processing thread active for image 'TCPCS', index 0
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Performance sampling interval 60 (sec)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Loss Ratio specified is 20 (in 1/1000 th)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Loss Weight Fraction specified is 25 (percent)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Timeout ratio specified is 50 (in 1/1000 th)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Timeout Weight Fraction specified is 50 (percent)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Maximum Retrans Weight Fraction specified is 95(percent)
03/22 16:34:26 INFO :....parse_policy_perf_monitor()[26]: Maximum Timeout Weight Fraction specified is 100(percent)
�(14)�
03/22 16:34:26 INFO :...processing_Stmt_SetSubnetPrioTo[26]: processing: SetSubnetPrioTosMask

�(15)�
03/22 16:34:26 INFO :...processing_Stmt_ServicePolicyRu[26]: processing: PolicyRule

DiffServRule

03/22 16:34:26 INFO :...processing_Stmt_ServiceCategori[26]: processing: PolicyAction
DiffServAction1

03/22 16:34:26 INFO :...processing_Stmt_ServicePolicyRu[26]: processing: PolicyRule
TRRule

03/22 16:34:26 INFO :...processing_Stmt_ServiceCategori[26]: processing: PolicyAction
TRAction

03/22 16:34:26 INFO :...processing_Stmt_ServicePolicyRu[26]: processing: PolicyRule
BothRule

03/22 16:34:26 INFO :...processing_Stmt_ServiceCategori[26]: processing: PolicyAction
DiffServAction2

03/22 16:34:26 INFO :...processing_Stmt_ServiceCategori[26]: processing: PolicyAction
RSVPAction

Figure 62. Policy Agent (Part 2 of 6)

Chapter 21. Diagnosing Policy Agent Problems 387

|

|

03/22 16:34:26 INFO :...UpdateSCProfileData[26]: Updating SC profile for caller id: 1
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR DiffServRule is: 108
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR TRRule is: 2
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR BothRule is: 4
03/22 16:34:26 INFO :...UpdatePRProfileData[26]: Updating PR profile for caller id: 1
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR DiffServRule is: 108
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR BothRule is: 4
03/22 16:34:26 INFO :....computePolicyRuleWeight[26]: Weight computed for PR TRRule is: 2
�(16)�
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Service Class: DiffServAction1
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Finished installing Service Class: DiffServAction1
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Service Class: TRAction
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Finished installing Service Class: TRAction
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Service Class: DiffServAction2
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Finished installing Service Class: DiffServAction2
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Service Class: RSVPAction
03/22 16:34:26 INFO :...profile_install_A_ServiceClass[26]: Finished installing Service Class: RSVPAction
03/22 16:34:26 TRACE :....process_time_condition[26]: PR=DiffServRule inactive, next check in 446 minutes
03/22 16:34:26 TRACE :....process_time_condition[26]: PR=BothRule active, next check in 446 minutes
03/22 16:34:26 INFO :...profile_install_A_PolicyRule[26]: Finished installing policy rule: BothRule
03/22 16:34:26 TRACE :....process_time_condition[26]: PR=TRRule active, next check in 446 minutes
03/22 16:34:26 INFO :...profile_install_A_PolicyRule[26]: Finished installing policy rule: TRRule
03/22 16:34:26 INFO :...profile_install_SubnetPrioTosMa[26]: Image name: TCPCS
03/22 16:34:26 INFO :...profile_install_SubnetPrioTosMa[26]: Finished installing PrioTosMasks
�(17)�
03/22 16:34:26 INFO :..pinit_fetch_policy_profile[26]: Finish processing above policy config file
03/22 16:34:26 INFO :.check_config_files[26]: Started a thread to monitor policy performance for image 0
03/22 16:34:26 INFO :.policy_perf_monitor[23]: Performance monitor thread active for image 'TCPCS', index 0
03/22 16:34:26 INFO :..settcpimage[23]: Associate with TCP/IP image name = TCPCS
03/22 16:34:26 INFO :..settcpimage[24]: Associate with TCP/IP image name = TCPCS
�(18)�
03/22 16:34:26 INFO :.ReadLdapRules[24]: Contacting LDAP server 9.37.83.93 on port 9000
03/22 16:34:27 OBJERR :.ReadLdapRules[24]: Can not bind to directory server: No such object
03/22 16:34:27 LOG :.ReadLdapRules[24]: EZZ8440I PAGENT CANNOT CONNECT TO LDAP SERVER

�(19)�
03/22 16:34:27 INFO :.ReadLdapRules[24]: Wait for retrying LDAP Connection = 60 seconds
03/22 16:35:27 INFO :..settcpimage[24]: Associate with TCP/IP image name = TCPCS
03/22 16:35:27 INFO :.ReadLdapRules[24]: Contacting LDAP server 9.37.83.93 on port 9000
03/22 16:35:30 OBJERR :.ReadLdapRules[24]: Can not bind to directory server: No such object
03/22 16:35:30 LOG :.ReadLdapRules[24]: EZZ8440I PAGENT CANNOT CONNECT TO LDAP SERVER

03/22 16:35:30 INFO :.ReadLdapRules[24]: Wait for retrying LDAP Connection = 300 seconds
�(20)�
03/22 16:35:57 INFO :.check_main_config_file[29]: Cancelling config processing thread for image 'TCPCS'
03/22 16:35:57 INFO :.check_main_config_file[29]: Cancelling config processing thread for image 'TCPCS2'
03/22 16:35:57 INFO :.check_config_files[26]: Thread cleanup completed
03/22 16:35:57 INFO :...pinit_create_tmpFile[29]: Creating temporary working file /tmp/TCPCS.Pagent.tmp
03/22 16:35:57 INFO :..pinit_init_tcpimages[29]: processed TcpImage statement: TcpImage

TCPCS FLUSH 120

03/22 16:35:57 INFO :...pinit_create_tmpFile[29]: Creating temporary working file /tmp/TCPCS2.Pagent.tmp
03/22 16:35:57 INFO :..pinit_init_tcpimages[29]: processed TcpImage statement: TcpImage

TCPCS2 /u/user10/pagent.conf

03/22 16:35:57 INFO :..pinit_init_tcpimages[29]: Main config file refresh interval = 120 seconds
03/22 16:35:57 INFO :.check_main_config_file[29]: Finish starting policy profile installation(/flush) and
initialization.

Figure 62. Policy Agent (Part 3 of 6)

388 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

�(21)�
03/22 16:35:57 INFO :.check_config_files[26]: Config processing thread active for image 'TCPCS2', index 1
03/22 16:35:57 INFO :...settcpimage[26]: Associate with TCP/IP image name = TCPCS2
03/22 16:35:57 INFO :.check_config_files[22]: Config processing thread active for image 'TCPCS', index 0
03/22 16:35:57 INFO :.check_config_files[28]: Thread cleanup completed
03/22 16:35:57 SYSERR :..S390KernelInit[26]: socket(INET, DGRAM, 0) failed - errno EDC5112I Resource temporarily
unavailable.
03/22 16:35:57 INFO :...settcpimage[22]: Associate with TCP/IP image name = TCPCS
03/22 16:35:57 INFO :..FlushAllPolicies[22]: Start first by flushing all policies
03/22 16:35:57 INFO :...profile_delete_ALL_ServiceClass[22]: Image name: TCPCS
03/22 16:35:57 INFO :...profile_delete_ALL_ServiceClass[22]: Finished deleting ALL Service Class in image 0
03/22 16:35:57 INFO :...profile_delete_ALL_PolicyRule[22]: Image name: TCPCS
03/22 16:35:57 INFO :...profile_delete_ALL_PolicyRule[22]: Finished deleting ALL Policy Rules
03/22 16:35:57 INFO :..pinit_fetch_policy_profile[22]: Processing policy config data file: /u/user10/diagnose.conf
for image TCPCS
03/22 16:35:57 INFO :...processing_Stmt_UseLDAPRules[22]: (Re)starting LDAP processing thread for image 'TCPCS'
03/22 16:35:57 INFO :...processing_Stmt_PolicyPerfMonit[22]: processing: PolicyPerfMonitorForSDR

Enable

03/22 16:35:57 TRACE :...processing_Stmt_PolicyPerfMonit[22]: Turn ON policy performance monitor
03/22 16:35:57 INFO :.ReadLdapRules[24]: Thread cleanup completed
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Performance sampling interval 60 (sec)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Loss Ratio specified is 20 (in 1/1000 th)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Loss Weight Fraction specified is 25 (percent)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Timeout ratio specified is 50 (in 1/1000 th)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Timeout Weight Fraction specified is 50 (percent)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Maximum Retrans Weight Fraction specified is 95(percent)
03/22 16:35:57 INFO :....parse_policy_perf_monitor()[22]: Maximum Timeout Weight Fraction specified is 100(percent)
03/22 16:35:57 INFO :.ReadLdapRules[28]: LDAP processing thread active for image 'TCPCS', index 0
03/22 16:35:57 INFO :...processing_Stmt_SetSubnetPrioTo[22]: processing: SetSubnetPrioTosMask

03/22 16:35:57 INFO :...processing_Stmt_ServicePolicyRu[22]: processing: PolicyRule
DiffServRule

03/22 16:35:57 INFO :...processing_Stmt_ServiceCategori[22]: processing: PolicyAction
DiffServAction1

03/22 16:35:57 INFO :...processing_Stmt_ServicePolicyRu[22]: processing: PolicyRule
TRRule

03/22 16:35:57 INFO :...processing_Stmt_ServiceCategori[22]: processing: PolicyAction
TRAction

03/22 16:35:57 INFO :...processing_Stmt_ServicePolicyRu[22]: processing: PolicyRule
BothRule

03/22 16:35:57 INFO :...processing_Stmt_ServiceCategori[22]: processing: PolicyAction
DiffServAction2

03/22 16:35:57 INFO :...processing_Stmt_ServiceCategori[22]: processing: PolicyAction
RSVPAction

03/22 16:35:57 INFO :...UpdateSCProfileData[22]: Updating SC profile for caller id: 1
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR DiffServRule is: 108
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR TRRule is: 2
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR BothRule is: 4
03/22 16:35:57 INFO :...UpdatePRProfileData[22]: Updating PR profile for caller id: 1
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR DiffServRule is: 108
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR BothRule is: 4
03/22 16:35:57 INFO :....computePolicyRuleWeight[22]: Weight computed for PR TRRule is: 2

Figure 62. Policy Agent (Part 4 of 6)

Chapter 21. Diagnosing Policy Agent Problems 389

|

03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Service Class: DiffServAction1
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Finished installing Service Class: DiffServAction1
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Service Class: TRAction
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Finished installing Service Class: TRAction
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Service Class: DiffServAction2
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Finished installing Service Class: DiffServAction2
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Service Class: RSVPAction
03/22 16:35:57 INFO :...profile_install_A_ServiceClass[22]: Finished installing Service Class: RSVPAction
03/22 16:35:57 TRACE :....process_time_condition[22]: PR=DiffServRule inactive, next check in 444 minutes
03/22 16:35:57 TRACE :....process_time_condition[22]: PR=BothRule active, next check in 444 minutes
03/22 16:35:57 INFO :...profile_install_A_PolicyRule[22]: Finished installing policy rule: BothRule
03/22 16:35:57 TRACE :....process_time_condition[22]: PR=TRRule active, next check in 444 minutes
03/22 16:35:57 INFO :...profile_install_A_PolicyRule[22]: Finished installing policy rule: TRRule
03/22 16:35:57 INFO :...profile_install_SubnetPrioTosMa[22]: Image name: TCPCS
03/22 16:35:57 INFO :...profile_install_SubnetPrioTosMa[22]: Finished installing PrioTosMasks
03/22 16:35:57 INFO :..pinit_fetch_policy_profile[22]: Finish processing above policy config file
03/22 16:35:57 INFO :.check_config_files[22]: Cancelling performance monitor thread
03/22 16:35:57 INFO :.policy_perf_monitor[23]: Thread cleanup completed
03/22 16:35:57 INFO :.check_config_files[22]: Started a thread to monitor policy performance for image 0
03/22 16:35:57 INFO :.policy_perf_monitor[24]: Performance monitor thread active for image 'TCPCS', index 0
03/22 16:35:57 INFO :..settcpimage[24]: Associate with TCP/IP image name = TCPCS
03/22 16:35:57 INFO :..settcpimage[28]: Associate with TCP/IP image name = TCPCS
�(22)�
03/22 16:35:57 INFO :.ReadLdapRules[28]: Contacting LDAP server 9.37.83.93 on port 9000
03/22 16:35:58 INFO :.ReadLdapRules[28]: Processing version 2 schema
03/22 16:35:58 INFO :...search_ldap[28]: Searching for policies with base o=ibm, c=us, filter (&(objectClass=*)),
scope subtree
�(23)�
03/22 16:35:59 INFO :..sla_ldap_get_v2_policies[28]: 13 objects returned from LDAP search
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object o=IBM, c = US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object g=policy, o=IBM, c = US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pg=groupA, g=policy, o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pg=groupA-1, g=policy, o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pa=inter1, pg=groupA-1, g=policy,
o=ibm, c=US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pa=inter2, pg=groupA-1, g=policy,
o=ibm, c=US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pr=rule1, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pc=period1, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pc=cond1, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pc=cond1a, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pr=rule2, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pc=period2, pg=groupA-1, g=policy,
o=IBM, c= US
03/22 16:35:59 TRACE :...process_ldap_group[28]: Search group contains object pc=cond2, pg=groupA-1, g=policy,
o=IBM, c= US
�(24)�
03/22 16:35:59 INFO :..sla_ldap_get_v2_policies[28]: Processing policy rule pr=rule1,pg=groupA-1,g=policy,o=ibm,c=US
03/22 16:35:59 INFO :..sla_ldap_get_v2_policies[28]: Processing policy rule pr=rule2,pg=groupA-1,g=policy,o=ibm,c=US
�(25)�
03/22 16:35:59 OBJERR :.....validate_numeric_att[28]: Attribute ProtocolNumberRange 'from' value TCP contains
non-numeric characters

Figure 62. Policy Agent (Part 5 of 6)

390 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

03/22 16:35:59 OBJERR :...process_policy_condition[28]: Attribute parsing error in policy condition entry for
attribute protocolnumberrange value TCP ...
03/22 16:35:59 OBJERR :..sla_ldap_get_v2_policies[28]: Error parsing policy condition pc=cond2,pg=groupA-1,g=policy,
o=ibm,c=us
03/22 16:35:59 OBJERR :..sla_ldap_get_v2_policies[28]: Rule pr=rule2,pg=groupA-1,g=policy,o=ibm,c=US discarded
due to reference errors
03/22 16:35:59 INFO :..sla_ldap_get_v2_policies[28]: Processing policy action pa=inter1,pg=groupA-1,g=policy,o=ibm,c=US
03/22 16:35:59 INFO :..sla_ldap_get_v2_policies[28]: Processing policy action pa=inter2,pg=groupA-1,g=policy,o=ibm,c=US
03/22 16:35:59 INFO :..UpdateSCProfileData[28]: Updating SC profile for caller id: 2
03/22 16:35:59 INFO :...computePolicyRuleWeight[28]: Weight computed for PR rule1 is: 102
03/22 16:35:59 INFO :..UpdatePRProfileData[28]: Updating PR profile for caller id: 2
03/22 16:35:59 INFO :...computePolicyRuleWeight[28]: Weight computed for PR rule1 is: 102
03/22 16:35:59 INFO :...computePolicyRuleWeight[28]: Weight computed for PR DiffServRule is: 108
03/22 16:35:59 INFO :...computePolicyRuleWeight[28]: Weight computed for PR BothRule is: 4
03/22 16:35:59 INFO :...computePolicyRuleWeight[28]: Weight computed for PR TRRule is: 2
�(26)�
03/22 16:35:59 LOG :.ReadLdapRules[28]: EZZ8438I PAGENT POLICY DEFINITIONS CONTAIN ERRORS

03/22 16:35:59 INFO :....settcpimage[28]: Associate with TCP/IP image name = TCPCS
�(27)�
03/22 16:35:59 INFO :...profile_install_A_ServiceClass[28]: Service Class: inter1
03/22 16:35:59 INFO :...profile_install_A_ServiceClass[28]: Finished installing Service Class: inter1
03/22 16:35:59 INFO :....settcpimage[28]: Associate with TCP/IP image name = TCPCS
03/22 16:35:59 INFO :...profile_install_A_ServiceClass[28]: Service Class: inter2
03/22 16:35:59 INFO :...profile_install_A_ServiceClass[28]: Finished installing Service Class: inter2
03/22 16:36:00 TRACE :....process_time_condition[28]: PR=rule1 inactive, next check in 144 minutes
03/22 16:36:00 INFO :...search_ldap[28]: Searching for policies with base o=ibm, c=us, filter (&(objectClass=
setsubnetpriotosmask)), scope subtree
�(28)�
03/22 16:36:34 INFO :.process_rqsts[23]: PAPI client thread active for connection 7
03/22 16:36:34 INFO :..paapi_search[23]: Found Match to Policy Entry Name = BothRule
03/22 16:36:34 INFO :..paapi_search[23]: Found Match to Policy Entry Name = DiffServAction2
03/22 16:36:34 INFO :..paapi_search[23]: Found Match to Policy Entry Name = RSVPAction
03/22 16:36:34 INFO :..paapi_search[23]: Found Match to Policy Entry Name = TRRule
03/22 16:36:34 INFO :..paapi_search[23]: Found Match to Policy Entry Name = TRAction
�(29)�
03/22 16:36:59 INFO :.process_rqsts[23]: PAPI client thread active for connection 7
03/22 16:36:59 INFO :..paapi_search[23]: Found Match to Policy Entry Name = DiffServRule
03/22 16:36:59 INFO :..paapi_search[23]: Found Match to Policy Entry Name = rule1
�(30)�
03/22 16:37:35 INFO :...pagent_mvs_command_handler[31]: Received a CIBSTOP
03/22 16:37:35 EVENT :..mailslot_sitter[30]: process received signal SIGTERM
03/22 16:37:35 INFO :...check_signals[30]: received TERM signal
03/22 16:37:35 INFO :......dreg_process[30]: deregistering process with the system
03/22 16:37:35 INFO :......dreg_process[30]: attempt to dereg (ifaeddrg_byaddr)
03/22 16:37:35 INFO :......dreg_process[30]: rc from ifaeddrg_byaddr rc =0
03/22 16:37:35 INFO :......pAPIterminate[30]: Cancelling PAPI server thread
03/22 16:37:35 INFO :.....terminator[30]: Terminating global thread, relative id 0
03/22 16:37:36 INFO :.....terminator[30]: Terminating global thread, relative id 1
03/22 16:37:36 INFO :.....terminator[30]: Terminating global thread, relative id 2
03/22 16:37:37 INFO :.....terminator[30]: Terminating global thread, relative id 3
03/22 16:37:38 INFO :.....terminator[30]: Terminating image thread, relative id 0
03/22 16:37:38 INFO :.check_config_files[22]: Thread cleanup completed
03/22 16:37:38 INFO :.....terminator[30]: Terminating image thread, relative id 0
03/22 16:37:38 INFO :.check_config_files[26]: Thread cleanup completed
03/22 16:37:39 INFO :.....terminator[30]: Terminating image thread, relative id 1
03/22 16:37:39 INFO :.ReadLdapRules[28]: Thread cleanup completed
03/22 16:37:39 INFO :.....terminator[30]: Terminating image thread, relative id 2
03/22 16:37:39 INFO :.policy_perf_monitor[24]: Thread cleanup completed
03/22 16:37:40 INFO :.....terminator[30]: process terminated with exit code 0

03/22 16:37:40 INFO :.....terminator[30]: EZZ8433I PAGENT SHUTDOWN COMPLETE

Figure 62. Policy Agent (Part 6 of 6)

Chapter 21. Diagnosing Policy Agent Problems 391

Following are short descriptions of the numbered items in the trace.

�01� The Policy Agent is started.

�02� The main configuration file being used is reported.

�03� A thread is started to process the main config file. Note: the number in
brackets on each line (preceding the colon) denotes the thread ID.
However, these IDs get dynamically reused as threads are cancelled and
restarted.

�04� The threads that process each TCP/IP stack configuration file are started.

�05� A thread is started to monitor Policy Agent files for dynamic updates.
Since the -i option was not specified the only files monitored are
temporary files used to detect stack recycles.

�06� Policy Agent initialization is complete. Note that messages with an ″EZZ″
prefix are also issued to the system console.

�07� The threads that process each TCP/IP stack configuration file try to
associate with their respective stacks. For this example, no stacks are
started yet, so the failure to connect to each stack is reported.

�08� TCPCS is started. The Policy Agent detects this and begins processing
for the active stack.

�09� The thread that processes this stack is restarted.

�10� Since the FLUSH parameter was specified for this stack, the Policy
Agent first attempts to delete all policies. However, in this case, no
policies were previously defined so the deletion attempt fails, and the
error is reported.

�11� Configuration file processing begins for the TCPCS configuration file.

�12� The PolicyPerfMonitorForSDR statement is processed.

�13� The thread that communicates with the LDAP server for this stack is
started.

�14� The SetSubnetPrioTosMask statement is processed.

�15� The service policy definition statements (policy rules and actions) are
processed.

�16� The policy actions and active rules are installed into the TCP/IP stack.

�17� Configuration file processing ends for the TCPCS configuration file.

�18� Since the ReadFromDirectory statement was specified for TCPCS, an
attempt is made to connect to the LDAP server. However, the server
password was specified incorrectly, and the error is reported.

�19� The Policy Agent tries to reconnect to the LDAP server using a sliding
time interval that starts at one minute, goes to 5 minutes, and repeats at
5 minute intervals up to 30 minutes. The configuration file is corrected to
specify the right password. However, since the refresh interval for this
stack is 2 minutes, a second attempt to contact the server is made
before the changed configuration file is reread.

�20� When the refresh interval expires, the changed configuration file is
processed. Because no assumptions can be made about the contents of
the configuration file relative to its previous contents, the Policy Agent
cancels all threads associated with all TCP/IP stacks, and re-reads the
configuration file.

392 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

||

||

||
|
|
|

||

||
|
|

||
|

||
|
|

||
|

||

||
|
|
|

||

||

||
|

||

||
|

||

||

||
|
|

||
|
|
|
|
|

||
|
|
|
|

�21� The threads that process each TCP/IP stack configuration file are
restarted. Note that since policies previously existed in stack TCPCS, the
flush of those policies is now successful.

�22� Another connect attempt is made for the LDAP server. Since the server
password was corrected, this connect attempt is successful.

�23� The number of objects returned from the LDAP server initial search is
reported. Note that some of these objects may reference other objects,
which are then retrieved from the LDAP server as needed. This initial
search just retrieves objects based on the parameters configured on the
ReadFromDirectory statement.

�24� The policy actions and rules retrieved from the LDAP server are
processed.

�25� One of the rules defined on the LDAP server contains an invalid attribute
value. This error is reported and the object is discarded.

�26� A message is issued to the console to indicate that configuration errors
were detected.

�27� The policy actions are installed into the TCP/IP stack. For this example
there are no active rules read from the LDAP server.

�28� A pasearch command is processed. This particular command used the
default parameters, meaning all active rules, and all associated actions,
are returned for the search.

�29� Another pasearch command is processed, this one specifying the -r and
-I parameters, meaning only inactive rules are returned for the search.

�30� A STOP (P) command is entered, and the Policy Agent shuts itself down.

Chapter 21. Diagnosing Policy Agent Problems 393

||
|
|

||
|

||
|
|
|
|

||
|

||
|

||
|

||
|

||
|
|

||
|

||

394 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 22. Diagnosing RSVP Agent Problems

Overview
The OS/390 UNIX RSVP Agent provides end-to-end resource reservation services
on behalf of applications. The following terms must be defined to understand RSVP
processing:

Quality of Service (QoS)
The overall service that a user or application receives from a network, in
terms of throughput, delay, etc.

QoS-Aware Application
An application that explicitly requests QoS services from the RSVP agent.

Service Differentiation
The ability of a network to provide different levels of QoS to different users
or applications based on their needs.

Service Level Agreement (SLA)
A contract in business terms provided by a network service provider that
details the QoS that users or applications are expected to receive.

Service Policy
Administrative controls for a network, in order to achieve the QoS promised
by a given SLA.

Integrated Services
A type of service that provides end-to-end QoS to an application, using the
methodology of resource reservation along the data path from a receiver to
a sender.

Differentiated Services
A type of service that provides QoS to broad classes of traffic or users, for
example all FTP traffic to a given subnet.

Resource ReSerVation Protocol (RSVP)
A protocol that provides for resource reservation in support of Integrated
Services.

The RSVP Agent provides an RSVP Application Programming Interface (RAPI) for
QoS-aware applications to use. Applications use RAPI to register their intent to use
RSVP services, to describe their data traffic, and to explicitly request that network
resources be reserved on their behalf. The RSVP Agent communicates with its
peers (other RSVP Agents running on OS/390 or other platforms) in the network,
with QoS-aware sender and receiver applications, and with the TCP/IP stack to
effect resource reservations. Refer to RFC 2205 for more information on RSVP, and
to the OS/390 IBM Communications Server: IP Programmer’s Reference for more
information on RAPI.

Reservation Types, Styles and Objects
There are two types of Integrated Services reservations used by the RSVP Agent:

Controlled Load
This reservation type is designed to make the network behave as though it
were not loaded, even if one or more of the network elements are
experiencing a heavy traffic load. Refer to RFC 2211 for more information
on this service.

© Copyright IBM Corp. 1994, 2000 395

|

Guaranteed
This reservation type is designed to allow the network to compute the
maximum delay data traffic will receive from the network, based on the
traffic specification and other known data. Refer to RFC 2212 for more
information on this service.

In addition, there are three styles of reservation, depending on how the receiver
desires to apply the reservation to its senders:

WF (Wildcard Filter)
This style applies a single reservation request to all senders.

FF (Fixed Filter)
This style pairs a given reservation request to a given sender. In this way,
the receiver can apply a different reservation to each of its senders

SE (Shared Explicit)
This style applies a single reservation to a list of senders. This differs from
the WF style in that the list of senders is finite. Additional senders that
appear in the future will not automatically inherit an SE style reservation.

Several objects are used in RSVP and RAPI to describe data traffic and
reservations. These objects are as follows:

Tspec (traffic specification)
The Tspec is used to describe the sending application data traffic
characteristics. It consists of an object known as a token bucket and other
related values. A token bucket is a continually sustainable data rate, and
the extent to which the rate can exceed the sustainable level for short
periods of time. More detail concerning token buckets and other Integrated
Services parameters and processing can be found in RFCs 2210, 2211,
2212, and 2215.

The Tspec contains these values:

r Token bucket rate, in bytes per second

b Token bucket depth, in bytes

p Peak rate, in bytes per second

m Minimum policed unit (minimum packet size to be considered), in
bytes

M Maximum packet size (MTU), in bytes

Rspec (Guaranteed receiver specification)
An Rspec consists of 2 values that further describe a reservation request
when Guaranteed service is being used:

R Requested rate, in bytes per second

S Slack term, in microseconds

Flowspec (reservation specification)
The flowspec is the object used by a receiver application to indicate an
actual reservation to be made. The actual makeup of the flowspec depends
on the type of reservation. For Controlled Load, the flowspec takes the
same form as the sender Tspec (although the form is the same, the receiver
may specify different values than the sender). For Guaranteed, the flowspec
takes the form of a Tspec followed by an Rspec.

396 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Service Policies and RSVP Processing
Service policies can be defined with RSVP scope. The RSVP Agent obtains a
service policy for which traffic is mapped (if any) from the Policy Agent when an
application using RAPI indicates it is a sender (when the Tspec is first provided), or
when it requests a reservation as a receiver (when the Rspec is first provided for
Guaranteed service). At both of these times, if a service policy is defined that maps
to the data traffic, the RSVP Agent uses values in the service policy to limit the
request from the application. Specifically, the following are limited:

v Total number of RSVP flows

The MaxFlows keyword on the PolicyAction statement of the policy definition can
be used to limit the total number of application flows that use RSVP services.

v Tspec token bucket values

The MaxRatePerFlow and MaxTokenBucketPerFlow keywords on the
PolicyAction statement of the policy definition can be used to limit the r and b
values, respectively, in the sender supplied Tspec.

v Rspec values

The MaxRatePerFlow keyword on the PolicyAction statement of the policy
definition can be used to limit the R value in the receiver supplied Rspec.

v Reservation type

The FlowServiceType keyword on the PolicyAction statement of the policy
definition can be used to limit the type of reservation requested. A Guaranteed
type request is considered to be ″greater than″ a Controlled Load type request.
So if an application requests Guaranteed but the policy limits the type to
Controlled Load, the reservation will use Controlled Load.

RSVP processing proceeds as follows. When an application uses RAPI to indicate
it’s a sender, the RSVP Agent packages the sender Tspec (along with other
information) in an RSVP PATH packet, and sends the packet to the final destination.
The packet is sent using RAW sockets, with the IP Router Alert option set. This
option causes each router that supports RSVP to intercept the PATH packet, for the
purpose of remembering the PATH request, and to insert a ″previous hop″ object in
the packet, which is then sent again to the final destination. This causes the packet
to eventually arrive at the destination, with all RSVP routers in the data path aware
of the RSVP flow. At the destination the RSVP Agent passes the PATH packet to
the application, using RAPI. The receiver application uses the Tspec and other
information to arrive at a reservation request (flowspec). The receiver application
uses RAPI to pass this flowspec to the RSVP Agent. The RSVP Agent then sends
an RSVP RESV packet (containing the flowspec and other information) to the
previous hop. Each router or host along the path back to the sender receives this
RESV packet, uses the flowspec to install the appropriate reservation (if possible),
and forwards the RESV to its previous hop. In this way, each RSVP-capable router
or host along the data path installs the reservation according to its capabilities. At
the sender, the RSVP Agent passes the RESV packet information to the sender
application, which then has information that indicates the actual reservation in
place. The sender may choose to wait for the reservation to be in place, or may
begin sending data before this happens (although such data will of course be
treated by the network as though no reservation were in place). Any router or host
that is incapable of supporting the requested reservation may send an error to the
receiver, which is then free to perhaps try a lesser reservation.

The OS/390 UNIX RSVP agent can provide actual resource reservations on ATM
interfaces. The RSVP agent passes the reservation request to the TCP/IP stack,
where a bandwidth reserved SVC is established on the ATM link to support the

Chapter 22. Diagnosing RSVP Agent Problems 397

reservation request. The RSVP agent can also cause the Type of Service (TOS)
byte to be set for any given RSVP flow, by using the OutgoingTOS keyword on the
PolicyAction statement of a defined service policy.

Gathering Diagnostic Information
The RSVP Agent writes logging information to a log file. The level of logged
information is controlled by the LogLevel configuration statement. By default, only
error and warning messages are written. To gather more diagnostic information, you
can specify a LogLevel value. The maximum information is logged with a LogLevel
value of 511. Refer to the OS/390 IBM Communications Server: IP Configuration
Guide for more details on using LogLevel, as well as the location of the log file.

Certain other information can be useful in diagnosing RSVP Agent problems:

v Output from the TSO NETSTAT SLAP or onetstat -j commands

v Output from the pasearch command for RSVP scoped policies

v SNMP output from walks of the SLA Subagent MIB tables

v TCP/IP CTRACE output, using the INTERNET and IOCTL CTRACE options

v Policy Agent log output if RSVP scoped policies are defined

Diagnosing RSVP Agent Problems
Problems with the RSVP agent generally fall into one of the following categories:

v Initialization Problems

v Application Problems

v Service Policy Problems

Initialization Problems
If the RSVP Agent doesn’t complete initialization, run it with LogLevel set to 511 and
check the log file for error conditions. Common problems could include:

v RSVP Agent not authorized to security product

The RSVP Agent must be authorized to a security product profile. Refer to the
OS/390 IBM Communications Server: IP Configuration Guide for details on
setting up the proper authorization.

v Unable to read configuration file

Is the correct configuration file specified? Refer to the OS/390 IBM
Communications Server: IP Configuration Guide for the search order used to
locate the configuration file. Does the file exist? Are the permission bits correctly
set for an HFS file?

v Unable to associate with the TCP/IP stack

Is the associated TCP/IP stack started? The RSVP Agent uses the TCP/IP image
name specified in the configuration file, or uses the standard resolver search
order, to locate the name of the TCP/IP stack. The log file indicates the stack
name being used.

v Unable to initialize interfaces

The RSVP Agent needs to initialize each interface for which it’s configured. A pair
of ″mailboxes″ are created for each interface. Check for error messages while
creating the ″rsvp″ and ″rsvp-udp″ mailboxes for each interface. An error trying to
join a multicast group on an interface that is not multicast capable is expected,
and looks like:

398 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

WARNING:.....mailslot_create: setsockopt(MCAST_ADD) failed -
EDC5121I Invalid argument.

Application Problems
If a Qos-aware application using RAPI is experiencing problems, check the
following:

v RAPI DLL not found

An application using RAPI must have access to the RAPI DLL at run time. This is
normally accomplished with the LIBPATH environment variable. Check that the
LIBPATH environment variable is specified and that it contains the directory in
which the RAPI DLL (rapi.dll) resides, which should be /usr/lib.

v Error RAPI_ERR_NORSVP received

If the application receives a RAPI_ERR_NORSVP error code when calling a
RAPI function, ensure that the RSVP Agent has been successfully started.

Service Policy Problems
Service policies with RSVP scope can be defined and made available by way of the
Policy Agent. If problems are encountered using such policies, check the following:

v RSVP policies not being applied to data flows

If the limits imposed by defined RSVP-scoped service policies are not taking
effect, check that the Policy Agent has been successfully started. The Policy
Agent must be active in order for the RSVP Agent to retrieve these policies.
Check that the policies are correctly defined. For example, do not specify both
inbound and outbound interfaces in a single policy condition as such a policy will
never map to any traffic on an end host node. Also, check both the RSVP Agent
and Policy Agent log files for errors dealing with obtaining policies.

v Policy values not being used or are incorrect

If the values being used in the policies to limit Tspec and Rspec values do not
appear to be correct, or do not seem to be applied to RSVP data traffic, be
aware that the service policy and Tspec/Rspec units of measure are different.
Specifically, the following are different:

Service Policy Unit Tspec/Rspec Unit
MaxRatePerFlow: kilobits/second r/R: bytes/second
MaxTokenBucketPerFlow: kilobits b: bytes

To arrive at the values to specify on the service policy, multiply the target
Tspec/Rspec value by 8, then divide by 1000. For example, if the target Tspec b
value is 6000, the corresponding MaxTokenBucketPerFlow value is 48 (6000 x 8 /
1000 = 48). See “Chapter 21. Diagnosing Policy Agent Problems” on page 377 for
more information about Policy Agent.

Example Log File
Figure 63 on page 400 demonstrates some of the RSVP Agent processing. This log
file was created using a LogLevel of 511.

Lines with numbers displayed like �1� are annotations that are described following
the log.

Chapter 22. Diagnosing RSVP Agent Problems 399

|
|

�01�
03/22 08:51:01 INFO :.main: *************** RSVP Agent started ***************
�02�
03/22 08:51:01 INFO :...locate_configFile: Specified configuration file: /u/user10/rsvpd1.conf
03/22 08:51:01 INFO :.main: Using log level 511
03/22 08:51:01 INFO :..settcpimage: Get TCP images rc - EDC8112I Operation not supported on socket.
�03�
03/22 08:51:01 INFO :..settcpimage: Associate with TCP/IP image name = TCPCS
03/22 08:51:02 INFO :..reg_process: registering process with the system
03/22 08:51:02 INFO :..reg_process: attempt OS/390 registration
03/22 08:51:02 INFO :..reg_process: return from registration rc=0
�04�
03/22 08:51:06 TRACE :...read_physical_netif: Home list entries returned = 7
03/22 08:51:06 INFO :...read_physical_netif: index #0, interface VLINK1 has address 129.1.1.1, ifidx 0
03/22 08:51:06 INFO :...read_physical_netif: index #1, interface TR1 has address 9.37.65.139, ifidx 1
03/22 08:51:06 INFO :...read_physical_netif: index #2, interface LINK11 has address 9.67.100.1, ifidx 2
03/22 08:51:06 INFO :...read_physical_netif: index #3, interface LINK12 has address 9.67.101.1, ifidx 3
03/22 08:51:06 INFO :...read_physical_netif: index #4, interface CTCD0 has address 9.67.116.98, ifidx 4
03/22 08:51:06 INFO :...read_physical_netif: index #5, interface CTCD2 has address 9.67.117.98, ifidx 5
03/22 08:51:06 INFO :...read_physical_netif: index #6, interface LOOPBACK has address 127.0.0.1, ifidx 0
03/22 08:51:06 INFO :....mailslot_create: creating mailslot for timer
03/22 08:51:06 INFO :...mailbox_register: mailbox allocated for timer
�05�
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
�06�
03/22 08:51:06 WARNING:.....mailslot_create: setsockopt(MCAST_ADD) failed - EDC8116I Address not available.
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 129.1.1.1, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 WARNING:.....mailslot_create: setsockopt(MCAST_ADD) failed - EDC8116I Address not available.
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 9.37.65.139, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 WARNING:.....mailslot_create: setsockopt(MCAST_ADD) failed - EDC8116I Address not available.
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 9.67.100.1, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 WARNING:.....mailslot_create: setsockopt(MCAST_ADD) failed - EDC8116I Address not available.
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 9.67.101.1, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 9.67.116.98, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 9.67.117.98, entity for rsvp allocated and initialized
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp
03/22 08:51:06 INFO :.....mailslot_create: creating mailslot for RSVP via UDP
03/22 08:51:06 INFO :....mailbox_register: mailbox allocated for rsvp-udp
03/22 08:51:06 TRACE :..entity_initialize: interface 127.0.0.1, entity for rsvp allocated and initialized

Figure 63. RSVP Agent Processing Log (Part 1 of 6)

400 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

03/22 08:51:06 INFO :......mailslot_create: creating socket for querying route
03/22 08:51:06 INFO :.....mailbox_register: no mailbox necessary for forward
03/22 08:51:06 INFO :......mailslot_create: creating mailslot for route engine - informational socket
03/22 08:51:06 TRACE :......mailslot_create: ready to accept informational socket connection
03/22 08:51:11 INFO :.....mailbox_register: mailbox allocated for route
03/22 08:51:11 INFO :.....mailslot_create: creating socket for traffic control module
03/22 08:51:11 INFO :....mailbox_register: no mailbox necessary for traffic-control
03/22 08:51:11 INFO :....mailslot_create: creating mailslot for RSVP client API
03/22 08:51:11 INFO :...mailbox_register: mailbox allocated for rsvp-api
03/22 08:51:11 INFO :...mailslot_create: creating mailslot for terminate
03/22 08:51:11 INFO :..mailbox_register: mailbox allocated for terminate
03/22 08:51:11 INFO :...mailslot_create: creating mailslot for dump
03/22 08:51:11 INFO :..mailbox_register: mailbox allocated for dump
03/22 08:51:11 INFO :...mailslot_create: creating mailslot for (broken) pipe
03/22 08:51:11 INFO :..mailbox_register: mailbox allocated for pipe
�07�
03/22 08:51:11 INFO :.main: rsvpd initialization complete
�08�
03/22 08:52:50 INFO :......rsvp_api_open: accepted a new connection for rapi
03/22 08:52:50 INFO :.......mailbox_register: mailbox allocated for mailbox
03/22 08:52:50 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 does not exist
�09�
03/22 08:52:50 EVENT :.....api_reader: api request SESSION
�10�
03/22 08:52:50 TRACE :......rsvp_event_establishSession: local node will send
03/22 08:52:50 INFO :........router_forward_getOI: Ioctl to get route entry successful
03/22 08:52:50 TRACE :........router_forward_getOI: source address: 9.67.116.98
03/22 08:52:50 TRACE :........router_forward_getOI: out inf: 9.67.116.98
03/22 08:52:50 TRACE :........router_forward_getOI: gateway: 0.0.0.0
03/22 08:52:50 TRACE :........router_forward_getOI: route handle: 7f5251c8
�11�
03/22 08:52:50 TRACE :.......event_establishSessionSend: found outgoing if=9.67.116.98 through forward engine
03/22 08:52:50 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
�12�
03/22 08:52:50 EVENT :.....api_reader: api request SENDER
�13�
03/22 08:52:50 INFO :.......init_policyAPI: papi_debug: Entering

03/22 08:52:50 INFO :.......init_policyAPI: papi_debug: papiLogFunc = 98681F0 papiUserValue = 0

03/22 08:52:50 INFO :.......init_policyAPI: papi_debug: Exiting

03/22 08:52:50 INFO :.......init_policyAPI: APIInitialize: Entering

03/22 08:52:50 INFO :.......init_policyAPI: open_socket: Entering

03/22 08:52:50 INFO :.......init_policyAPI: open_socket: Exiting

03/22 08:52:50 INFO :.......init_policyAPI: APIInitialize: ApiHandle = 98BDFB0, connfd = 22

03/22 08:52:50 INFO :.......init_policyAPI: APIInitialize: Exiting

03/22 08:52:50 INFO :.......init_policyAPI: RegisterWithPolicyAPI: Entering

03/22 08:52:50 INFO :.......init_policyAPI: RegisterWithPolicyAPI: Writing to socket = 22

03/22 08:52:50 INFO :.......init_policyAPI: ReadBuffer: Entering

03/22 08:52:51 INFO :.......init_policyAPI: ReadBuffer: Exiting

03/22 08:52:51 INFO :.......init_policyAPI: RegisterWithPolicyAPI: Exiting

Figure 63. RSVP Agent Processing Log (Part 2 of 6)

Chapter 22. Diagnosing RSVP Agent Problems 401

03/22 08:52:51 INFO :.......init_policyAPI: Policy API initialized
03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindActionName: Entering

03/22 08:52:51 INFO :......rpapi_getPolicyData: ReadBuffer: Entering

03/22 08:52:51 INFO :......rpapi_getPolicyData: ReadBuffer: Exiting

03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindActionName: Result = 0

03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindActionName: Exiting

�14�
03/22 08:52:51 INFO :......rpapi_getPolicyData: found action name CLCat2 for flow[sess=9.67.116.99:1047:6,
source=9.67.116.98:8000]
03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindServiceDetailsOnActName: Entering

03/22 08:52:51 INFO :......rpapi_getPolicyData: ReadBuffer: Entering

03/22 08:52:51 INFO :......rpapi_getPolicyData: ReadBuffer: Exiting

03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindServiceDetailsOnActName: Result = 0

03/22 08:52:51 INFO :......rpapi_getPolicyData: RSVPFindServiceDetailsOnActName: Exiting

03/22 08:52:51 INFO :.....api_reader: appl chose service type 1
03/22 08:52:51 INFO :......rpapi_getSpecData: RSVPGetTSpec: Entering

03/22 08:52:51 INFO :......rpapi_getSpecData: RSVPGetTSpec: Result = 0

03/22 08:52:51 INFO :......rpapi_getSpecData: RSVPGetTSpec: Exiting

03/22 08:52:51 TRACE :.....api_reader: new service=1, old service=0
03/22 08:52:51 INFO :.......rsvp_flow_stateMachine: state SESSIONED, event PATHDELTA
�15�
03/22 08:52:51 TRACE :........rsvp_action_nHop: constructing a PATH
03/22 08:52:51 TRACE :........flow_timer_start: started T1
�16�
03/22 08:52:51 TRACE :.......rsvp_flow_stateMachine: entering state PATHED
03/22 08:52:51 TRACE :........mailslot_send: sending to (9.67.116.99:0)
03/22 08:52:51 TRACE :........mailslot_send: sending to (9.67.116.99:1698)
�17�
03/22 08:52:51 TRACE :.....rsvp_event: received event from RAW-IP on interface 9.67.116.98
03/22 08:52:51 TRACE :......rsvp_explode_packet: v=1,flg=0,type=2,cksm=54875,ttl=255,rsv=0,len=84
03/22 08:52:51 TRACE :.......rsvp_parse_objects: STYLE is WF
03/22 08:52:51 INFO :.......rsvp_parse_objects: obj RSVP_HOP hop=9.67.116.99, lih=0
03/22 08:52:51 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
03/22 08:52:51 INFO :.......rsvp_flow_stateMachine: state PATHED, event RESVDELTA
�18�
03/22 08:52:51 TRACE :........traffic_action_oif: is to install filter
03/22 08:52:51 INFO :.........qosmgr_request: src-9.67.116.98:8000 dst-9.67.116.99:1047 proto-6 rthdl-7f5251c8
�19�
03/22 08:52:51 INFO :.........qosmgr_request: [CL r=90000 b=6000 p=110000 m=1024 M=2048]
03/22 08:52:51 INFO :.........qosmgr_request: Ioctl to add reservation successful
03/22 08:52:51 INFO :..........rpapi_Reg_UnregFlow: RSVPPutActionName: Entering

03/22 08:52:51 INFO :..........rpapi_Reg_UnregFlow: ReadBuffer: Entering

03/22 08:52:52 INFO :..........rpapi_Reg_UnregFlow: ReadBuffer: Exiting

03/22 08:52:52 INFO :..........rpapi_Reg_UnregFlow: RSVPPutActionName: Result = 0

03/22 08:52:52 INFO :..........rpapi_Reg_UnregFlow: RSVPPutActionName: Exiting

Figure 63. RSVP Agent Processing Log (Part 3 of 6)

402 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

03/22 08:52:52 INFO :..........rpapi_Reg_UnregFlow: flow[sess=9.67.116.99:1047:6, source=9.67.116.98:8000]
registered with CLCat2
03/22 08:52:52 EVENT :..........qosmgr_response: RESVRESP from qosmgr, reason=0, qoshandle=8b671d0
03/22 08:52:52 INFO :..........qosmgr_response: src-9.67.116.98:8000 dst-9.67.116.99:1047 proto-6
03/22 08:52:52 TRACE :...........traffic_reader: tc response msg=1, status=1
03/22 08:52:52 INFO :...........traffic_reader: Reservation req successful[session=9.67.116.99:1047:6,
source=9.67.116.98:8000, qoshd=8b671d0]
�20�
03/22 08:52:52 TRACE :........api_action_sender: constructing a RESV
03/22 08:52:52 TRACE :........flow_timer_stop: stopped T1
03/22 08:52:52 TRACE :........flow_timer_stop: Stop T4
03/22 08:52:52 TRACE :........flow_timer_start: started T1
03/22 08:52:52 TRACE :........flow_timer_start: Start T4
�21�
03/22 08:52:52 TRACE :.......rsvp_flow_stateMachine: entering state RESVED
�22�
03/22 08:53:07 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:53:07 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:53:07 INFO :......router_forward_getOI: Ioctl to query route entry successful
03/22 08:53:07 TRACE :......router_forward_getOI: source address: 9.67.116.98
03/22 08:53:07 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:53:07 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:53:07 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:53:07 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:53:07 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:53:07 TRACE :.......flow_timer_start: started T1
03/22 08:53:07 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:07 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
�23�
03/22 08:53:22 TRACE :.....rsvp_event: received event from RAW-IP on interface 9.67.116.98
03/22 08:53:22 TRACE :......rsvp_explode_packet: v=1,flg=0,type=2,cksm=54875,ttl=255,rsv=0,len=84
03/22 08:53:22 TRACE :.......rsvp_parse_objects: STYLE is WF
03/22 08:53:22 INFO :.......rsvp_parse_objects: obj RSVP_HOP hop=9.67.116.99, lih=0
03/22 08:53:22 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
03/22 08:53:22 INFO :.......rsvp_flow_stateMachine: state RESVED, event RESV
03/22 08:53:22 TRACE :........flow_timer_stop: Stop T4
03/22 08:53:22 TRACE :........flow_timer_start: Start T4
03/22 08:53:22 TRACE :.......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:22 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:53:22 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:53:22 INFO :......router_forward_getOI: Ioctl to query route entry successful
03/22 08:53:22 TRACE :......router_forward_getOI: source address: 9.67.116.98
03/22 08:53:22 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:53:22 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:53:22 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:53:22 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:53:22 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:53:22 TRACE :.......flow_timer_start: started T1
03/22 08:53:22 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:22 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
03/22 08:53:38 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:53:38 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:53:38 INFO :......router_forward_getOI: Ioctl to query route entry successful

Figure 63. RSVP Agent Processing Log (Part 4 of 6)

Chapter 22. Diagnosing RSVP Agent Problems 403

03/22 08:53:38 TRACE :......router_forward_getOI: source address: 9.67.116.98
03/22 08:53:38 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:53:38 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:53:38 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:53:38 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:53:38 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:53:38 TRACE :.......flow_timer_start: started T1
03/22 08:53:38 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:38 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
03/22 08:53:52 TRACE :.....rsvp_event: received event from RAW-IP on interface 9.67.116.98
03/22 08:53:52 TRACE :......rsvp_explode_packet: v=1,flg=0,type=2,cksm=54875,ttl=255,rsv=0,len=84
03/22 08:53:52 TRACE :.......rsvp_parse_objects: STYLE is WF
03/22 08:53:52 INFO :.......rsvp_parse_objects: obj RSVP_HOP hop=9.67.116.99, lih=0
03/22 08:53:52 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
03/22 08:53:52 INFO :.......rsvp_flow_stateMachine: state RESVED, event RESV
03/22 08:53:52 TRACE :........flow_timer_stop: Stop T4
03/22 08:53:52 TRACE :........flow_timer_start: Start T4
03/22 08:53:52 TRACE :.......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:53 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:53:53 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:53:53 INFO :......router_forward_getOI: Ioctl to query route entry successful
03/22 08:53:53 TRACE :......router_forward_getOI: source address: 9.67.116.98
03/22 08:53:53 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:53:53 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:53:53 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:53:53 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:53:53 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:53:53 TRACE :.......flow_timer_start: started T1
03/22 08:53:53 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:53:53 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
03/22 08:54:09 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:54:09 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:54:09 INFO :......router_forward_getOI: Ioctl to query route entry successful
03/22 08:54:09 TRACE :......router_forward_getOI: source address: 9.67.116.98
03/22 08:54:09 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:54:09 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:54:09 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:54:09 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:54:09 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:54:09 TRACE :.......flow_timer_start: started T1
03/22 08:54:09 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:54:09 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
03/22 08:54:22 TRACE :.....rsvp_event: received event from RAW-IP on interface 9.67.116.98
03/22 08:54:22 TRACE :......rsvp_explode_packet: v=1,flg=0,type=2,cksm=54875,ttl=255,rsv=0,len=84
03/22 08:54:22 TRACE :.......rsvp_parse_objects: STYLE is WF
03/22 08:54:22 INFO :.......rsvp_parse_objects: obj RSVP_HOP hop=9.67.116.99, lih=0
03/22 08:54:22 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
03/22 08:54:22 INFO :.......rsvp_flow_stateMachine: state RESVED, event RESV
03/22 08:54:22 TRACE :........flow_timer_stop: Stop T4
03/22 08:54:22 TRACE :........flow_timer_start: Start T4
03/22 08:54:22 TRACE :.......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:54:24 EVENT :..mailslot_sitter: process received signal SIGALRM
03/22 08:54:24 TRACE :.....event_timerT1_expire: T1 expired
03/22 08:54:24 INFO :......router_forward_getOI: Ioctl to query route entry successful
03/22 08:54:24 TRACE :......router_forward_getOI: source address: 9.67.116.98

Figure 63. RSVP Agent Processing Log (Part 5 of 6)

404 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

03/22 08:54:24 TRACE :......router_forward_getOI: out inf: 9.67.116.98
03/22 08:54:24 TRACE :......router_forward_getOI: gateway: 0.0.0.0
03/22 08:54:24 TRACE :......router_forward_getOI: route handle: 7f5251c8
03/22 08:54:24 INFO :......rsvp_flow_stateMachine: state RESVED, event T1OUT
03/22 08:54:24 TRACE :.......rsvp_action_nHop: constructing a PATH
03/22 08:54:24 TRACE :.......flow_timer_start: started T1
03/22 08:54:24 TRACE :......rsvp_flow_stateMachine: reentering state RESVED
03/22 08:54:24 TRACE :.......mailslot_send: sending to (9.67.116.99:0)
03/22 08:54:35 TRACE :......rsvp_event_mapSession: Session=9.67.116.99:1047:6 exists
�24�
03/22 08:54:35 EVENT :.....api_reader: api request SENDER_WITHDRAW
03/22 08:54:35 INFO :.......rsvp_flow_stateMachine: state RESVED, event PATHTEAR
�25�
03/22 08:54:35 TRACE :........traffic_action_oif: is to remove filter
03/22 08:54:35 INFO :.........qosmgr_request: Ioctl to remove reservation successful
03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: RSVPRemActionName: Entering

03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: ReadBuffer: Entering

03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: ReadBuffer: Exiting

03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: RSVPRemActionName: Result = 0

03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: RSVPRemActionName: Exiting

03/22 08:54:35 INFO :..........rpapi_Reg_UnregFlow: flow[sess=9.67.116.99:1047:6, source=9.67.116.98:8000]
unregistered from CLCat2
03/22 08:54:35 EVENT :..........qosmgr_response: DELRESP from qosmgr, reason=0, qoshandle=0
03/22 08:54:35 INFO :..........qosmgr_response: src-9.67.116.98:8000 dst-9.67.116.99:1047 proto-6
03/22 08:54:35 TRACE :...........traffic_reader: tc response msg=3, status=1
�26�
03/22 08:54:35 TRACE :........rsvp_action_nHop: constructing a PATHTEAR
03/22 08:54:35 TRACE :........flow_timer_stop: stopped T1
03/22 08:54:35 TRACE :........flow_timer_stop: Stop T4
�27�
03/22 08:54:35 TRACE :.......rsvp_flow_stateMachine: entering state SESSIONED
03/22 08:54:35 TRACE :........mailslot_send: sending to (9.67.116.99:0)
03/22 08:54:35 TRACE :......rsvp_event_propagate: flow[session=9.67.116.99:1047:6, source=9.67.116.98:8000] ceased
�28�
03/22 08:54:35 EVENT :.....api_reader: api request CLOSE
03/22 08:54:35 INFO :.......rsvp_flow_stateMachine: state SESSIONED, event PATHTEAR
03/22 08:54:35 PROTERR:.......rsvp_flow_stateMachine: state SESSIONED does not expect event PATHTEAR
�29�
03/22 08:54:53 EVENT :..mailslot_sitter: process received signal SIGTERM
03/22 08:54:53 INFO :...check_signals: received TERM signal
03/22 08:54:53 INFO :......term_policyAPI: UnRegisterFromPolicyAPI: Entering

03/22 08:54:53 INFO :......term_policyAPI: ReadBuffer: Entering

03/22 08:54:53 INFO :......term_policyAPI: ReadBuffer: Exiting

03/22 08:54:53 INFO :......term_policyAPI: UnRegisterFromPolicyAPI: Result = 0

03/22 08:54:53 INFO :......term_policyAPI: UnRegisterFromPolicyAPI: Exiting

03/22 08:54:53 INFO :......term_policyAPI: APITerminate: Entering

03/22 08:54:53 INFO :......term_policyAPI: APITerminate: Exiting

03/22 08:54:53 INFO :......term_policyAPI: Policy API terminated
03/22 08:54:53 INFO :......dreg_process: deregistering process with the system
03/22 08:54:53 INFO :......dreg_process: attempt to dereg (ifaeddrg_byaddr)
03/22 08:54:53 INFO :......dreg_process: rc from ifaeddrg_byaddr rc =0
03/22 08:54:53 INFO :.....terminator: process terminated with exit code 0

Figure 63. RSVP Agent Processing Log (Part 6 of 6)

Chapter 22. Diagnosing RSVP Agent Problems 405

Following are short descriptions of the numbered items in the trace.

�01� The RSVP Agent is started.

�02� The configuration file being used is reported.

�03� The name of the TCP/IP stack that the RSVP Agent associates itself with is
reported.

�04� The name and IP address of the interfaces configured to the associated
stack are reported. Note that the RSVP Agent gets notified by the stack of
any interface additions, deletions, or changes after this point.

�05� The interfaces are initialized one by one.

�06� Some interface types aren’t enabled for multicasting, so when the RSVP
Agent tries to enable multicasting it gets reported as a warning. Such
interfaces can still be used for unicasting.

�07� RSVP Agent initialization is complete.

�08� An application makes its first RAPI call, initializing the RAPI interface with
the RSVP Agent.

�09� The type of RAPI request is SESSION, meaning a rapi_session() call was
made.

�10� The RSVP Agent determines that the application will send based on the
specified destination address not being a local interface.

�11� The outbound interface to use for the session is returned from the stack.

�12� The application issues a rapi_sender() call, passing the Tspec.

�13� The Policy Agent interface is initialized.

�14� The policy action ″CLCat2″ is obtained from the Policy Agent for the
specified flow.

�15� The RSVP Agent constructs an RSVP PATH packet to be sent to the
destination.

�16� The flow enters the pathed stated (PATHED), meaning a PATH packet has
been sent for the flow.

�17� An RSVP RESV packet is received from the RSVP Agent at the receiver
node, specifying the reservation parameters.

�18� The RSVP Agent installs the reservation request into the TCP/IP stack, and
registers the flow with the Policy Agent.

�19� The type of reservation request is shown (CL, for Controlled Load) along
with the reservation parameters (the r, b, p, m, M values in Tspec format).

�20� The RESV packet values are passed to the sender application.

�21� The flow enters the reserved state (RESVED), meaning the reservation has
been put in place and the RESV packet has been forwarded to the previous
hop (in this case the sender application).

�22� A T1 timeout occurs, meaning a PATH refresh packet is sent. This occurs
every 15 seconds.

�23� A refreshed RESV packet is received from the RSVP Agent at the receiver
node. This occurs every 30 seconds.

�24� The application issues a rapi_release() call to end the RAPI session.

406 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�25� The reservation is removed from the TCP/IP stack, and unregistered from
the Policy Agent.

�26� A PATHTEAR packet is constructed and sent, to tear down the flow along
the data path.

�27� The flow enters the sessioned state (SESSIONED), meaning that the flow
has been torn down.

�28� The application closes the API session, resulting in an error being reported
because the state of the flow is SESSIONED. This error can be ignored.

�29� A SIGTERM signal is received (due to a kill command issued from the
UNIX shell), and the RSVP Agent shuts itself down.

Chapter 22. Diagnosing RSVP Agent Problems 407

408 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 23. Diagnosing Traffic Regulator Management
Daemon (TRMD) Problems

Gathering Diagnostic Information
The TRMD writes logging information to a log file. The level of logged information is
controlled by the -d startup option. To gather more diagnostic information, you can
start the TRMD with the -d startup option. The maximum information is logged with
the -d 3 option. Log output can be directed either to a set of log files or to the
syslog daemon (syslogd). Refer to the OS/390 IBM Communications Server: IP
Configuration Guide for more details on using the -d startup option, as well as the
location of the log file.

Certain other information may be useful in diagnosing TRMD problems; TCP/IP
CTRACE output, using the INTERNET and IOCTL CTRACE options.

Diagnosing TRMD Problems
The types of TRMD problems that could happen include the following.

v Initialization

v Gathering log data

v Unexpected results defining policies

Initialization Problems

Problems with initialization of the TRMD include the following.

v The TCP/IP stack is not up. Message EZZ8498I is received.

Verify that the TCP/IP stack is up.

v The Policy Agent is not up. Message EZZ8483I is received.

Make sure the Policy Agent is up.

Gathering Log Data Problems

Problems gathering log data include the following.

v Is syslogd started?

The syslogd must be started prior to starting TRMD.

v If the syslogd has been started:

Make sure the TRMD syslogd output file (defined in /etc/syslog.conf) has been
created and exists before starting syslogd.

Unexpected Results When Defining Policies

If you don’t see the expected results when defining policies, check the following:

v The wrong policy being mapped to traffic.

There may be times when two or more policy rules are logically mapped to the
same set of traffic packets. When this happens the rule with the highest ″weight″
is selected. The weight depends on two factors.

1. When the policy rule priority is not specified, the weight depends on the
number of attributes specified in the policy conditions.

© Copyright IBM Corp. 1994, 2000 409

|

|

|

|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|
|

2. When policy rule priority is specified, the weight is the specified priority plus
100. This is always higher than the weight derived from counting the number
of attributes.

If more than one rule is found with the same weight, the first such rule is
selected to be mapped. Specifying the priority in policy rules better controls
situations where multiple rules map to the same set of traffic packets.

v Policies not installed in the TCP/IP stack.

Is the stack in question configured via a TcpImage statement in the Policy Agent
configuration file? Has the stack been started or restarted after the Policy Agent
was started? If so, check that the temporary file used by the stack to inform the
Policy Agent of restarts has not been deleted. Refer to the OS/390 IBM
Communications Server: IP Configuration Reference for more details.

v Policies not mapping to the expected traffic.

If you think data traffic should be mapped to certain policies, but it is not, then
check to make sure you have the destination port or port range defined correctly
on the PolicyRule statement for the policy. Also, you should check the possibility
that a wrong policy is applied.

Documentation for the IBM Software Support Center
When contacting the IBM Software Support Center for problem resolution, some or
all of the following information may be required:

v Gather TRMD debugging data by starting TRMD with command ’trmd -d 3’.

v Start CTRACE in the stack to gather related information.

Example Log File
Figure 64 on page 411 demonstrates some of the TRMD processing. The example
log file was created using the -d 2 startup options.

v The following TR policy configuration file was used to produce the example
output:
TcpImage TCPCS FLUSH 10
PolicyAction FloodControl
{

PolicyScope TR
TypeActions log limit statistics
TotalConnections 50
Percentage 5
TimeInterval 1

}
PolicyRule telnet
{

DestinationPortRange 1 23 # telnet
ServiceReference FloodControl

}

v TRMD Processing Log

410 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

trmd -d 3

Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: EZZ8495I TRMD STARTED
�(1)�
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_debug: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_debug: papiLogFunc = 9840618 papiUserValue = 0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_debug: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Exit SIOCGIDAPPECB, policy ecb 874effc, log ecb 874eff8
�(2)�
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Entering paInitPapi
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: APIInitialize: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: open_socket: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: open_socket: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: APIInitialize: ApiHandle = 9845190, connfd = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: APIInitialize: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: RegisterWithPolicyAPI: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: RegisterWithPolicyAPI: Writing to socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadBuffer: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadBuffer: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: RegisterWithPolicyAPI: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Initialization Successful, api_handle = 9845190
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Exiting paInitPapi
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Entering paSearchPapi
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Parameters
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: TcpImage = TCPCS
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyObjectType = 0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyActionType = 0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyStatus = 0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyFilterType = 2
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyFilterName =
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: PolicyScopeName = TR
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Add to srh_p ApiSearchList, Addr = 98451B8
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: select from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Reading from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: recvbuf_p = 14560, amount_read = 0,

amount_to_read = 12
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Reading from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: recvbuf_p = 98451F0, amount_read = 0,

amount_to_read = 1864
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: ReadUnknownBuffer successful
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Add Policy Entry to Queue, Entry = 98451F0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: select from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Reading from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: recvbuf_p = 14560, amount_read = 0,

amount_to_read = 12
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Reading from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: recvbuf_p = 9845940, amount_read = 0,

amount_to_read = 688
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: ReadUnknownBuffer successful
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Add Policy Entry to Queue, Entry = 9845940
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: select from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Reading from socket = 7
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: recvbuf_p = 14560, amount_read = 0,

amount_to_read = 12

Figure 64. Example of TRMD Processing Log (Part 1 of 5)

Chapter 23. Diagnosing Traffic Regulator Management Daemon (TRMD) Problems 411

|

Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: ReadUnknownBuffer: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: ReadUnknownBuffer successful
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Exit count = 2 searchrequesthandle = 98451B8
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_search ok, count = 2
�(3)�
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Parameters
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: searchrequesthandle = 98451B8
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Exit p_entry = 98451F0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Process Entry = 1, Address = 98451F0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_policy_rule: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_policy_rule: Parameters
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_policy_rule: p_entry = 98451F0
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_policy_rule: Exit rule_p = 9845240
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_policy_rule: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Policy Rule = 1, Address = 9845240
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Parsing TR rule successful
�(4)�
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Parameters
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: searchrequesthandle = 98451B8
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Exit p_entry = 9845940
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_get_policy_entry: Exiting
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: Get TR action successful
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_qos_action: Entering
Mar 9 10:45:08 MVSVIC34 TRMD[83886096]: papi_parse_qos_action: Parameters
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_parse_qos_action: p_entry = 9845940
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_parse_qos_action: Exit action_p = 9845994
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_parse_qos_action: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: QOS Action = 0, Address = 9845994
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Parsing TR action successful
�(5)�
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Port 1 - 23, 1 minute collection interval
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 1
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 2
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 3
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 4
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 5
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 6
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 7
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 8
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 9
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 10
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 11
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 12
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 13
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 14
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 15
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 16
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 17
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 18
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 19
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 20
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 21
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 22
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Creating new stat block: 23

Figure 64. Example of TRMD Processing Log (Part 2 of 5)

412 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

�(6)�
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Log on port 1
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: Parameters
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: free_entry_p = 9845940
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: Parameters
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: free_entry_p = 0
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_mem_free: free_entry_p parameter is NULL
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Exiting paSearchPapi
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Entering paTermPapi
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: UnRegisterFromPolicyAPI: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: ReadBuffer: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: ReadBuffer: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: UnRegisterFromPolicyAPI: Result = 0
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: UnRegisterFromPolicyAPI: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: APITerminate: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: APITerminate: Dequeue srh_p ApiSearchList srh_p = 98451B8
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: Entering
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: Parameters
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: handle = 9845190

searchrequesthandle = 98451B8
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: FFlist_deq PAAPI_PapiSearchList = 98451D4
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: FiFoE_p is NULL
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: Dequeue srh_p from ApiSearchList and
free srh_p = 98451B8
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: Exit rc = 0
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: papi_search_handle_free: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: APITerminate: Exiting
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Policy API Terminated, exiting paTermPapi
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: Exiting paInitPapi
Mar 9 10:45:09 MVSVIC34 TRMD[83886096]: EZZ8500I TRMD INITIALIZATION COMPLETE
�(7)�
Mar 9 10:45:39 MVSVIC34 TRMD[83886096]: Woke Up: Log Timer Pop
�(8)�
Mar 9 10:45:39 MVSVIC34 TRMD[83886096]:
LOG: +0000 c9c4d396 87c481a3 00000002 00170000 IDLogDat........
LOG: +0010 00000000 b3b76a5c f096d201 0925522a*0oK.....
LOG: +0020 00000002 00000030 00000032 05000000
LOG: +0030 00000000 00000000 00000000 00000000
�(9)�** Dump hex log data retrieved from the TCPIP stack,
Mar 9 10:45:39 MVSVIC34 TRMD[83886096]: numlogs = 1
Mar 9 10:45:39 MVSVIC34 TRMD[83886096]: Current log type: 2
Mar 9 10:45:39 MVSVIC34 TRMD[83886096]: EZZ8499I connection refused:3/9/2000 15:45:17.80,
port=23,host=9.37.82.42,host_current=2,available=48,total=50,percentage=5
�(10)�
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]: Woke Up: Log Timer Pop
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]: numlogs = 0
�(11)�
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00010000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00020000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Figure 64. Example of TRMD Processing Log (Part 3 of 5)

Chapter 23. Diagnosing Traffic Regulator Management Daemon (TRMD) Problems 413

|

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00030000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00040000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00050000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00060000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00070000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00080000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00090000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000a0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000b0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000c0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000d0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000e0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000

Figure 64. Example of TRMD Processing Log (Part 4 of 5)

414 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

Following are short descriptions of the numbered items in the trace.

�01� The TRMD is started.

�02� IOCTL is issued to pass some information between trdm and the TCP/IP
stack.

�03� Policy search completed successfully with two items returned. In this case,

Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 000f0000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00100000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00110000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00120000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00130000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00140000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00150000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 00000004 00000000 00160000 00000000
STAT: +0010 00000000 00000000 00000000 00000000
STAT: +0020 00000000 00000000 00000000 00000000
STAT: +0030 00000000 00000000 00000000 00000000
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]:
STAT: +0000 c9c4e2a3 81a389a2 00170700 00000002 IDStatis........
STAT: +0010 0925522a 00000002 00000002 00000000
STAT: +0020 00000002 00000000 00000001 00000000
STAT: +0030 00000000 00000000 00000000 00000000
�(12)�
Mar 9 10:46:09 MVSVIC34 TRMD[83886096]: EZZ8485I TRMD ext statistics:
port=23,peak=2,host=9.37.82.42,hostpeak=2,requests=2,terminations=0,
current=2,period=0,warnings=1,qos_exceptions=0,suggested_limit=0,
suggested_percentage=0
�(13)�
Mar 9 10:46:37 MVSVIC34 TRMD[83886096]: Exiting paInitPapi
Mar 9 10:46:37 MVSVIC34 TRMD[83886096]: EZZ8501I TRMD ENDED
�(14)�

Figure 64. Example of TRMD Processing Log (Part 5 of 5)

Chapter 23. Diagnosing Traffic Regulator Management Daemon (TRMD) Problems 415

|

||

||
|

||

one is the policy rule and another is the policy action. Also note that most
data above is written by the routines of Policy Agent.

�04� The policy rule is successfully retrieved and parsed.

�05� The policy action is successfully retrieved and parsed.

�06� TRMD internal data structures created.

�07� TRMD started successfully.

�08� The 30-second log timer was popped. IOCTL issued to get log data.

�09� Dump hex log data retrieved from the TCPIP stack.

�10� Log data.

�11� Another 30-second interval. No log data retrieved this time.

�12� Retrieve statistics data. Note that only port 23 has meaningful data.

�13� Display statistics data.

�14� TRMD is terminated.

416 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|

||

||

||

||

||

||

||

||

||

||

||

Chapter 24. Diagnosing OROUTED Problems

The route daemon is a server that implements the routing information protocol (RIP)
described in RFC 1058 (RIP Version 1) and in RFC 1723 (RIP Version 2). It
provides an alternative to the static TCP/IP gateway definitions. When configured
properly the MVS host running with OROUTED becomes an active RIP router in a
TCP/IP network. The OROUTED server dynamically creates and maintains the
network routing tables using RIP. RIP allows gateways and routers to periodically
broadcast their routing tables to adjacent nodes. This enables the OROUTED
server to update the host routing table. For example, the OROUTED server can
determine if a new route has been created, if a route is temporarily unavailable, or if
a more efficient route exists.

Before OROUTED was implemented for TCP/IP, static route tables were used for
routing IP datagrams over connected networks. However, the static routes had a
drawback in that they were not able to respond to changes in the network. By
implementing the Routing Information Protocol (RIP) between a host and TCP/IP,
the OROUTED server dynamically updates the internal routing tables when
changes to the network occur.

The OROUTED server reacts to network topology changes on behalf of TCP/IP by
maintaining the host routing tables, processing and generating RIP datagrams, and
performing error recovery procedures.

Figure 65 on page 418 shows the OROUTED environment.

© Copyright IBM Corp. 1994, 2000 417

|

The OROUTED protocol is based on the exchange of RIP messages. There are two
types of messages:

Request message
Sent from a client (another RIP router) as a request to transmit all or part of
this host routing table

Response message
Sent from OROUTED to a client (another RIP router) containing all or part
of this host routing table

Definitions
OROUTED must be defined correctly to TCP/IP, and it needs to be started by a
RACF authorized user ID. Refer to the OS/390 IBM Communications Server: IP
Configuration Reference for detailed information about configuring OROUTED and
TCP/IP definitions.

Diagnosing OROUTED Problems
Problems with OROUTED are generally reported under one of the following
categories:
v “Abends” on page 419
v “OROUTED Connection Problems” on page 419
v “OS/390 UNIX oping Failures” on page 420
v “Incorrect Output” on page 421
v “Session Outages” on page 421

MVS

OROUTED SNMPD

TCPIP

TCPIP

3172

Token Ring

PS/2

ROUTED SNMPREQD

Figure 65. OROUTED Environment

418 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Use the information provided in the following sections for problem determination
and diagnosis of errors reported against OROUTED.

Abends
An abend during OROUTED processing should result in messages and
error-related information being sent to the system console. A dump of the error is
needed unless the symptoms match a known problem.

OROUTED Connection Problems
OROUTED connection problems are reported when OROUTED is unable to
connect to TCP/IP. Generally, this type of problem is caused by an error in the
configuration or definitions in TCP/IP.

In a CINET environment (multiple stacks), OROUTED attempts to connect to a
stack whose name is determined by the TCPIPjobname keyword from the resolver
configuration data set or file. If OROUTED cannot determine the TCPIPjobname, it
will use a default TCPIPjobname of INET. If OROUTED cannot communicate with
the stack pointed to by TCPIPjobname, it ends and issues an error message. A
copy of OROUTED must be started for each stack requiring OROUTED services.

In configurations with multiple stacks, a copy of OROUTED must be started for
each stack requiring OROUTED services. To associate OROUTED with a particular
stack, use the environment variable RESOLVER_CONFIG to point to the data set
or file that defines the unique TCPIPjobname.

OROUTED and OMPROUTE cannot run on the same stack concurrently.

Documentation
The following documentation should be available for initial diagnosis of OROUTED
connection problems:
v PROFILE.TCPIP information
v TCPIP.DATA information
v OROUTED cataloged procedure, if used
v MVS system log
v OROUTED standard output and standard error
v The file (or data set) pointed to by the GATEWAYS_FILE environmental variable
v The file (or data set) pointed to by RESOLVER_CONFIG environmental variable
v The file (or data set) pointed to by ROUTED_PROFILE environmental variable

Analysis
Refer to the OS/390 IBM Communications Server: IP Configuration Reference for
TCP/IP configuration-related problems.

Diagnostic steps for OROUTED connection problems:

1. Verify that the TCP/IP jobname is correct in the resolver configuration dataset or
file. Remember, if you start OROUTED from a cataloged procedure, the file on
the STDENV statement might define the RESOLVER_CONFIG environmental
variable.

2. If starting from a cataloged procedure, make sure you are using the appropriate
cataloged OS/390 UNIX application for OROUTED. Verify the correctness of the
data set references.

3. Make sure that OROUTED is configured correctly in the PROFILE.TCPIP
information. UDP port 520 must be reserved for OROUTED.

Chapter 24. Diagnosing OROUTED Problems 419

|

4. Make sure that OROUTED is configured correctly in the services file or data set.
Verify that the assigned port number and service name are correct.

5. For network connectivity problems, see “Chapter 4. Diagnosing Network
Connectivity Problems” on page 25.

OS/390 UNIX oping Failures
If an OS/390 UNIX oping command fails on a system where OROUTED is being
used, a client is unable to get a response to an oping command. Before doing
anything else, run onetstat -g. This should tell you which gateways are configured.
If no gateways are configured, oping will not work.

Documentation
The following documentation should be available for initial diagnosis of oping
failures:
v MVS system log
v PROFILE.TCPIP information
v Output from onetstat -g and onetstat -r

Analysis
Follow the steps below to diagnosis oping errors:

1. Perform oping loopback.

2. Make sure that the oping command contains a valid destination IP address for
the remote host.

If the destination IP address is a virtual IP address (VIPA), make sure that VIPA
is defined correctly. See the OS/390 IBM Communications Server: IP
Configuration Reference for more information on rules and recommendations
when defining a virtual IP address.

3. Make sure that the router providing the RIP support involved in the oping
transaction is active and is running with a correct level of OROUTED or some
application that provides RIP support.

If the destination router is not running RIP, make sure that static routes are
defined from the destination router to the local host.

4. If the oping command was issued from a remote OS/390 host, issue an onetstat
-g command from there to display its routing tables. Verify that the routes and
networks are correct as defined in the hlq.PROFILE.TCPIP data set and the
OROUTED gateways file.

5. If the oping command was issued from a remote OS/2® or DOS host, issue an
onetstat -r command from there to display its routing tables. Verify that the
routes and networks are correct as defined in the TCP/IP configuration and the
/etc/gateways file of TCP/IP. From the OS/2 operating system, issue ICAT and
select the Routing Information menu. From DOS, issue IFCONFIG inet ip show
to display the TCP/IP configured routes.

If there are any problems with the routes or networks, refer to OS/2 or DOS
documentation for information about correcting NETSTAT problems.

6. If there are no problems with the routes and networks, check for broken or
poorly-connected cables between the client and the remote host. This includes
checking the intranet interfaces (such as token ring and Ethernet) on the
OROUTED server.

420 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Incorrect Output
Problems with incorrect output are reported when the data sent to the client is not
seen in its expected form. This could be incorrect TCP/IP output, RIP commands
that are not valid, incorrect RIP broadcasting information, incorrect updates of
routing tables, or truncation of packets.

Documentation
The following documentation should be available for initial diagnosis of incorrect
output:
v OROUTED cataloged procedure, if used
v MVS system log
v OROUTED standard output and standard error
v PROFILE.TCPIP information
v Output from onetstat -g and onetstat -r

Analysis
Table 33 shows types of incorrect output and describes the actions needed for initial
diagnosis of the error.

Table 33. OROUTED Incorrect Output

Incorrect Output Action Steps

TCP/IP Incorrect Output 1. If the TCP/IP console shows a TCP/IP error message, refer
to OS/390 IBM Communications Server: IP Messages
Volume 1 (EZA) and follow the directions for system
programmer response for the message.

2. In the event of TCP/IP loops or hangs, see “Chapter 3.
Diagnosing Abends, Loops, and Hangs” on page 21.

OROUTED Incorrect
Output

If an OROUTED error message is displayed, refer to OS/390
IBM Communications Server: IP Messages Volume 1 (EZA) and
follow the directions for system programmer response for the
message.

Session Outages
Session outages are reported as an unexpected abend or termination of a TCP/IP
connection.

Documentation
The following documentation should be available for initial diagnosis of session
outages:
v OROUTED cataloged procedure, if used
v MVS system log
v OROUTED standard output and standard error
v TCPIP CTRACE (see “Chapter 5. TCP/IP Services Traces and IPCS Support” on

page 47)
v PROFILE.TCPIP information
v Output from onetstat -g and onetstat -r

Analysis
Table 34 on page 422 shows types of session outages and describes the steps
needed for initial diagnosis of the error.

Chapter 24. Diagnosing OROUTED Problems 421

|

|

Table 34. OROUTED Session Outages

Session Outage Action Steps

TCP/IP session
outage

1. If the TCP/IP console shows a TCP/IP error message, refer to
OS/390 IBM Communications Server: IP Messages Volume 1
(EZA) and follow the directions for system programmer response
for the message.

2. Examine the external CTRACE for information about the error.

3. In the event of an TCP/IP abend, see “Chapter 3. Diagnosing
Abends, Loops, and Hangs” on page 21.

OROUTED session
outage

If an OROUTED error message is displayed, refer to OS/390 IBM
Communications Server: IP Messages Volume 1 (EZA) and follow
the directions for system programmer response for the message.

OROUTED Traces and Debug Information
There are many TCP/IP traces that can be useful in identifying the cause of
OROUTED problems. OROUTED traces and debug requests can be started from
the OS/390 UNIX shell, or they can be started from an MVS cataloged procedure.
This section discusses both methods.

Note: OROUTED trace output is sent to syslogd unless you specify otherwise. See
“Where to Send OROUTED Trace Output” on page 425.

Figure 66 on page 423 shows a sample OROUTED environment.

422 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Starting OROUTED Traces from the OS/390 UNIX Shell
From TSO, issue the OMVS command, which puts you at a UNIX-like prompt. Then
type the orouted command followed by one or more of the following parameters.

Note: OROUTED traces can be dynamically started and stopped using the
MODIFY command. For more information, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

-t Activates tracing of actions by the OROUTED server.

Figure 66. Sample OROUTED Environment

Chapter 24. Diagnosing OROUTED Problems 423

-t -t Activates tracing of actions and packets sent or received.

-t -t -t Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced. This history is included in the trace output whenever an
interface becomes inactive.

-t -t -t -t
Activates tracing of actions, packets sent or received, packet history, and
packet contents. The RIP network routing information is included in the
trace output.

-dp Activates tracing of packets to and from adjacent routers and received and
broadcasted RIP network routing tables. Packets are shown in data format
in the trace output. The information is written to STDOUT.

-ep Sends print statement to STDOUT and STDERR.

-d Enables internal debug information, which consists of internal code points.
The information is written to STDOUT. Use this parameter only if IBM
service requests the information.

Notes:

1. The parameters described here are only those that activate tracing. Refer to the
OS/390 IBM Communications Server: IP Configuration Reference for more
information about all of the OROUTED parameters.

2. To run orouted in the background, add an ampersand (&) to the command, as in
the command orouted &

3. You can enter more than one parameter, with a space after each parameter; for
example, orouted -t -t -t -dp

Starting OROUTED Traces from an MVS Catalogued Procedure
The OROUTED traces are controlled by parameters on PARM= in the PROC
statement of the OROUTED cataloged procedure.

For example:
//OROUTED EXEC PGM=OROUTED,REGION=4096K,TIME=NOLIMIT,
// PARM=('POSIX(ON)',
// 'ENVAR("_CEE_ENVFILE=DD:STDENV")/-ep -t -t')

The OROUTED parameters that control tracing are:

Note: OROUTED traces can be dynamically started and stopped using the
MODIFY command. For more information, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.

-t Activates tracing of actions by the OROUTED server.

-t -t Activates tracing of actions and packets sent or received.

-t -t -t Activates tracing of actions, packets sent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced. This history is included in the trace output whenever an
interface becomes inactive.

-t -t -t -t
Activates tracing of actions, packets sent or received, packet history, and
packet contents. The RIP network routing information is included in the
trace output.

424 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|
|

|

-dp Activates tracing of packets to and from adjacent routers and received and
broadcasted RIP network routing tables. Packets are shown in data format
in the trace output. The information is written to STDOUT.

-ep Sends print statement to STDOUT and STDERR.

-d Enables internal debug information, which consists of internal code points.
The information is written to STDOUT. Use this parameter only if IBM
service requests the information.

Notes:

1. Each parameter is separated by a blank.

2. Parameters can be specified in mixed case.

3. The parameters described here are only those that activate tracing. Refer to the
OS/390 IBM Communications Server: IP Configuration Reference for more
information about all of the OROUTED parameters.

Where to Send OROUTED Trace Output
Normally, trace output is sent to syslogd, which includes a great deal of information
about many TCP/IP components, not just OROUTED. If you want to see only
OROUTED output, use the -ep parameter when you start a trace. This sends output
to syslogd and to STDOUT.

If you are running in the OS/390 UNIX shell, using the -ep parameter sends the
output to the shell session screen. You can save this output by redirecting it into a
file with the greater-than (>) character (for example, orouted -ep -t -t >
orouted.stdout).

Note: The -ep parameter cannot be altered using the MODIFY command.

Stopping OROUTED
You can stop OROUTED in several ways:

v From an OS/390 UNIX shell superuser ID, issue the kill command to the
process ID (PID) associated with OROUTED.

To find the PID, use one of the following methods:

– Use D OMVS,U=USERID. (This is the USERID that started OROUTED from the
shell.)

– Use the ps -ef command from the shell.

– Write down the PID when you start OROUTED.

– Use a shell command pipeline such as
kill $(ps | awk '/orouted/' {print $1}')

(In this case, you do not need to know the PID.)

v From MVS, issue the MODIFY command, specifying the parameter -k or -kdr.
The -k parameter stops OROUTED, while the -kdr parameter stops OROUTED
and deletes all dynamic routes. For example, the following command stops an
OROUTED server started with a procedure named OROUTED.

MODIFY OROUTED,PARMS=-k

For more information on this command, refer to the OS/390 IBM Communications
Server: IP Configuration Reference.

v From MVS, issue P procname where procname is the procedure name used to
start OROUTED. If OROUTED was started from the OS/390 UNIX shell, the

Chapter 24. Diagnosing OROUTED Problems 425

|
|

procname is useridX, where X is the sequence number set by the system. To
determine the sequence number, issue /d a,l from any MVS console, to see the
programs running.

Note: To see the OS/390 UNIX application name in the output, use D
OMVS,U=USERID, as described previously.

Changing Trace and Debug Levels with MODIFY
Whether you start OROUTED from OMVS or MVS, you can use the MVS MODIFY
to change command trace levels. The MODIFY syntax is

MODIFY procname,parms=parm

A modify format for MVS might look like this:
MODIFY OROUTED,PARMS=-t -t -t

If you had started from the OS/390 UNIX shell, you would use something like this:
MODIFY useridX,PARMS=-t -t -t

where X is the sequence number for the OROUTED job. To determine the
sequence number, see “Stopping OROUTED” on page 425.

The -tq parameter disables all traces.

You can also turn on debug information with the parameters -d, -dp, or both. To
turn off debug information, use the -dq parameter.

For more information on using the MODIFY command, refer to the OS/390 IBM
Communications Server: IP Configuration Reference .

OROUTED Trace Example and Explanation
Figure 67 on page 427 shows an example of an OROUTED trace that was
generated using -ep -t -t -t parameters. Short descriptions of numbered items in
the trace follow the figure.

426 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZZ4990I OE RouteD server initializing. Level 10.00
EZZ4980I Using catalog '/usr/lib/nls/msg/C/routed.cat' for OE RouteD messages.
�(1)� EZZ4828I Input parameter(s): -ep -t -t -t
EZZ4985I Setting High Level Qualifier (HLQ) to 'CS390'
EZZ4988I OE RouteD established affinity with 'TCPCS'
EZZ4929I Port 520 assigned to route
EZZ4932I ***
EZZ5001I Opening OE RouteD profile /u/user156/r.p
EZZ4932I ***
EZZ5002I RIP_SUPPLY_CONTROL: RIP2M
EZZ4932I ***
EZZ4850I * Processing interface TR1
EZZ4932I ***
EZZ4948I This interface is not point-to-point
EZZ4943I Adding network route for interface
EZZ4882I Tue Jan 18 14:25:32 2000:
EZZ4883I ADD destination 9.0.0.0, router 9.67.116.94, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL timer 0
EZZ4943I Adding subnetwork route for interface
EZZ4883I ADD destination 9.67.116.0, router 9.67.116.94, metric 1
flags UP state INTERFACE|CHANGED|SUBNET timer 0
EZZ4932I ***
EZZ4850I * Processing interface VLINK1
EZZ4932I ***
EZZ4965I Virtual interface
EZZ4948I This interface is not point-to-point
EZZ4943I Adding network route for interface
EZZ4883I ADD destination 94.0.0.0, router 94.94.94.94, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL|VIRTUAL timer 0
EZZ4943I Adding subnetwork route for interface
EZZ4883I ADD destination 94.94.94.92, router 94.94.94.94, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL|SUBNET|VIRTUAL timer 0
EZZ4943I Adding host route for interface
EZZ4883I ADD destination 94.94.94.94, router 94.94.94.94, metric 1
flags UP|HOST state INTERFACE|CHANGED|INTERNAL|VIRTUAL timer 0
EZZ4932I ***
EZZ4850I * Processing interface CTC00
EZZ4932I ***
EZZ4940I Point-to-point interface, using broadaddr
EZZ4949I Interface CTC00 not up
EZZ4932I ***
EZZ4850I * Processing interface CTC02
EZZ4932I ***
EZZ4940I Point-to-point interface, using dstaddr
EZZ4943I Adding network route for interface
EZZ4883I ADD destination 215.215.215.0, router 215.215.215.2, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL timer 0
EZZ4943I Adding host route for interface
EZZ4883I ADD destination 215.215.215.4, router 215.215.215.2, metric 1
flags UP|HOST state INTERFACE|CHANGED timer 0

Figure 67. Example of an OROUTED Trace (Part 1 of 7)

Chapter 24. Diagnosing OROUTED Problems 427

EZZ4932I ***
EZZ4850I * Processing interface VIPL0B0B0B0B
EZZ4932I ***
EZZ4965I Virtual interface
EZZ4948I This interface is not point-to-point
EZZ4943I Adding network route for interface
EZZ4883I ADD destination 11.0.0.0, router 11.11.11.11, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL|VIRTUAL timer 0
EZZ4943I Adding subnetwork route for interface
EZZ4883I ADD destination 11.11.11.0, router 11.11.11.11, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL|SUBNET|VIRTUAL timer 0
EZZ4943I Adding host route for interface
EZZ4883I ADD destination 11.11.11.11, router 11.11.11.11, metric 1
flags UP|HOST state INTERFACE|CHANGED|INTERNAL|VIRTUAL timer 0
EZZ4932I ***
EZZ4850I * Processing interface EZASAMEMVS
EZZ4932I ***
EZZ4940I Point-to-point interface, using broadaddr
EZZ4943I Adding network route for interface
EZZ4883I ADD destination 150.150.0.0, router 150.150.150.1, metric 1
flags UP state INTERFACE|CHANGED|INTERNAL timer 0
EZZ4943I Adding subnetwork route for interface
EZZ4883I ADD destination 150.150.150.0, router 150.150.150.1, metric 1
flags UP state INTERFACE|CHANGED|SUBNET timer 0
EZZ4932I ***
EZZ4934I * Opening GATEWAYS file (/u/user156/g.f)
EZZ4932I ***
EZZ4925I Start of GATEWAYS processing:
EZZ4945I ifwithnet: compare with TR1
EZZ4947I netmatch 9.67.116.88 and 9.67.116.94
EZZ4936I Adding passive net route 0.0.0.0 via gateway 9.67.116.88, metric 1
EZZ4883I ADD destination 0.0.0.0, router 9.67.116.88, metric 1
flags UP|GATEWAY state PASSIVE|CHANGED|DEFAULT timer 0
EZZ5013I RIP2 authentication disabled at interface level (TR1)
EZZ5013I RIP2 authentication disabled at interface level (VLINK1)
EZZ5013I RIP2 authentication disabled at interface level (CTC00)
EZZ5019I Joining multicast group 224.0.0.9 on interface CTC00
EZZ5013I RIP2 authentication disabled at interface level (CTC02)
EZZ5019I Joining multicast group 224.0.0.9 on interface CTC02
EZZ5013I RIP2 authentication disabled at interface level (VIPL0B0B0B0B)
EZZ5013I RIP2 authentication disabled at interface level (EZASAMEMVS)
EZZ5019I Joining multicast group 224.0.0.9 on interface EZASAMEMVS
EZZ4926I End of GATEWAYS processing
EZZ4849I OE RouteD Server started
�(2)� EZZ4899I REQUEST to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:25:32 2000
EZZ4949I Interface CTC00 not up
EZZ4899I REQUEST to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4899I REQUEST to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:25:32 2000
�(3)� EZZ4829I Waiting for incoming packets
EZZ4899I REQUEST from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4899I REQUEST from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4899I REQUEST from 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:25:32 2000

Figure 67. Example of an OROUTED Trace (Part 2 of 7)

428 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZZ4958I supply 9.67.116.94 -> 520 via TR1
EZZ4899I RESPONSE to 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:25:32 2000
EZZ4899I RESPONSE from 9.67.116.88 -> 520: ver 1 Tue Jan 18 14:25:32 2000
EZZ4882I Tue Jan 18 14:25:32 2000:
EZZ4883I ADD destination 9.67.113.0, router 9.67.116.88, metric 2
flags UP|GATEWAY state CHANGED|SUBNET timer 0
EZZ4883I ADD destination 9.67.114.0, router 9.67.116.88, metric 2
flags UP|GATEWAY state CHANGED|SUBNET timer 0
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:25:32 2000
EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 9.67.116.88 -> 520: ver 1 Tue Jan 18 14:25:50 2000
EZZ4829I Waiting for incoming packets
�(4)� EZZ4957I 30 second timer expired (poll interfaces for status)
EZZ4957I 30 second timer expired (broadcast)
EZZ4958I supply 9.67.116.255 -> 0 via TR1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:26:02 2000
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:26:02 2000
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:26:02 2000
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:26:02 2000
EZZ4899I RESPONSE from 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:26:02 2000
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:26:02 2000
EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 9.67.116.88 -> 520: ver 1 Tue Jan 18 14:26:19 2000
EZZ4829I Waiting for incoming packets
EZZ4957I 60 second timer expired (rescan kernel for interfaces)
EZZ4957I 30 second timer expired (poll interfaces for status)
EZZ4949I Interface CTC00 not up
EZZ4957I 30 second timer expired (broadcast)
EZZ4958I supply 9.67.116.255 -> 0 via TR1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:26:33 2000
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:26:33 2000
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:26:33 2000
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:26:33 2000
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:26:33 2000
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:26:33 2000
EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
�(5)� EZZ4828I Input parameter(s): -T -T -T -T
EZZ4871I Tracing packet contents enabled Tue Jan 18 14:26:46 2000
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 9.67.116.88 -> 520: ver 1 Tue Jan 18 14:26:49 2000
EZZ4902I destination 9.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 1
EZZ4902I destination 9.67.114.0 metric 1

Figure 67. Example of an OROUTED Trace (Part 3 of 7)

Chapter 24. Diagnosing OROUTED Problems 429

EZZ4829I Waiting for incoming packets
EZZ4957I 30 second timer expired (poll interfaces for status)
EZZ4957I 30 second timer expired (broadcast)
EZZ4958I supply 9.67.116.255 -> 0 via TR1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:27:03 2000
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:27:03 2000
EZZ4902I destination 9.0.0.0 metric 1
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 2
EZZ4902I destination 9.67.114.0 metric 2
EZZ4902I destination 9.67.116.0 metric 1
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:27:03 2000
EZZ4902I destination 9.0.0.0 metric 1
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 2
EZZ4902I destination 9.67.114.0 metric 2
EZZ4902I destination 9.67.116.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:27:03 2000
EZZ4902I destination 9.0.0.0 metric 1
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 2
EZZ4902I destination 9.67.114.0 metric 2
EZZ4902I destination 9.67.116.0 metric 1
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:27:03 2000
EZZ4902I destination 9.0.0.0 metric 1
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 2
EZZ4902I destination 9.67.114.0 metric 2
EZZ4902I destination 9.67.116.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE from 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:27:03 2000
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1

Figure 67. Example of an OROUTED Trace (Part 4 of 7)

430 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
EZZ4957I 60 second timer expired (rescan kernel for interfaces)
EZZ4957I 30 second timer expired (poll interfaces for status)
EZZ4949I Interface TR1 not up
�(6)� EZZ4891I *** Packet history for interface TR1 ***
EZZ4898I Output trace:
EZZ4899I REQUEST to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:25:32 2000
EZZ4903I request for full tables
EZZ4899I RESPONSE to 9.67.116.94 -> 520: ver 1 Tue Jan 18 14:25:32 2000
�(7)� EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:26:02 2000
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:26:33 2000
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE to 9.67.116.255 -> 520: ver 1 Tue Jan 18 14:27:03 2000
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4892I *** End packet history ***
EZZ4882I Tue Jan 18 14:27:33 2000:
EZZ4889I CHANGE metric destination 9.0.0.0, router 9.67.116.94, from 1 to 16
EZZ4889I CHANGE metric destination 9.67.113.0, router 9.67.116.88, from 2 to 16
EZZ4889I CHANGE metric destination 9.67.114.0, router 9.67.116.88, from 2 to 16
EZZ4889I CHANGE metric destination 9.67.116.0, router 9.67.116.94, from 1 to 16
EZZ4916I deleting route to interface TR1 (timed out)
EZZ4949I Interface CTC00 not up
EZZ4957I 30 second timer expired (broadcast)
EZZ4949I Interface TR1 not up
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:27:33 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1

Figure 67. Example of an OROUTED Trace (Part 5 of 7)

Chapter 24. Diagnosing OROUTED Problems 431

EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:27:33 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:27:33 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:27:33 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
EZZ4957I 30 second timer expired (poll interfaces for status)
EZZ4957I 30 second timer expired (broadcast)
EZZ4949I Interface TR1 not up
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:28:03 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:28:03 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1

Figure 67. Example of an OROUTED Trace (Part 6 of 7)

432 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Following are short descriptions of the numbered items in the trace:

�(1)� EZZ4828I shows the parameters used for this trace.

�(2)� EZZ4899I describes the type of packet being sent or received.

�(3)� EZZ4829I means the system is waiting for incoming packets.

�(4)� EZZ4957I shows timer information.

�(5)� At this point, trace parameters were changed using a MODIFY command.

�(6)� EZZ4891I shows packet history.

EZZ4829I Waiting for incoming packets
EZZ4899I RESPONSE from 215.215.215.2 -> 520: ver 2 Tue Jan 18 14:28:03 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 150.150.150.0 metric 1
EZZ4902I destination 150.150.0.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4899I RESPONSE from 150.150.150.1 -> 520: ver 2 Tue Jan 18 14:28:03 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 1
EZZ4902I destination 11.0.0.0 metric 1
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 215.215.215.0 metric 1
EZZ4902I destination 94.94.94.92 metric 1
EZZ4902I destination 94.0.0.0 metric 1
EZZ4829I Waiting for incoming packets
EZZ4829I Waiting for incoming packets
�(5)� EZZ4828I Input parameter(s): -KDR
EZZ4949I Interface TR1 not up
EZZ4949I Interface CTC00 not up
EZZ4958I supply 224.0.0.9 -> 0 via CTC02
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:28:08 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 16
EZZ4902I destination 11.0.0.0 metric 16
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 150.150.150.0 metric 16
EZZ4902I destination 150.150.0.0 metric 16
EZZ4902I destination 94.94.94.92 metric 16
EZZ4902I destination 94.0.0.0 metric 16
EZZ4958I supply 224.0.0.9 -> 0 via EZASAMEMVS
EZZ4899I RESPONSE to 224.0.0.9 -> 520: ver 2 Tue Jan 18 14:28:08 2000
EZZ4902I destination 9.0.0.0 metric 16
EZZ4902I destination 11.11.11.0 metric 16
EZZ4902I destination 11.0.0.0 metric 16
EZZ4902I destination 9.67.113.0 metric 16
EZZ4902I destination 9.67.114.0 metric 16
EZZ4902I destination 9.67.116.0 metric 16
EZZ4902I destination 215.215.215.0 metric 16
EZZ4902I destination 94.94.94.92 metric 16
EZZ4902I destination 94.0.0.0 metric 16

Figure 67. Example of an OROUTED Trace (Part 7 of 7)

Chapter 24. Diagnosing OROUTED Problems 433

|

�(7)� EZZ4902I provides packet detail for each route contained in an RIP packet.

Documentation for the IBM Software Support Center
When contacting the IBM Software Support Center for problem resolution, some or
all of the following information may be required:

v PROFILE.TCPIP information

v Output from onetstat -g and onetstat -r

v Network diagram or layout

v OROUTED profile (the file pointed to by the ROUTED_PROFILE environmental
variable)

v OROUTED gateways file (the file pointed to by the GATEWAYS_FILE
environmental variable)

v Standard output and standard error of OROUTED using the -ep parameter with
full tracing on (for example, running orouted -ep -t -t -t -t)

434 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 25. Diagnosing OMPROUTE Problems

OMPROUTE implements the Open Shortest Path First (OSPF) protocol described
in RFC 1583 (OSPF Version 2) as well as the Routing Information Protocols (RIP)
described in RFC 1058 (RIP Version 1) and in RFC 1723 (RIP Version 2).
OMPROUTE provides an alternative to the static TCP/IP gateway definitions. When
configured properly, the MVS host running with OMPROUTE becomes an active
OSPF and/or RIP router in a TCP/IP network. Either (or both) of these two routing
protocols can be used to dynamically maintain the host routing table. For example,
OMPROUTE can determine that a new route has been created, that a route is
temporarily unavailable, or that a more efficient route exists.

OMPROUTE has the following characteristics:

v It is an OS/390 UNIX application. It requires the Hierarchical File System (HFS)
to operate.

v OMPROUTE can be started from an MVS procedure, from the OS/390 shell, or
from AUTOLOG.

v The OMPROUTE subagent provides an alternative to DISPLAY commands for
displaying Open Shortest Path First (OSPF) protocol configuration and state
information. The subagent implements the Management Information Base (MIB)
variables defined in Request for Comment (RFC) 1850. The OMPROUTE
subagent is controlled by statements in the OMPROUTE configuration file. For
details, refer to the OS/390 IBM Communications Server: IP Configuration
Reference.

v OMPROUTE needs to be started by a RACF authorized user ID.

v OMPROUTE needs to be in an APF authorized library.

v A one-to-one relationship exists between an instance of OMPROUTE and a
TCP/IP stack.

v OSPF/RIP support on multiple TCP/IP stacks via the split-stack function requires
multiple instances of OMPROUTE.

v OMPROUTE and OROUTED cannot run on the same TCP/IP stack concurrently.

v All dynamic routes are deleted from the routing table upon initialization of
OMPROUTE.

v Internet Control Message Protocol (ICMP) Redirects are ignored when
OMPROUTE is active.

v Unlike OROUTED, OMPROUTE does not make use of the BSD Routing
Parameters. Instead, the Maximum Transmission Unit (MTU), subnet mask, and
destination address parameters are configured via the OSPF_Interface,
RIP_Interface, and Interface statements in the OMPROUTE configuration file.

v OMPROUTE uses the MVS operator console, SYSLOGD, STDOUT, and
CTRACE for its logging and tracing.

– The MVS operator console and SYSLOGD are used for major events such as
initialization, termination, and error conditions.

– STDOUT is used for detailed tracing and debugging.

– CTRACE is used for the following purposes:

- Tracing the receipt and transmission of OSPF/RIP packets

- Tracing subagent/SNMP agent packets

- Communications between OMPROUTE and the TCP/IP stack

© Copyright IBM Corp. 1994, 2000 435

For details on using TCP/IP Services Component trace support with
OMPROUTE, see “TCP/IP Services Component Trace for OMPROUTE” on
page 447 and “Appendix A. Collecting Component Trace Data” on page 513.

v If you want to communicate a routing protocol over an interface, configure the
interface to OMPROUTE using the OSPF_INTERFACE or RIP_INTERFACE
configuration statement.

v Interfaces that are not involved in the communication of the RIP or OSPF
protocol (such as VIPA interfaces) must be configured to OMPROUTE using the
INTERFACE configuration statement, unless it is a non-point-to-point interface
and all default values as specified on the INTERFACE statement are acceptable.

v OMPROUTE uses a standard message catalog. The message catalog must be in
the HFS. The directory location for the message catalog path is set by the
environment variables NLSPATH and LANG.

v OMPROUTE is enhanced with Virtual IP Addressing (VIPA) to handle network
interface failures by switching to alternate paths. The virtual routes are included
in the OSPF and RIP advertisements to adjacent routers. Adjacent routers learn
about virtual routes from the advertisements and can use them to reach the
destinations at the MVS host.

v OMPROUTE allows for the generation of multiple, equal-cost routes to a
destination, thus providing load-balancing support.

OMPROUTE works best without static routes, and the use of static routes (defined
via the GATEWAY TCP/IP configuration statement) is not recommended. Static
routes may interfere with the discovery of a better route to the destination as well
as inhibit the ability to switch to another route if the destination should become
unreachable via the static route. For example, if you define a host route through
one interface and that interface becomes unreachable, OMPROUTE does not
acknowledge your static route and does not define a host route through alternate
interface.

If static routes must be defined, all static routes will be considered to be of equal
cost and static routes will not be replaced by OSPF or RIP routes. Use extreme
care when working with static routes and OMPROUTE. Set
IMPORT_STATIC_ROUTES = YES on the AS_Boundary Routing configuration
statement or set SEND_STATIC_ROUTES = YES on the RIP_Interface
configuration statement if you want for the static routes to be advertised to other
routers.

OMPROUTE must be defined correctly to TCP/IP. For detailed information about
TCP/IP definitions, refer to the chapter on configuring OMPROUTE in the OS/390
IBM Communications Server: IP Configuration Reference.

Diagnosing OMPROUTE Problems
Problems with OMPROUTE are generally reported under one of the following
categories:

v Abends

v OMPROUTE connection problems

v Routing failures

These categories are described in the following sections.

436 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Abends
An abend during OMPROUTE processing should result in messages and
error-related information being sent to the system console. A dump of the error is
needed unless the symptoms match a known problem.

OMPROUTE Connection Problems
OMPROUTE connection problems are reported when OMPROUTE is unable to
connect to TCP/IP or to one of the ports required for OSPF or RIP communication.
Generally, an inability to connect to TCP/IP is caused by an error in the
configuration or definitions in TCP/IP. An inability to connect to one of the required
ports is generally caused by an error in the configuration or definitions in TCP/IP or
by attempting to start OMPROUTE when either OMPROUTE or OROUTED is
already connected to the specified stack.

In a Common INET environment (multiple stacks), OMPROUTE attempts to connect
to a stack whose name is determined by the TCPIPjobname keyword in the
resolver configuration data set or file. If OMPROUTE cannot determine the
TCPIPjobname, it uses a default of INET.

If OMPROUTE cannot communicate with the stack pointed to by TCPIPjobname or
is unable to initialize its required ports, it issues an error message describing the
problem and terminates.

For details on diagnosing problems connecting to the SNMP agent, see “SNMP
Connection Problems” on page 338.

Routing Failures
If a client is unable to reach its desired destination on a system where OMPROUTE
is being used, the first step in diagnosis is to issue the onetstat -r command. This
command displays the routes in the TCP/IP routing table and lets you determine if
the contents are as expected relative to the destination trying to be reached.

Documenting Routing Failures
The following documentation should be available for initial diagnosis of routing
failures:

v MVS system log.

v Output from onetstat -r.

v SYSLOGD.

v The data set containing OMPROUTE trace and debug information. For details,
see “OMPROUTE Traces and Debug Information” on page 438.

v TCP/IP and OMPROUTE CTRACE. For information about generating an
OMPROUTE Component Trace, see “TCP/IP Services Component Trace for
OMPROUTE” on page 447.

v Output from appropriate OMPROUTE DISPLAY commands as described in
OS/390 IBM Communications Server: IP Configuration Reference.

Analyzing Routing Failures
When analyzing routing failures, follow these guidelines:

v Make sure that the address used in attempting to contact the remote host is a
valid IP address.

v If the output from the onetstat -r command does not show the expected results
relative to the desired destination, do one or more of the following:

Chapter 25. Diagnosing OMPROUTE Problems 437

– Make sure that the router(s) involved in providing information relative to this
destination are operational and participating in the correct routing protocol.

– Make sure that the physical connections involved in reaching the destination
are active.

– Use the OMPROUTE DISPLAY commands described in OS/390 IBM
Communications Server: IP Configuration Reference to determine if anything
in the configuration or current state of OMPROUTE has resulted in the
absence of a route to the destination.

OMPROUTE Traces and Debug Information
There are many TCP/IP traces that can be useful in identifying the cause of
OMPROUTE problems. OMPROUTE’s use of the MVS Component Trace support is
also useful (see “TCP/IP Services Component Trace for OMPROUTE” on
page 447). This section describes the OMPROUTE internal traces. OMPROUTE
internal tracing and debugging can be started when OMPROUTE is started. Also,
the MODIFY command can be used to start, stop, or alter OMPROUTE tracing and
debugging after OMPROUTE has been started.

This section describes each of these methods.

Starting OMPROUTE Tracing and Debugging from the OS/390 Shell
If OMPROUTE is started from the OS/390 shell command line (using the omproute
command), parameters can be specified to indicate the level of tracing or
debugging desired.

v -tn (where n is a supported trace level)

This option specifies the external tracing level. It is intended for customers,
testers, service, or developers, and provides information on the operation of the
routing application. This option can be used for many purposes, such as
debugging a configuration, education on the operation of the routing application,
verification of testcases, and so on. The following trace levels are supported:

– 1 = Informational messages

– 2 = Formatted packet trace

v -sn (where n is a supported debug level)

This option specifies the internal debugging level for the OMPROUTE subagent.
It is intended for service or developers only and provides internal debugging
information needed for debugging problems. The following level is supported:

– 1 = Internal debugging messages. Turns on DPIdebug(2).

v -dn (where n is a supported debug level)

This option specifies the internal debugging level. It is intended for service or
developers only and provides internal debugging information needed for
debugging problems. The following levels are supported:

– 1 = Internal debugging messages

– 2 = Unformatted hex packet trace

– 3 = Function entry/exit trace

– 4 = Task add/run

Notes:

1. The -tn, -sn, and -dn options affect OMPROUTE performance. As a result, you
may have to increase the Dead Router Interval on OSPF interfaces to prevent
neighbor adjacencies from collapsing.

438 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

2. The trace and debug levels are cumulative; each level includes all lower levels.
For example, -t2 provides formatted packet trace and informational
messages.You can enter more than one parameter by inserting a space after
each parameter; for example, omproute -t1 -d2.

3. Parameters can be specified in mixed case.

Starting OMPROUTE Tracing and Debugging from an MVS Cataloged
Procedure or AUTOLOG

The OMPROUTE tracing and debugging are controlled by parameters on PARM=
when OMPROUTE is started from an MVS cataloged procedure or AUTOLOG. For
example:
//OMPROUTE EXEC PGM=BPXBATCH,REGION=4096K,TIME=NOLIMIT,
// PARM='PGM /usr/sbin/omproute -t1 -d2'

For a description of the parameters that can be specified, see “Starting
OMPROUTE Tracing and Debugging from the OS/390 Shell” on page 438.

Starting OMPROUTE Tracing and Debugging Using the MODIFY
Command

Whether you start OMPROUTE from the OS/390 shell or from a MVS cataloged
procedure, you can use the MODIFY command to start logging or tracing, to stop
logging or tracing, and to change the level of logging or tracing. The syntax for
these MODIFY commands follows:

v MODIFY <procname>,TRACE=<trace-level>

Use the TRACE command to change the trace level that may have been set as a
start option. This command is intended for customers, testers, service, or
developers.

– TRACE=0 turns off OMPROUTE tracing

– TRACE=1 gives all the informational messages

– TRACE=2 gives the informational messages plus formatted packet tracing

v MODIFY <procname>,DEBUG=<debug-level>

Use the DEBUG command to change the debug level that may have been set as
a start option. This command is intended for service or developers only.

– DEBUG=0 turns off OMPROUTE debugging

– DEBUG=1 gives internal debug messages

– DEBUG=2 gives the same as DEBUG=1 plus hexadecimal packet tracing

– DEBUG=3 gives the same as DEBUG=2 plus module entry and exit

– DEBUG=4 gives the same as DEBUG=3 plus task add and run

v MODIFY <procname>,SADEBUG=<trace-level>

Use the SADEBUG command to start and stop message logging for the
OMPROUTE subagent and to stop DPI tracing:

– SADEBUG=0 stops message logging for the OMPROUTE subagent and
issues DPIdebug(0) to stop DPI tracing

– SADEBUG=1 generates all messages by the OMPROUTE subagent and
DPIdebug(2)

Destination of OMPROUTE Trace and Debug Output
Output from OMPROUTE tracing and debugging is written to the debug output
destination. If debug or trace is turned on, the output destination is based on the

Chapter 25. Diagnosing OMPROUTE Problems 439

|

OMPROUTE_DEBUG_FILE environment variable. If OMPROUTE_DEBUG_FILE is
not defined then the output defaults to stdout. In the special case where a MODIFY
command is used to enable tracing and stdout is undefined, then the output
destination defaults to the file ″omproute_debug″ in the temporary directory defined
by the environment variable TMPDIR (usually /tmp).

When OMPROUTE_DEBUG_FILE is defined, the first trace file created will be the
value coded on OMPROUTE_DEBUG_FILE. When that file is full, the extension will
be changed to 00N, where N is in the range 1–4. The current file is always the
value defined as OMPROUTE_DEBUG_FILE and the oldest file is the highest N
value. This eliminates the danger of OMPROUTE filling the HFS when tracing is
active for a long time.

The size and number of debug files created can be controlled by the
OMPROUTE_DEBUG_FILE_CONTROL environment variable. This allows you to
adjust how much data OMPROUTE traces. You tailor this parameter to your
network complexity, and available HFS storage capacity, or both. See the OS/390
IBM Communications Server: IP Configuration Guide for details on this environment
variable.

Sample OMPROUTE Trace Output
Figure 68 on page 441 is a sample OMPROUTE trace with descriptions for some of
the trace entries:

440 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

�1� EZZ7800I OMPROUTE starting
EZZ7889I 00 ACTIVE COMP=SYSTCPRT SUB=USER1464
EZZ7845I Established affinity with TCPCS8
EZZ7817I Using defined OSPF protocol 89
EZZ7838I Using configuration file: /u/user146/omproute/omproute.conf

�2� EZZ7883I Processing interface from stack, address 9.169.100.18,
name CTC2, index 2, flags 451

EZZ7883I Processing interface from stack, address 9.67.100.8,
name CTC1, index 1, flags 451

EZZ8023I The RIP routing protocol is Enabled
EZZ7937I The OSPF routing protocol is Enabled

�3� EZZ8057I Added network 9.67.100.0 to interface 9.67.100.8
on net 0 interface CTC1

EZZ7827I Adding stack route to 9.67.100.0, mask 255.255.255.0 via
0.0.0.0, link CTC1, metric 1, type 1

EZZ8057I Added network 9.67.100.7 to interface 9.67.100.8 on net 0
interface CTC1

EZZ7827I Adding stack route to 9.67.100.7, mask 255.255.255.255 via
0.0.0.0, link CTC1, metric 1, type 129

�4� EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0
interface CTC1

EZZ7879I Joining multicast group 224.0.0.5 on interface 9.67.100.8
�5� EZZ7913I State change, interface 9.67.100.8, new state 16,

event 1

...
EZZ7875I No default route defined
EZZ81001 OMPROUTE subagent Starting
EZZ7898I OMPROUTE Initialization Complete
EZZ81011 OMPROUTE subagent Initialization Completed
EZZ7908I Received packet type 1 from 9.167.100.13

�6� EZZ8011I send request to address 9.67.100.7
EZZ8015I sending packet to 9.67.100.7
EZZ8011I send request to address 9.169.100.14
EZZ8015I sending packet to 9.169.100.14
EZZ8015I sending packet to 9.67.100.7
EZZ8012I sending broadcast response to address 9.67.100.255 in 1

packets with 1 routes
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in 1

packets with 1 routes
�7� EZZ7908I Received packet type 1 from 9.67.100.7

EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0
interface CTC1

�8� EZZ7919I State change, neighbor 9.67.100.7, new state 4, event 1
�9� EZZ7919I State change, neighbor 9.67.100.7, new state 8, event 3

EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8
org 9.67.100.8

�10� EZZ7919I State change, neighbor 9.67.100.7, new state 16,
event 14

�11� EZZ7910I Sending multicast, type 2, destination 224.0.0.5 net
0 interface CTC1

�12� EZZ7908I Received packet type 2 from 9.67.100.7
�13� EZZ7919I State change, neighbor 9.67.100.7, new state 32, event 5
�14� EZZ7910I Sending multicast, type 3, destination 224.0.0.5 net 0

interface CTC1
EZZ7908I Received packet type 2 from 9.67.100.7

�15� EZZ7908I Received packet type 4 from 9.67.100.7

Figure 68. Sample OMPROUTE Trace Output (Part 1 of 6)

Chapter 25. Diagnosing OMPROUTE Problems 441

�16� EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id
9.67.100.7 org 9.67.100.7

EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id 9.67.100.8
org 9.67.100.8

EZZ7927I from 9.67.100.7, self update: typ 1 id 9.67.100.8 org
9.67.100.8

EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id
9.167.100.13 org 9.100.13

EZZ7928I from 9.67.100.7, new LS advertisement: typ 5 id 9.67.100.0
org 9.67.100.8

EZZ7927I from 9.67.100.7, self update: typ 5 id 9.67.100.0 org
9.67.100.8

EZZ7928I from 9.67.100.7, new LS advertisement: typ 5 id 9.169.100.0
org 9.67.100.8

EZZ7927I from 9.67.100.7, self update: typ 5 id 9.169.100.0 org
9.67.100.8

EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org
9.67.100.8

�17� EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net
0 interface CTC1

EZZ7910I Sending multicast, type 3, destination 224.0.0.5 net 0
interface CTC1

EZZ7908I Received packet type 4 from 9.67.100.7
EZZ7928I from 9.67.100.7, new LS advertisement: typ 5 id

9.169.100.14 org 9.67.100.8
EZZ7927I from 9.67.100.7, self update: typ 5 id 9.169.100.14 org

9.67.100.8
EZZ7910I Sending multicast, type 2, destination 224.0.0.5 net 0

interface CTC1
EZZ7908I Received packet type 2 from 9.67.100.7

�18� EZZ7919I State change, neighbor 9.67.100.7, new state 128,
event 6

�19� EZZ7908I Received packet type 5 from 9.67.100.7
�20� EZZ7910I Sending multicast, type 5, destination 224.0.0.5

net 0 interface CTC1
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in

1 packets with 1 routes
EZZ8015I sending packet to 9.67.100.7
EZZ8012I sending broadcast response to address 9.67.100.255 in

1 packets with 1 routes
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in

1 packets with 1 routes
EZZ7908I Received packet type 4 from 9.67.100.7
EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id

9.67.100.7 org 9.67.100.7
EZZ7910I Sending multicast, type 5, destination 224.0.0.5 net 0

interface CTC1
EZZ7934I Originating LS advertisement: typ 5 id 9.169.100.14 org

9.67.100.8
EZZ7934I Originating LS advertisement: typ 5 id 9.169.100.0 org

9.67.100.8
EZZ7934I Originating LS advertisement: typ 5 id 9.67.100.0 org

9.67.100.8
EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 0

interface CTC1

Figure 68. Sample OMPROUTE Trace Output (Part 2 of 6)

442 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�21� EZZ7949I Dijkstra calculation performed, on 2 area(s)
EZZ7935I New OMPROUTE route to destination Net 9.67.100.7,

type SPF cost 1
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.7 org

9.67.100.8
EZZ7908I Received packet type 5 from 9.67.100.7
EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org

9.67.100.8
EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 0

interface CTC1
EZZ7908I Received packet type 4 from 9.67.100.7
EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id

9.167.100.13 org 9.167.100.13
EZZ7928I from 9.67.100.7, new LS advertisement: typ 4 id

9.67.100.8 org 9.167.100.13
EZZ7928I from 9.67.100.7, new LS advertisement: typ 3 id

9.67.100.7 org 9.167.100.13
EZZ7908I Received packet type 5 from 9.67.100.7
EZZ7910I Sending multicast, type 5, destination 224.0.0.5 net 0

interface CTC1
EZZ7949I Dijkstra calculation performed, on 2 area(s)

�22� EZZ7827I Adding stack route to 9.167.100.13, mask 255.255.
255.255 via 9.67.100.7, link CTC1, metric 2, type 129

EZZ7935I New OMPROUTE route to destination Net 9.167.100.13,
type SPF cost 2

EZZ7935I New OMPROUTE route to destination Net 9.67.100.8,
type SPF cost 2

EZZ7913I State change, interface 9.67.100.8, new state 16, event 1
EZZ7935I New OMPROUTE route to destination BR 9.167.100.13,

type SPF cost 2
EZZ7827I Adding stack route to 9.167.100.17, mask 255.255.255.255

via 9.67.100.7, link CTC1, metric 3, type 129
EZZ7935I New OMPROUTE route to destination Net 9.167.100.17,

type SPF cost 3
EZZ7934I Originating LS advertisement: typ 3 id 9.167.100.13 org

9.67.100.8
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.8 org

9.67.100.8
EZZ7934I Originating LS advertisement: typ 3 id 9.167.100.17 org

9.67.100.8
�23� EZZ7909I Sending unicast type 1 dst 9.167.100.13

EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0
interface CTC1

EZZ7908I Received packet type 1 from 9.167.100.13
EZZ7919I State change, neighbor 9.167.100.13, new state 4, event 1
EZZ7919I State change, neighbor 9.167.100.13, new state 8, event 3
EZZ7919I State change, neighbor 9.167.100.13, new state 16, event 14
EZZ7909I Sending unicast type 2 dst 9.167.100.13
EZZ7908I Received packet type 4 from 9.67.100.7
EZZ7928I from 9.67.100.7, new LS advertisement: typ 4 id

9.67.100.8 org 9.167.100.13
EZZ7928I from 9.67.100.7, new LS advertisement: typ 3 id

9.67.100.7 org 9.167.100.13
EZZ7908I Received packet type 2 from 9.167.100.13
EZZ7919I State change, neighbor 9.167.100.13, new state 32, event 5
EZZ7909I Sending unicast type 2 dst 9.167.100.13
EZZ7910I Sending multicast, type 5, destination 224.0.0.5 net 0

interface CTC1
EZZ7908I Received packet type 2 from 9.167.100.13
EZZ7909I Sending unicast type 3 dst 9.167.100.13
EZZ7908I Received packet type 4 from 9.167.100.13

Figure 68. Sample OMPROUTE Trace Output (Part 3 of 6)

Chapter 25. Diagnosing OMPROUTE Problems 443

EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1
interface CTC2

EZZ7928I from 9.167.100.13, new LS advertisement: typ 1 id
9.67.100.8 org 9.67.100.8

EZZ7927I from 9.167.100.13, self update: typ 1 id 9.67.100.8 org
9.67.100.8

...
EZZ7909I Sending unicast type 4 dst 9.167.100.13
EZZ7919I State change, neighbor 9.167.100.13, new state 128, event 6
EZZ7909I Sending unicast type 2 dst 9.167.100.13
EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org

9.67.100.8
EZZ7910I Sending multicast, type 4, destination 224.0.0.5 net 0

interface CTC1
EZZ7933I Flushing advertisement: typ 3 id 9.67.100.7 org 9.167.100.13
EZZ7933I Flushing advertisement: typ 4 id 9.67.100.8 org 9.167.100.13
EZZ7909I Sending unicast type 5 dst 9.167.100.13
EZZ8015I sending packet to 9.67.100.7
EZZ8012I sending broadcast response to address 9.67.100.255 in

1 packets with 1 routes
EZZ7908I Received packet type 5 from 9.67.100.7
EZZ7908I Received packet type 1 from 9.67.100.7
EZZ8004I response received from host 9.67.100.7
EZZ7908I Received packet type 5 from 9.167.100.13
EZZ7949I Dijkstra calculation performed, on 2 area(s)
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in

1 packets with 1 routes
EZZ7908I Received packet type 4 from 9.167.100.13
EZZ7928I from 9.167.100.13, new LS advertisement: typ 1 id

9.167.100.13 org 9.167.100.13
EZZ7908I Received packet type 4 from 9.67.100.7
EZZ7928I from 9.67.100.7, new LS advertisement: typ 1 id

9.167.100.13 org 9.167.100.13
EZZ7910I Sending multicast, type 5, destination 224.0.0.5 net 0

interface CTC1
EZZ7909I Sending unicast type 5 dst 9.167.100.13
EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org

9.67.100.8
EZZ7909I Sending unicast type 4 dst 9.167.100.13
EZZ7908I Received packet type 5 from 9.167.100.13
EZZ8062I Subnet 9.0.0.0 defined
EZZ7949I Dijkstra calculation performed, on 2 area(s)
EZZ7935I New OMPROUTE route to destination BR 9.167.100.13,

type SPF cost 2
�24� EZZ7895I Processing DISPLAY command - OSPF,LIST,INTERFACES

EZZ7809I EZZ7833I INTERFACE CONFIGURATION
EZZ7809I IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD
EZZ7809I 9.169.100.18 0.0.0.0 1 10 1 1 20 80
EZZ7809I 9.67.100.8 2.2.2.2 1 10 1 1 20 80
EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0

interface CTC1
EZZ7908I Received packet type 1 from 9.167.100.13
EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1

interface CTC2
EZZ7909I Sending unicast type 1 dst 9.167.100.13
EZZ7908I Received packet type 1 from 9.67.100.7
EZZ8015I sending packet to 9.67.100.7

Figure 68. Sample OMPROUTE Trace Output (Part 4 of 6)

444 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZZ8012I sending broadcast response to address 9.67.100.255 in
1 packets with 1 routes

EZZ8004I response received from host 9.67.100.7
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in

1 packets with 1 routes
�25� EZZ7895I Processing MODIFY command - TRACE=2

EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0
interface CTC1

�26� EZZ7876I -- OSPF Packet Sent ------ Type: Hello
EZZ7878I OSPF Version: 2 Packet Length: 48
EZZ7878I Router ID: 9.67.100.8 Area: 2.2.2.2
EZZ7878I Checksum: 1dcf Authentication Type: 0
EZZ7878I Hello_Interval: 20 Network mask: 255.255.255.0
EZZ7878I Options: E
EZZ7878I Router_Priority: 1 Dead_Router_Interval: 80
EZZ7878I Backup DR: 0.0.0.0 Designated Router: 0.0.0.0
EZZ7878I Neighbor: 9.67.100.7
EZZ7877I -- OSPF Packet Received -- Type: Hello
EZZ7878I OSPF Version: 2 Packet Length: 48
EZZ7878I Router ID: 9.67.100.7 Area: 2.2.2.2
EZZ7878I Checksum: 1dcf Authentication Type: 0
EZZ7878I Hello_Interval: 20 Network mask: 255.255.255.0
EZZ7878I Options: E
EZZ7878I Router_Priority: 1 Dead_Router_Interval: 80
EZZ7878I Backup DR: 0.0.0.0 Designated Router: 0.0.0.0
EZZ7878I Neighbor: 9.67.100.8
EZZ7908I Received packet type 1 from 9.67.100.7

�27� -- RIP Packet Received -- Type: Response (V1)
Destination_Addr: 9.169.100.0 metric: 2

EZZ8004I response received from host 9.67.100.7
-- RIP Packet Sent ------ Type: Response (V1)
Destination_Addr: 9.169.100.0 metric: 1

EZZ8015I sending packet to 9.67.100.7
EZZ8012I sending broadcast response to address 9.67.100.255 in

1 packets with 1 routes
�28� EZZ7895I Processing MODIFY command - TRACE=1

EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1
interface CTC2

EZZ7909I Sending unicast type 1 dst 9.167.100.13
EZZ7908I Received packet type 1 from 9.67.100.7
EZZ8004I response received from host 9.67.100.7
EZZ8015I sending packet to 9.67.100.7
EZZ8004I response received from host 9.67.100.7
EZZ8015I sending packet to 9.67.100.7
EZZ8012I sending broadcast response to address 9.67.100.255 in 1

packets with 1 routes
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in 1

packets with 1 routes
EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 0

interface CTC1

...
EZZ7909I Sending unicast type 1 dst 9.167.100.13
EZZ7908I Received packet type 1 from 9.67.100.7

�29� EZZ7862I Received update interface CTC1

Figure 68. Sample OMPROUTE Trace Output (Part 5 of 6)

Chapter 25. Diagnosing OMPROUTE Problems 445

Following are brief explanations of numbered items in the trace:

�1� OMPROUTE initializing (trace level 1 was specified at startup)

�30� EZZ8061I Deleted net 9.67.100.0 route via 9.67.100.8 net 0
interface CTC1

EZZ7864I Deleting all stack routes to 9.67.100.0, mask 255.255.255.0
�31� EZZ7919I State change, neighbor 9.67.100.7, new state 1, event 11

EZZ7879I Leaving multicast group 224.0.0.5 on interface 9.67.100.8
�32� EZZ7913I State change, interface 9.67.100.8, new state 1, event 7

EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org
9.67.100.8

EZZ7934I Originating LS advertisement: typ 1 id 9.67.100.8 org
9.67.100.8

EZZ7909I Sending unicast type 4 dst 9.167.100.13
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in

1 packets with 1 routes
EZZ7934I Originating LS advertisement: typ 5 id 9.67.100.0 org

9.67.100.8
EZZ7933I Flushing advertisement: typ 5 id 9.67.100.0 org 9.67.100.8
EZZ7949I Dijkstra calculation performed, on 1 area(s)
EZZ7801I Deleting stack route to 9.67.100.7, mask 255.255.255.255

via 0.0.0.0, link CTC1, metric 1, type 129
EZZ7935I New OMPROUTE route to destination Net 9.67.100.7,

type SPIA cost 5
EZZ7943I Destination Net 9.167.100.13 now unreachable
EZZ7864I Deleting all stack routes to 9.167.100.13, mask

255.255.255.255
EZZ7935I New OMPROUTE route to destination Net 9.67.100.8,

type SPIA cost 4
EZZ7919I State change, neighbor 9.167.100.13, new state 1, event 11
EZZ7913I State change, interface 9.67.100.8, new state 1, event 7
EZZ7943I Destination BR 9.167.100.13 now unreachable
EZZ7943I Destination Net 9.167.100.17 now unreachable
EZZ7864I Deleting all stack routes to 9.167.100.17, mask

255.255.255.255
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.7

org 9.67.100.8
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.8 org

9.67.100.8

...
EZZ7933I Flushing advertisement: typ 3 id 9.167.100.17 org 9.67.100.8
EZZ7933I Flushing advertisement: typ 3 id 9.67.100.8 org 9.67.100.8
EZZ7933I Flushing advertisement: typ 3 id 9.167.100.13 org 9.67.100.8
EZZ7933I Flushing advertisement: typ 3 id 9.67.100.7 org 9.67.100.8
EZZ8015I sending packet to 9.169.100.14
EZZ8012I sending broadcast response to address 9.169.100.255 in 1

packets with 1 routes
EZZ7949I Dijkstra calculation performed, on 1 area(s)
EZZ7943I Destination Net 9.67.100.7 now unreachable
EZZ7943I Destination Net 9.67.100.8 now unreachable
EZZ7943I Destination BR 9.167.100.13 now unreachable
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.7 org

9.67.100.8
EZZ7934I Originating LS advertisement: typ 3 id 9.67.100.8 org

9.67.100.8
EZZ7933I Flushing advertisement: typ 3 id 9.67.100.8 org 9.67.100.8
EZZ7933I Flushing advertisement: typ 3 id 9.67.100.7 org 9.67.100.8
EZZ7910I Sending multicast, type 1, destination 224.0.0.5 net 1

interface CTC2
EZZ7804I OMPROUTE exiting

Figure 68. Sample OMPROUTE Trace Output (Part 6 of 6)

446 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�2� OMPROUTE learns of TCP/IP stack interfaces

�3� Direct routes are added for each TCP/IP stack interface

�4� OSPF Hello packet sent out OSPF interface

�5� OSPF Interface transitions to state “point-to-point”

�6� RIP Requests & Responses begin being sent out RIP interface

�7� OSPF Hello packet received from OSPF neighbor

�8� OSPF neighbor transitions to state “Init”

�9� OSPF neighbor transitions to state “2-Way”

�10� OSPF neighbor transitions to state “ExStart”

�11� OSPF Database Description packet sent out OSPF interface

�12� OSPF Database Description received from OSPF neighbor

�13� OSPF neighbor transitions to state “Exchange”

�14� OSPF Link State Request packet sent out OSPF interface

�15� OSPF Link State Update packet received from OSPF neighbor

�16� Link State Advertisements from received Update packet are processed

�17� OSPF Link State Update packet sent out OSPF interface

�18� OSPF neighbor transitions to state “Full”

�19� OSPF Link State Acknowledgment packet received from OSPF neighbor

�20� OSPF Link State Acknowledgment packet sent out OSPF interface

�21� OSPF Dijkstra calculation is performed

�22� Learned route is added to TCP/IP stack route table

�23� Adjacency establishment begins with router at other end of OSPF Virtual
Link

�24� Request received to display OSPF Interface configuration information

�25� Request received to change tracing level to 2 (adds formatted packets)

�26� Formatted OSPF packet

�27� Formatted RIP packet

�28� Request received to change tracing level back to 1

�29� OMPROUTE learns of stopped TCP/IP interface

�30� Routes over stopped interface are deleted

�31� Neighbor over stopped interface transitions to state “Down”

�32� Stopped interface transitions to state “Down”

TCP/IP Services Component Trace for OMPROUTE
CS for OS/390 provides Component Trace support for the OMPROUTE application.
This section describes how to specify OMPROUTE trace and formatting options.
For short descriptions of other tracing procedures, such as displaying trace status,
see “Appendix A. Collecting Component Trace Data” on page 513. For detailed
descriptions, refer to the following books:

Chapter 25. Diagnosing OMPROUTE Problems 447

v OS/390 MVS Diagnosis: Tools and Service Aids for information about Component
Trace procedures

v OS/390 MVS Initialization and Tuning Reference for information about the
SYS1.PARMLIB member

v OS/390 MVS System Commands for information about trace commands

v OS/390 MVS Authorized Assembler Services Guide for information about
procedures and return codes for CTRACE macros

Specifying Trace Options
You can specify Component Trace options at TCP/IP initialization or after TCP/IP
has initialized.

Specifying Options at Initialization
A default minimum Component Trace is always started during OMPROUTE
initialization. To customize the parameters used to initialize the trace, update the
SYS1.PARMLIB member CTIORA00(see Figure 69 on page 449). For a description
of trace options, see Table 35 on page 450.

Note: Besides specifying the trace options, you can also change the OMPROUTE
trace buffer size. The buffer size can be changed only at OMPROUTE
initialization.

If the CTIORA00 member is not found when starting OMPROUTE, the following
message is issued:
IEE5381 CTIORA00 MEMBER NOT FOUND in SYS1.PARMLIB

When this occurs, the OMPROUTE component trace is started with a buffer size of
1M and the MINIMUM tracing option.

448 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|

/**/
/* */
/* TCP/IP for MVS */
/* SMP/E Distribution Name: CTIORA00 */
/* Part name: CTIORA00 sample */
/* Component name: OSPF */
/* */
/* COPYRIGHT = Licensed Materials - Program Property of IBM. */
/* This product contains "Restricted Materials of */
/* IBM" 5647-A01 (C) Copyright IBM Corp. 1996,1998 */
/* All rights reserved. */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted */
/* by GSA ADP Schedule Contract with IBM Corp. */
/* See IBM Copyright Instructions */
/* */

/* DESCRIPTION = This parmlib member causes component trace for */
/* the CS/390 TCP/IP OMPROUTE application */
/* to be initialized with a trace buffer size of */
/* 256K. */
/* */
/* This parmlib member only lists those TRACEOPTS */
/* values specific to TCP/IP. For a complete list */
/* of TRACEOPTS keywords and their values see */
/* OS/390 MVS INITIALIZATION AND TUNING REFERENCE. */
/* */
/* */
/**/
TRACEOPTS
/* -- */
/* ON OR OFF: PICK 1 */
/* -- */

ON
/* OFF */
/* -- */
/* BUFSIZE: A VALUE IN RANGE 128K TO 16M */
/* -- */

BUFSIZE(256K)
/* -- */
/* OPTIONS: NAMES OF FUNCTIONS TO BE TRACED, OR "ALL" */
/* -- */
/* OPTIONS(*/
/* 'ALL ' */
/* ,'MINIMUM ' */
/* ,'ROUTE ' */
/* ,'PACKET ' */
/* ,'OPACKET ' */
/* ,'RPACKET ' */
/* ,'IPACKET ' */
/* ,'SPACKET ' */
/*) */

/* -- */
/* WRITER PROCEDURE NAME */
/* -- */
/* WTR()

Figure 69. SYS1.PARMLIB Member CTIORA00

Chapter 25. Diagnosing OMPROUTE Problems 449

Table 35 describes the available trace options.

Table 35. OMPROUTE Trace Options

Trace Event Description

ALL
Select all types of records. Be aware that this option slows
performance.

MINIMUM
Select OMPROUTE’s minimum level of tracing. Specifying
MINIMUM is the same as specifying ROUTE.

ROUTE

Select information exchange and routing updates between the
OMPROUTE application and the CS/390 TCP/IP Services
stack.

PACKET Select all inbound and outbound packet flows. This is the
same as specifying OPACKET, RPACKET, and IPACKET.

RPACKET Select inbound and outbound packet flows for the RIP
protocol.

IPACKET Select inbound packets sent from CS/390 TCP/IP with
information regarding route or interface changes.

SPACKET Traces inbound and outbound packets sent between the
SNMP agent and the OMPROUTE subagent.

Specifying Options After Initialization
After OMPROUTE initialization, you must use the TRACE CT command to change
the component trace options. Each time a new Component Trace is initiated, all
prior trace options are turned OFF and the new options are put into effect.

You can specify the trace options with or without the PARMLIB member. See
“Appendix A. Collecting Component Trace Data” on page 513.

Formatting OMPROUTE Trace Records
You can format component trace records using IPCS panels or a combination of the
IPCS panels and the CTRACE command, either from a dump or from
external-writer files. (See “Appendix A. Collecting Component Trace Data” on
page 513.) Any combination of the following values can be entered as options to
filter the CTRACE entries. The options must be entered using the format:
TYPE(option[,option]...)

v ROUTE

v OPACKET

v RPACKET

v IPACKET

v SPACKET

You cannot use the following as options when formatting OMPROUTE component
traces:

v ALL

v MINIMUM

v PACKET

450 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 26. Diagnosing NCPROUTE Problems

The NCPROUTE protocol provides a standardized interface, through which a server
program on one host (NCPROUTE) can manage the routing tables and respond to
SNMP route table requests for another program (Network Control Program).

Figure 70 shows the NCPROUTE environment.

Prior to ACF/NCP V7R1, static route tables were used for routing IP datagrams over
connected networks. However, the static routes had a drawback in that they were
not able to respond to network topology changes. By implementing the RIP protocol
between a host and NCP clients, the NCPROUTE server is able to provide dynamic
IP routing for NCP clients. In effect, the NCP clients become active RIP routers in a
TCP/IP network.

Multiple NCP units (374x family of communications controllers) can connect to the
same NCPROUTE server on one host. This means that NCPROUTE can manage

NCPROUTEROUTED

MVS

SNMPD

SNALINK LU0

VTAM SNMPIUCV

SNMPQE

TCPIP

3172

PS/2

Ethernet

Token Ring

Token Ring

ROUTED NCPROUTE

3172

NCP Client

LU
LU

NETVIEW

TCPIP

Figure 70. NCPROUTE Environment

© Copyright IBM Corp. 1994, 2000 451

multiple routing tables for each NCP client. SNALINK is used as the connection
vehicle to establish LU0 sessions between NCPROUTE and NCP clients. Each
NCP client can have one or more LU0 sessions with NCPROUTE, provided that
one session is used as primary and others as secondary for backup.

The NCPROUTE server reacts to network topology changes on behalf of NCP
clients by maintaining each NCP client routing tables, processing and generating
RIP and SNMP datagrams, and performing error recovery procedures.

The NCPROUTE protocol is based on the exchange of protocol data units (PDUs).
There are eight types of PDUs:

v Hello PDU: Sent from an NCP client to initiate a session with NCPROUTE.

v Acknowledge PDU: Sent from NCPROUTE to acknowledge receipt of a Hello
datagram. NCPROUTE is ready to manage the routing tables for an NCP client.

v Status PDU: Sent from an NCP client to inform NCPROUTE of a status change
with an interface. Interfaces can become inactive or active.

v Delete Route Request PDU: Sent from NCPROUTE to request deletion of a
route that is no longer known to the network from a NCP client routing tables.
This PDU can also be sent from an NCP client as a response informing
NCPROUTE that the delete route request failed.

v Add Route Request PDU: Sent from NCPROUTE to request addition of a route
that is discovered by NCPROUTE to an NCP client routing tables. This PDU can
also be sent from an NCP client as a response informing NCPROUTE that the
add route request failed.

v Change Route Request PDU: Sent from NCPROUTE to request changing the
value of a metric for a route currently active in an NCP client routing tables.

v Transport PDU: Sent from an NCP client to request NCPROUTE to retransmit
RIP broadcasts sent from other routers and to process Simple Network
Management Protocol (SNMP) requests sent from SNMP clients in the network.
This PDU can also be sent from NCPROUTE as a response to retransmit RIP
broadcasts or as a response to an SNMP query request. The Transport PDU
contains encapsulated RIP and SNMP commands for additional processing.

v Inactive Interface List PDU: Sent from an NCP client to inform NCPROUTE of
currently inactive interfaces.

NCPROUTE uses the RIP commands for retransmitting of and responding to RIP
broadcasts and trace requests. There are four types of RIP commands that can be
encapsulated in a Transport PDU:

v Request: NCP received a request from a client (another RIP router) to retransmit
RIP broadcasts.

v Response: Sent from NCP to its client (another RIP router) as a response to
retransmit RIP broadcasts.

v TraceOn: NCP received a request from a client (another RIP router) to enable
the actions trace provided by NCPROUTE.

v TraceOff: NCP received a request from a client (another RIP router) to disable
tracing provided by NCPROUTE.

NCPROUTE communicates with the SNMP agent over the Distributed Program
Interface (DPI) to process the SNMP commands. In this configuration, NCPROUTE
becomes the SNMP subagent to provide values of registered MIB variables to the
SNMP agent. There are four types of SNMP commands that can be encapsulated
in a Transport PDU:

452 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v Get Request: NCP received a request from a client to obtain one or more MIB
variable values from an SNMP agent.

v Get Next Request: NCP received a request from a client to obtain the next
variable value in the MIB tree from an SNMP agent.

v Get Response: Sent from NCP to its client as a response to an SNMP request.

v Set Request: NCP received a request from a client to set or change the value of
one or more MIB variables in an SNMP agent. This command is not supported
by NCPROUTE.

Refer to OS/390 IBM Communications Server: IP User’s Guide for detailed
information about the SNMP commands.

The following list describes the MIB variables registered for use by NCPROUTE:
v ipRouteDest: Destination IP address of this route
v ipRouteMetric1: Primary routing metric for this route
v ipRouteMetric2: Alternative routing metric for this route
v ipRouteMetric3: Another alternative routing metric for this route
v ipRouteMetric4: Another alternative routing metric for this route
v ipRouteNextHop: IP address of the next hop of this route
v ipRouteType: Type of route
v ipRouteProto: Routing mechanism by which this route was learned
v ipRouteMask: Mask value for this route

Refer to OS/390 IBM Communications Server: IP User’s Guide for detailed
information about the MIB variables.

Definitions
NCPROUTE must be defined correctly to both NCP and TCP/IP. NCPROUTE must
be in the OBEY list of the hlq.PROFILE.TCPIP data set, and UDP port 580 must be
reserved for NCPROUTE. Routes to the NCP clients must be defined on the
GATEWAY or the BSDROUTINGPARMS statement for NCPROUTE connectivity.

Refer to OS/390 IBM Communications Server: IP Configuration Reference for
detailed information about TCP/IP and NCPROUTE server definitions.

Internet interfaces (token ring and Ethernet) and NCST logical units for
communication with the TCP/IP host must be defined for each NCP client through
NCP generation.

If you use SNMP to query routing information of NCP clients, the SNMP query
engine and agent must be configured correctly. For NCPROUTE to communicate
with the SNMP agent, the MVS host name or IP address and community name
must be defined in the NCPROUTE profile, hlq.SEZAINST(NCPRPROF). The
SNMP agent community name must also be defined in the hlq.PW.SRC data set for
proper verification.

Refer to OS/390 IBM Communications Server: IP Configuration Reference for
detailed information about SNMP definitions.

Chapter 26. Diagnosing NCPROUTE Problems 453

Diagnosing NCPROUTE Problems
Problems with NCPROUTE are generally reported under one of the following
categories:
v Abends
v Connection problems
v PING failures
v Incorrect output
v Session outages

Use the information provided in the following sections for problem determination
and diagnosis of errors reported against NCPROUTE.

Abends
An abend during NCPROUTE processing should result in messages and error
related information sent to the system console. A dump of the error is needed
unless the symptoms match a known problem.

Documentation
Code a SYSUDUMP DD or SYSABEND DD statement in the cataloged procedure
used to start NCPROUTE to ensure that a useful dump is obtained in event of an
abend.

Analysis
Refer to OS/390 MVS Diagnosis: Procedures or to “Chapter 3. Diagnosing Abends,
Loops, and Hangs” on page 21, in this manual for information about debugging
dumps produced during NCPROUTE processing.

Connection Problems
NCPROUTE connection problems are reported when NCPROUTE is unable to
connect to TCP/IP, when NCP clients are unable to connect to the NCPROUTE
server, when SNALINK LU0 is unable to connect between the NCPROUTE server
and an NCP client, and when NCPROUTE is unable to connect to an SNMP agent.
Generally, this type of problem is caused by an error in the configuration or
definitions (either in VTAM, TCPIP, SNALINK, SNMP, NCP, or NCPROUTE).

Documentation
The following documentation should be available for initial diagnosis of NCPROUTE
connection problems:
v Documentation for NCPROUTE connection failure

– TCP/IP console log
– hlq.PROFILE.TCPIP data set
– hlq.TCPIP.DATA data set
– NCPROUTE cataloged procedure

v Documentation for NCP client connection failure
– NCPROUTE console log
– NCPROUTE.PROFILE data set
– NCP client network definitions data set (NCP generation)

v Documentation for SNALINK LU0 connection failure
– SNALINK LU0 console log
– VTAM APPL definitions for SNALINK LU0s

v Documentation for SNMP agent problems
– SNMP console logs for SNMP agent and client
– hlq.MIBDESC.DATA data set
– hlq.PW.SRC data set
– NetView log (if the SNMP client is on an MVS host)

454 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

More documentation that might be needed is discussed in the analysis section.

Analysis
Table 36 shows symptoms of connection problems and refers to the steps needed
for initial diagnosis of the error.

Table 36. NCPROUTE Connection Problems

Connection Problem Analysis Steps

NCP client connection failure 1, 2, 7, 8, 10, 14

NCPROUTE connection failure 1, 3, 5, 6, 7, 8, 10, 11, 14

SNALINK LU0 connection failure 1, 3, 7, 8, 10, 12

SNMP Agent connection failure 4, 9, 10, 13

Table 37 gives the diagnostic steps referred to in Table 36.

For TCP/IP configuration-related problems, refer to OS/390 IBM Communications
Server: IP Configuration Reference for more information.

Table 37. Diagnostic Steps for NCPROUTE Connection Problems

Step Action

1 For an NCP client, make sure that the internet interfaces (token ring and
Ethernet) and NCST logical units for communication with the TCP/IP host are
defined correctly in an NCP generation. Refer to the ACF/NCP IP Router
Planning and Installation Guide for detailed information about NCP definitions.

1a Make sure that the NCPROUTE UDP port (UDPPORT keyword), coded on the
IPOWNER statement in an NCP generation, matches the value defined in the
.ETC.SERVICES data set. If it is not coded, the value used will be the default
UDP port 580.

1b Verify that the assigned port numbers and service names for NCPROUTE and
the router are correct. Also make sure that the router service port 520 is defined
in the .ETC.SERVICES data set. The NCP clients will use this port as a
destination port when broadcasting RIP packets to adjacent routers.

1c Make sure that NCST logical units for the SNALINK LU0s are defined correctly. A
partner LU name (INTFACE keyword) for the SNALINK-NCST interface, coded
on the LU statement in an NCST GROUP of an NCP generation, should match
the LU name in a SNALINK LU0 DEVICE statement in the .hlq.PROFILE.TCPIP
data set.

1d Make sure that the remote LU name (REMLU keyword) for the SNALINK-NCST
interface, coded on the LU statement in an NCP generation, matches the VTAM
application name in the VTAM APPL definitions for SNALINK LU0s. For more
information about SNALINK configuration and VTAM APPL definitions, refer to
OS/390 IBM Communications Server: IP Configuration Guide.

1e Make sure that the NCST partner LU name (INTFACE keyword) for the
SNALINK-NCST interface, coded on the IPOWNER and IPLOCAL statements in
an NCP generation, matches the partner LU name in Step 1b.

1f Make sure that the IP address for the TCP/IP host (HOSTADDR keyword), coded
on the IPOWNER statement in an NCP generation, matches the IP address for
the SNALINK LU0 device name coded on the HOME statement in the
.PROFILE.TCPIP data set.

1g Make sure that the IP address for the SNALINK-NCST interface (LADDR
keyword), coded on a IPLOCAL statement in an NCP generation, matches the IP
address for the SNALINK LU0 link name coded on the GATEWAY statement in
the .PROFILE.TCPIP data set.

Chapter 26. Diagnosing NCPROUTE Problems 455

Table 37. Diagnostic Steps for NCPROUTE Connection Problems (continued)

Step Action

1h Make sure that the destination IP address for the SNALINK-NCST interface
(P2PDEST keyword), coded on a IPLOCAL statement in an NCP generation,
matches the IP address on the IPOWNER statement in Step 1e.

1i Make sure that IPLOCAL statements are defined for the directly-attached NCP
internet interfaces (token ring and Ethernet) in an NCP generation. Verify the
correctness of the IP addresses (LADDR keyword), metric values (METRIC
keyword), protocol type (PROTOCOL keyword), and subnetwork masks
(SNETMASK keyword).

2 Make sure that the appropriate NCP LOADLIB is used and that it contains correct
network definitions. The NCP LOADLIB must be in the search list referred to by
the //DD STEPLIB statement. Verify that a 374x communications controller to be
in the session with NCPROUTE is loaded with the correct NCP load module.

3 Make sure that appropriate cataloged procedures for NCPROUTE (NCPROUT)
and SNALINK (SNALPROC) are used, and verify the correctness of the data set
references.

3a For the SNALINK cataloged procedure, make sure that the number of SNALINK
sessions is large enough to allow multiple NCP sessions with NCPROUTE. This
number is referred to by the MAXSESS keyword on the EXEC statement.

4 If using SNMP, make sure that the appropriate cataloged procedure for the
SNMP agent (SNMPD) is used and verify the correctness of the data set
references. Do likewise for a SNMP client (SNMPQE on MVS host).

5 Make sure that NCPROUTE is configured correctly in the .PROFILE.TCPIP data
set. The cataloged procedure name (NCPROUT) is referred to on the OBEY,
AUTOLOG (optional), and PORT statements. UDP port 580 must be reserved for
NCPROUTE.

6 Make sure that NCPROUTE is configured correctly in the ETC.SERVICES data
set. See also Step 1a.

7 Make sure that SNALINK LU0 is configured correctly in the .PROFILE.TCPIP
data set. The SNALINK device name, LU name, and VTAM application address
space name are referred to on the DEVICE statement. The SNALINK link name
is referred to on the LINK, HOME, and GATEWAY statements. See also Steps
1b, 1c, 1e, and 1f.

7a If more than one NCP client is to be in session with NCPROUTE, repeat Step 7
to configure SNALINK LU0 for another session. TCP/IP definitions must be
defined for each SNALINK LU0 session. If TCP/IP is currently running and
another NCP client is to be added, another SNALINK LU0 can be configured
using OBEYFILE commands. This allows TCP/IP to be reconfigured without
having to shut down TCP/IP.

8 If you are using OROUTED, make sure that the routing parameters
(BSDROUTINGPARMS statement) for the NCP clients are defined correctly. In
addition, directly-connected passive routes to the NCP clients must be defined in
the .ETC.GATEWAYS data set.

9 If you are using SNMP, make sure that the SNMP agent is configured correctly in
the .PROFILE.TCPIP data set. If the SNMP client is on an MVS host, verify that
the SNMP client address space is also configured. The cataloged procedure
names (SNMPD and SNMPQE) for the SNMP agent and client are referred to on
the OBEY, AUTOLOG (optional), and PORT statements.

9a For the SNMP agent, make sure that the access authority information is defined
correctly in the SEZAINST(EZBNRPRF) data set for the NCPROUTE profile,
referenced in the NCPROUTE cataloged procedure.

456 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 37. Diagnostic Steps for NCPROUTE Connection Problems (continued)

Step Action

10 If an NCP client is activated and ready to establish a session with NCPROUTE,
make sure that the cataloged procedures for TCPIP, NCPROUTE, and SNALINK
are all started. If you are using SNMP, make sure that the SNMP agent and client
are started.

10a Make sure that the SNALINK devices are started by the START statement in the
.PROFILE.TCPIP data set. The SNALINK devices can also be started by an
OBEYFILE START command.

10b Make sure that VTAM command prompts at the system operator console are
replied to; otherwise, a SNALINK session can be in a pending activation state.

10c Make sure that the NCP client physical and logical lines for the internet interfaces
(token ring and Ethernet) are active.

10d Make sure that NCST lines are active for the SNALINK LU0 sessions.

10e Make sure that VTAM cross-domain resource managers (CDRMs) are active in
the MVS hosts.

11 For network connectivity problems, refer to “Chapter 4. Diagnosing Network
Connectivity Problems” on page 25.

13 For SNMP problems, refer to “Chapter 20. Diagnosing Simple Network
Management Protocol (SNMP) Problems” on page 333.

14 For OROUTED problems, refer to “Chapter 24. Diagnosing OROUTED Problems”
on page 417.

PING Failures
NCPROUTE PING failures are reported when a client is unable to get a response
to a PING command for a destination in a TCP/IP network where there are NCPs
acting as RIP servers. The NCP client suspected of having the problem must be
determined before beginning analysis.

Documentation
The following documentation should be available for initial diagnosis of PING
failures:
v NCPROUTE console log
v TCP/IP console log
v hlq.PROFILE.TCPIP data set
v NCP client network definitions data set (NCP generation)

Analysis
Table 38 shows symptoms of PING failures and refers to the steps needed for initial
diagnosis of the error.

Table 38. NCPROUTE PING Failures

PING Failure Analysis Steps

Incorrect response 1, 2, 3, 4, 5, 6, 7, 8

Time-outs 2, 9

Chapter 26. Diagnosing NCPROUTE Problems 457

Table 39 gives the diagnostic steps referred to in Table 38 on page 457 .

Table 39. Diagnostic Steps for NCPROUTE PING Failures
Step Action
1 Make sure that the PING command contains a valid destination IP address for the

remote host.
2 Make sure that a 374x communications controller acting as a RIP server involved

in the PING transaction is active and is running with a correct level of NCP
LOADLIB. Verify that correct network definitions are defined in the NCP generation
and that the NCP client is in session with NCPROUTE.

3 If the PING command was issued from a client on an MVS host, issue a NETSTAT
GATE command to display the routing tables. Verify that the routes and networks
are correct as defined in the hlq.PROFILE.TCPIP data set and the NCP client
GATEWAYS data set, which is a member of hlq.NCPROUTE.GATEWAYS
partitioned data set referred to by the hlq.SEZAINST(EZBNRPRF) data set defined
in the NCPROUTE cataloged procedure.

3a If the host is running with OROUTED, verify the routes and networks defined in
the hlq.ETC.GATEWAYS data set. Directly-connected passive routes to the NCP
clients must be defined in the hlq.ETC.GATEWAYS data set to ensure
NCPROUTE connectivity with the NCP clients.

3b If there are any problems with the routes and networks, refer to “Using NETSTAT
and onetstat” on page 31.

4 If the PING command was issued from a client on a host running the OS/2 or
DOS operating system, issue a NETSTAT -r command to display the routing
tables. Verify that the routes and networks are correct as defined in the TCPIP
configuration. From the OS/2 operating system, issue ICAT and select the Routing
Information menu. From DOS, issue IFCONFIG inet ip show to display the TCP/IP
configured routes.

4a If the host is running with OROUTED, verify the routes and networks defined in
the GATEWAYS file in the ETC subdirectory of TCPIP.

4b If there are any problems with the routes or networks, refer to OS/2 or DOS
documentation on correcting NETSTAT problems.

5 If there are no problems with the routes or networks, check for broken or
poorly-connected cables between the client and the remote host. This includes
checking the IP interfaces (token ring and Ethernet) on the 374x communications
controller.

6 Make sure that there is a channel connection between the 374x communications
controller and the MVS host. A channel connection can be interrupted by an
Automatic Network Shutdown (ANS) situation. ANS can occur when the system
operator puts the MVS console into CP mode. In this case, the system operator
will need to return to MVS from CP to recover from ANS.

7 For more information about diagnosing network connectivity problems, refer to
“Chapter 4. Diagnosing Network Connectivity Problems” on page 25.

8 For more information about diagnosing PING problems, refer to “Using PING and
oping” on page 29.

9 For more information about diagnosing PING time-outs, refer to “Correcting
Timeout Problems” on page 30.

Incorrect Output
Problems with incorrect output are reported when the data sent to the client is not
seen in its expected form. This could be incorrect TCTIP output, incorrect SNALINK
LU0 output, RIP commands that are not valid, incorrect RIP broadcasting
information, incorrect updates of routing tables, truncation of packets, or incorrect
SNMP agent or client output.

458 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Documentation
The following documentation should be available for initial diagnosis of incorrect
output:
v NCPROUTE cataloged procedure
v Documentation for NCPROUTE incorrect output

– NCPROUTE console log
– NCPROUTE.PROFILE data set
– NCP client network definitions data set (NCP generation)

v Documentation for TCPIP incorrect output
– TCP/IP console log
– hlq.TCPIP. PROFILE data set
– hlq.TCPIP.DATA data set

v Documentation for SNMP agent incorrect output
– SNMP console logs for SNMP agent and client
– hlq.MIBDESC.DATA data set
– hlq
– hlq.PW.SRC data set
– NetView log (if SNMP client is on an MVS host)

Analysis
Table 40 shows types of incorrect output and refers to the steps needed for initial
diagnosis of the error.

Table 40. NCPROUTE Incorrect Output

Incorrect Output Analysis Steps

TCP/IP incorrect output 1

SNALINK LU0 incorrect output 2

NCPROUTE incorrect output 3

SNMP agent or client incorrect output 4

Table 41 gives the diagnostic steps referred to in Table 40.

Table 41. Diagnostic Steps for NCPROUTE Incorrect Output

Step Action

1 If the TCP/IP console shows a message, refer to OS/390 IBM Communications
Server: IP Messages Volume 2 (EZB) and follow the directions for system
programmer response for the message.

1a Information in the TCP/IP console log should contain a detailed description of the
error.

1b In the event of TCP/IP loops or hangs, refer to Chapter 3. Diagnosing Abends,
Loops, and Hangs.

3 If the NCPROUTE console shows a message, refer to OS/390 IBM
Communications Server: IP Messages Volume 2 (EZB) and follow the directions
for system programmer response for the message.

4 If the SNMP agent or client console shows a message, refer to OS/390 IBM
Communications Server: IP Messages Volume 2 (EZB) and follow the directions
for system programmer response for the message.

4a For more information about diagnosing SNMP problems, refer to “Chapter 20.
Diagnosing Simple Network Management Protocol (SNMP) Problems” on
page 333.

Chapter 26. Diagnosing NCPROUTE Problems 459

Session Outages
Session outages are reported as an unexpected termination of the TCP/IP
connection, the SNALINK LU0 task, the NCPROUTE-to-NCP client session, or the
NCPROUTE-to-SNMP agent connection. A session that has been disconnected or
ended will result in NCPROUTE being returned to the initial state of waiting for
Hello PDUs and SNMP requests from an NCP client.

Documentation
The following documentation should be available for initial diagnosis of session
outages:
v Documentation for TCP/IP session outage

– TCP/IP console log
v Documentation for SNALINK LU0 session outage

– SNALINK LU0 console log
– VTAM console log

v Documentation for NCPROUTE-to-NCP client session outage
– NCPROUTE cataloged procedure
– NCPROUTE console log
– NCP client network definitions data set (NCP generation)

v Documentation for NCPROUTE-to-SNMP agent session outage
– SNMP console log for SNMP agent
– NetView log (if the SNMP client is on the MVS host)

Analysis
Table 42 shows symptoms of session outages and refers to the steps needed for
initial diagnosis of the error.

Table 42. NCPROUTE Session Outages

Session Outage Analysis Steps

TCP/IP session outage 1

SNALINK LU0 session outage 2

NCPROUTE-to-NCP client session outage 3

NCPROUTE-to-SNMP agent session outage 4

Table 43 gives the diagnostic steps referred to in Table 42.

Table 43. Diagnostic Steps for NCPROUTE Session Outages

Step Action

1 If the TCP/IP console shows a TCP/IP error message, refer to OS/390 IBM
Communications Server: IP Messages Volume 2 (EZB) and follow the directions
for system programmer response for the message.

1b If TCP/IP abended, refer to Chapter 3. Diagnosing Abends, Loops, and Hangs.

3 If the NCPROUTE console shows an NCPROUTE error message, refer to
OS/390 IBM Communications Server: IP Messages Volume 2 (EZB) and follow
the directions for system programmer response for the message.

4 If the SNMP agent console shows a SNMP error message, refer to OS/390 IBM
Communications Server: IP Messages Volume 2 (EZB) and follow the directions
for system programmer response for the message.

4a For more information about diagnosing SNMP problems, refer to “Chapter 20.
Diagnosing Simple Network Management Protocol (SNMP) Problems” on
page 333.

460 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

NCPROUTE Traces
There are many TCP/IP traces that can be useful in identifying the cause of
NCPROUTE problems. This section discusses the NCPROUTE traces.

Note: NCPROUTE trace output is sent to the location specified by the SYSPRINT
DD statement in the NCPROUTE cataloged procedure.

Activating NCPROUTE Global Traces
The NCPROUTE global traces are all controlled by parameters on PARMS= in the
PROC statement of the NCPROUTE cataloged procedure. (Global tracing means
that all NCP clients will be traced.)

For example:
//NCPROUT PROC MODULE=NCPROUTE,PARMS='/-t -t'

Note: These parameters are also valid when starting the NCPROUTE server with
the START command.

The NCPROUTE parameters that control global tracing are:

-t Activates global tracing of actions for all NCP clients.

-t -t Activates global tracing of packets for all NCP clients. NCPROUTE tracing
can be started and stopped using the MODIFY command. For more
information, refer to OS/390 IBM Communications Server: IP Configuration
Reference.

-tq Deactivate tracing at all levels. This parameter suppresses tracing for all
NCP clients and overrides the trace settings on the GATEWAY statements
in the NCPROUTE GATEWAYS data set.

-dp Activates global tracing of data packets coming in and out of NCPROUTE.
The data is displayed in data format.

Notes:

1. A slash (/) must precede the first parameter.

2. Each parameter must be separated by a blank.

3. Mixed case is allowed for the parameters.

4. The parameters for the NCPROUTE procedure are case-sensitive.

5. There are no third- or fourth-level global tracing options like those on the
GATEWAY statements in the NCPROUTE GATEWAYS data set. The system will
use the higher of the two settings for a specific NCP client.

6. The data packets trace option is not available for selective tracing.

7. The parameters described here are only those that activate tracing. Refer to
OS/390 IBM Communications Server: IP Configuration Reference for more
information about all of the NCPROUTE parameters.

Activating NCPROUTE Selective Traces
The NCPROUTE selective traces are all activated as trace options specified in the
OPTIONS statement for an NCP client in the NCPROUTE GATEWAYS data set.
Selective tracing means a different trace level can be specified for each NCP client.
To assist in problem isolation, a particular NCP client can be selected for tracing.

Chapter 26. Diagnosing NCPROUTE Problems 461

The keyword on the OPTIONS statement that control selective tracing for an NCP
client are is trace.level. The value that follows this keyword indicates the trace
level to be used.

Value Meaning

0 Do not activate any traces.

1 Activates tracing of actions by the NCPROUTE server.

2 Activates tracing of all packets sent or received.

3 Activates tracing of actions, packetssent or received, and packet history.
Circular trace buffers are used for each interface to record the history of all
packets traced. This history is included in the trace output whenever an
interface becomes inactive.

4 Activates tracing of actions, packets sent or received, packet history, and
packet contents. The RIP network routing information is included in the
trace output.

Notes:

1. The selective traces must be defined prior to activation of an NCP client or prior
to starting the NCPROUTE cataloged procedure.

2. Refer to OS/390 IBM Communications Server: IP Configuration Reference for
more information about the GATEWAYS data set and the GATEWAY and
OPTIONS statements.

For example, the following command would activate tracing of actions, packets sent
or received, packet history, and packet contents:
options trace.level 4

NCPROUTE Trace Example and Explanation
Figure 71 on page 463 shows an example of an NCPROUTE trace with actions,
packets, history, and contents traced. The trace was generated with trace level 4
specified in the OPTIONS statement and PARMS='/-t -t -dp' in the PROC
statement of the NCPROUTE cataloged procedure.

The trace level column does not appear in the actual trace. It was added to the
example to indicate the levels of the trace for which the line will be generated. For
example, including: trace.level 3 on the options statement NCP client GATEWAYS
data set would result in a level 3 trace and all the lines indicated as trace level 1, 2,
or 3 would be generated in the trace output. Lines indicated as trace level d are
generated if the -dp parameter is specified.

462 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Trace
level
0 �1�15:29:48 EZB3826I Port 580 assigned to ncprout
0 15:29:49 EZB3885I Input parameter(s): -t -t -dp
1 15:29:49 EZB4159I Global tracing actions started
2 15:29:49 EZB4160I Global tracing packets started
0 15:29:49 EZB3834I **
0 �2�15:29:49 EZB4196I * Opening NCPROUTE profile dataset (DD:NCPRPROF)
0 15:29:49 EZB3834I **
0 �3�15:29:49 EZB4055I ** Attempting to (re)start SNMP connection
0 15:29:49 EZB4059I Connecting to agent 9.67.116.66 on DPI port 1141
0 15:29:49 EZB4062I SNMP DPI connection established
0 15:29:50 EZB4064I 1.3.6.1.4.1.2.6.17. registered with SNMP agent0
1 15:29:50 EZB3829I Waiting for incoming packets
d �4�=============== Received datagram from NCP client (length=32)
d 0000 0100 0000 c1f0 f4d5
d 0008 f7f1 f1d7 f0f5 61f0
d 0010 f661 f9f4 40f1 f07a
d 0018 f1f0 7af4 f200 0000
d 0020(32)
0 15:29:51 EZB3834I **
0 15:29:51 EZB3876I * Hello from new client 9.67.116.65
0 15:29:51 EZB3877I * RIT dataset name: A04N711P
0 15:29:51 EZB3878I * RIT ID: 05/06/94 10:10:42
0 15:29:51 EZB3834I **
0 15:29:51 EZB3867I Acknowledge to 9.67.116.65: Hello Received
0 15:29:51 EZB3999I Establishing session with client 9.67.116.65
0 15:29:51 EZB3868I Acknowledge to 9.67.116.65: RIT Loaded OK
0 15:29:51 EZB4166I Session with client 9.67.116.65 started
1 15:29:51 EZB3829I Waiting for incoming packets
1 =============== Received datagram from NCP client (length=8)
d 0000 0800 0000 0a44 005c
d 0008(8)
0 15:29:51 EZB3834I **
0 �5�15:29:51 EZB3898I * Recv: Inactive Interface List from 9.67.116.65
0 * 1 interface(s) found:
0 15:29:51 EZB3899I * 10.68.0.92 - TR92
0 15:29:51 EZB3834I **
0 15:29:51 EZB3834I **
0 �6�15:29:51 EZB3956I * Processing interface NCSTALU1
0 15:29:51 EZB3834I **
0 15:29:51 EZB3959I Point-to-point interface, using dstaddr
0 15:29:51 EZB3962I Adding (sub)network address for interface
1 15:29:51 EZB3912I ifwithnet: compare with NCSTALU1
1 15:29:51 EZB3915I netmatch 9.67.116.65 and 9.67.116.65
1 15:29:51 EZB4029I Tue Jun 28 15:29:51:
1 �7�15:29:52 EZB4030I ADD destination 9.67.116.66, router 9.67.116.66, metric 1
1 flags UP|HOST state INTERFACE|CHANGED|INTERNAL|PERM|SUBNET timer 0

Figure 71. NCPROUTE Trace (Part 1 of 10)

Chapter 26. Diagnosing NCPROUTE Problems 463

0 15:29:52 EZB3834I **
0 15:29:52 EZB3956I * Processing interface TR88
0 15:29:52 EZB3834I **
0 15:29:52 EZB3960I This interface is not point-to-point
0 15:29:52 EZB3962I Adding (sub)network address for interface
1 15:29:52 EZB3912I ifwithnet: compare with NCSTALU1
1 15:29:52 EZB3912I ifwithnet: compare with TR88
1 15:29:52 EZB3915I netmatch 10.68.0.88 and 10.68.0.88
1 15:29:52 EZB4030I ADD destination 10.0.0.0, router 10.68.0.88, metric 1
1 flags UP state INTERFACE|CHANGED|INTERNAL|SUBNET|PERM timer 0
1 15:29:52 EZB3912I ifwithnet: compare with NCSTALU1
1 15:29:52 EZB3912I ifwithnet: compare with TR88
1 15:29:52 EZB3915I netmatch 10.68.0.88 and 10.68.0.88
1 15:29:52 EZB4030I ADD destination 10.68.0.0, router 10.68.0.0, metric 1
1 flags UP state INTERFACE|CHANGED|SUBNET|PERM timer 0
0 15:29:52 EZB3834I **
0 15:29:52 EZB3956I * Processing interface TR92
0 15:29:52 EZB3834I **
0 15:29:52 EZB3960I This interface is not point-to-point
0 15:29:52 EZB3948I Interface TR92 not up
0 15:29:52 EZB3834I **
0 �8�15:29:52 EZB3973I * Opening GATEWAYS dataset for client 9.67.116.65
0 * 'TCPCS.NCPROUTE.GATEWAYS(A04N711P)'
0 15:29:52 EZB3834I **
0 15:29:52 EZB3968I Start of GATEWAYS processing:
0 15:29:52 EZB4195I Option(s): trace.level 4 supply on default.router no
1 15:29:52 EZB4015I Client tracing actions started
2 15:29:52 EZB4016I Client tracing packets started
3 15:29:52 EZB4017I Client tracing history started
4 15:29:52 EZB4018I Client tracing packet contents started
0 15:29:52 EZB4198I (no etc.gateway definitions)
0 15:29:52 EZB4150I End of GATEWAYS processing
1 15:29:52 EZB3829I Waiting for incoming packets
d �9�=============== Received datagram from NCP client (length=80)
d �10�0000 0700 0000 9200 004a

0008 4500 0048 09c0 0000
d 0010 3c11 79dc 0943 7442
d 0018 0943 7441 0208 0208
d 0020 0034 079e 0201 0000
d 0028 0002 0000 0943 7441
d 0030 0000 0000 0000 0000
d 0038 0000 0001 0002 0000
d 0040 0943 7000 0000 0000
d 0048 0000 0000 0000 0001
d 0050(80)
d =============== Transport PDU header (length=8)
d 0000 0700 0000 9200 004a
d 0008(8)
d =============== IP header (length=20)
d 0000 4500 0048 09c0 0000
d 0008 3c11 79dc 0943 7442
d 0010 0943 7441 8002 c12c
d 0018(24)

Figure 71. NCPROUTE Trace (Part 2 of 10)

464 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

d =============== UDP header (length=8)
d 0000 0208 0208 0034 079e
d 0008(8)
d =============== UDP data (length=44)
d 0000 0201 0000 0002 0000
d 0008 0943 7441 0000 0000
d 0010 0000 0000 0000 0001
d 0018 0002 0000 0943 7000
d 0020 0000 0000 0000 0000
d 0028 0000 0001 0001 6e68
d 0030(48)
1 �11�15:30:04 EZB3894I Transport from 9.67.116.65: 44 bytes of RIP data
2 15:30:04 EZB4045I RESPONSE from 9.67.116.66 -> 520:
d �12�=============== RIP net info (length=20)
d 0000 0002 0000 0943 7441
d 0008 0000 0000 0000 0000
d 0010 0000 0001 8002 c12c
d 0018(24)
4 15:30:04 EZB4049I destination 9.67.116.65 metric 1
d =============== RIP net info (length=20)
d 0000 0002 0000 0943 7000
d 0008 0000 0000 0000 0000
d 0010 0000 0001 8002 c12c
4 0018(24)
1 15:30:04 EZB4049I destination 9.67.112.0 metric 1
1 15:30:04 EZB4029I Tue Jun 28 15:30:04:
1 �13�15:30:04 EZB4030I ADD destination 9.67.112.0, router 9.67.116.66, metric 2
1 flags UP|GATEWAY state CHANGED|SUBNET timer 0
1 �14�15:30:04 EZB3855I NCP_Add out to 9.67.116.65
1 Route to: 9.67.112.0 via interface 9.67.116.65 to 9.67.116.66
1 Metric: 2, Type Subnet
1 15:30:04 EZB3829I Waiting for incoming packets
1 �15�15:30:20 EZB4011I client 9.67.116.65: 30 second timer expired (broadcast)
1 15:30:20 EZB3951I client 9.67.116.65: supply 9.67.116.66 -> 0 via NCSTALU1
4 �16�15:30:20 EZB4045I RESPONSE to 9.67.116.66 -> 0:
d =============== RIP net info (length=20)
d 0000 0002 0000 0943 7442
d 0008 0000 0000 0000 0000
d 0010 0000 0001 8002 c12c
d 0018(24)
4 15:30:20 EZB4049I destination 9.67.116.66 metric 1
d =============== RIP net info (length=20)
d 0000 0002 0000 0a00 0000
d 0008 0000 0000 0000 0000
d 0010 0000 0001 8002 c12c
d 0018(24)
4 15:30:20 EZB4049I destination 10.0.0.0 metric 1
d =============== RIP net info (length=20)
d 0000 0002 0000 0943 7000
d 0008 0000 0000 0000 0000
d 0010 0000 0002 8002 c12c
d 0018(24)
4 15:30:20 EZB4049I destination 9.67.112.0 metric 2

Figure 71. NCPROUTE Trace (Part 3 of 10)

Chapter 26. Diagnosing NCPROUTE Problems 465

d =============== UDP data (length=64)
d 0000 0201 0000 0002 0000
d 0008 0943 7442 0000 0000
d 0010 0000 0000 0000 0001
d 0018 0002 0000 0a00 0000
d 0020 0000 0000 0000 0000
d 0028 0000 0001 0002 0000
d 0030 0943 7000 0000 0000
d 0038 0000 0000 0000 0002
d 0040(64)
d =============== UDP header (length=8)
d 0000 0208 0208 0048 fd70
d 0008(8)
d =============== IP header (length=20)
d 0000 4500 005c 0000 0000
d 0008 0411 bb88 0943 7441
d 0010 0943 7442 8002 c12c
d 0018(24)
d =============== Transport PDU header (length=8)
d 0000 0700 0000 0943 7441
d 0008(8)
d =============== Sending Transport PDU to NCP client (length=100)
d 0000 0700 0000 0943 7441
d 0008 4500 005c 0000 0000
d 0010 0411 bb88 0943 7441
d 0018 0943 7442 0208 0208
d 0020 0048 fd70 0201 0000
d 0028 0002 0000 0943 7442
d 0030 0000 0000 0000 0000
d 0038 0000 0001 0002 0000
d 0040 0a00 0000 0000 0000
d 0048 0000 0000 0000 0001
d 0050 0002 0000 0943 7000
d 0058 0000 0000 0000 0000
d 0060 0000 0002 0000 0001
d 0068(104)...
1 �17�15:30:20 EZB3948I Interface TR92 not up
1 15:30:20 EZB3829I Waiting for incoming packets

.
1 15:30:20 EZB3894I Transport from 9.67.116.65: 64 bytes of RIP data
2 15:30:20 EZB4045I RESPONSE from 10.68.0.88 -> 520:

.
4 15:30:20 EZB4049I destination 9.67.116.66 metric 1

.
4 15:30:20 EZB4049I destination 10.68.0.0 metric 1

.
4 15:30:20 EZB4049I destination 9.67.112.0 metric 2
1 15:30:20 EZB3829I Waiting for incoming packets

.

.

.

Figure 71. NCPROUTE Trace (Part 4 of 10)

466 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

1 15:30:34 EZB3829I Waiting for incoming packets
1 15:30:50 EZB4011I client 9.67.116.65: 30 second timer expired (broadcast)
1 15:30:50 EZB3951I client 9.67.116.65: supply 9.67.116.66 -> 0 via NCSTALU1
2 15:30:50 EZB4045I RESPONSE to 9.67.116.66 -> 0:

.
4 15:30:50 EZB4049I destination 9.67.116.66 metric 1

.
4 15:30:50 EZB4049I destination 10.0.0.0 metric 1

.
4 15:30:50 EZB4049I destination 9.67.112.0 metric 2

.
1 15:30:50 EZB3951I client 9.67.116.65: supply 10.68.15.255 -> 0 via TR88
2 15:30:50 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
4 15:30:50 EZB4049I destination 9.67.116.66 metric 1

.
4 15:30:50 EZB4049I destination 10.68.0.0 metric 1

.
4 15:30:50 EZB4049I destination 9.67.112.0 metric 2...
1 15:32:35 EZB3894I Transport from 9.67.116.65: 64 bytes of RIP data
2 15:32:35 EZB4045I RESPONSE from 9.67.116.66 -> 520:

.
4 15:32:35 EZB4049I destination 9.67.116.65 metric 1

.
4 15:32:35 EZB4049I destination 10.0.0.0 metric 2

.
4 15:32:35 EZB4049I destination 9.67.112.0 metric 16
1 15:32:35 EZB4029I Tue Jun 28 15:32:35:
1 �18�15:32:35 EZB4036I CHANGE metric destination 9.67.112.0, router 9.67.116.66, from 2 to 16

�19�15:32:35 EZB3862I NCP_Delete out to 9.67.116.65:
Route to 9.67.112.0, type = Subnet

1 15:32:35 EZB3943I Send dynamic update
1 15:32:35 EZB3950I toall: requested to skip interface NCSTALU1
1 15:32:35 EZB3951I client 9.67.116.65: supply 10.68.15.255 -> 0 via TR88
2 15:32:35 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
4 15:32:35 EZB4049I destination 9.67.112.0 metric 16

.
1 15:32:35 EZB3948I Interface TR92 not up
1 15:32:35 EZB3945I Inhibit dynamic update for 2017537 usec
1 15:32:35 EZB3829I Waiting for incoming packets

.
1 15:32:35 EZB3894I Transport from 9.67.116.65: 24 bytes of RIP data
1 15:32:35 EZB4045I RESPONSE from 10.68.0.88 -> 520:

.
4 15:32:35 EZB4049I destination 9.67.112.0 metric 16
1 15:32:35 EZB3829I Waiting for incoming packets

Figure 71. NCPROUTE Trace (Part 5 of 10)

Chapter 26. Diagnosing NCPROUTE Problems 467

1 15:32:50 EZB4011I client 9.67.116.65: 30 second timer expired (broadcast)
1 15:32:50 EZB3951I client 9.67.116.65: supply 9.67.116.66 -> 0 via NCSTALU1
2 15:32:50 EZB4045I RESPONSE to 9.67.116.66 -> 0:

.
4 15:32:50 EZB4049I destination 9.67.116.66 metric 1

.
4 15:32:50 EZB4049I destination 10.0.0.0 metric 1

.
4 15:32:50 EZB4049I destination 9.67.112.0 metric 16

15:32:50 EZB3951I client 9.67.116.65: supply 10.68.15.255 -> 0 via TR88
2 15:32:50 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
1 15:32:50 EZB3948I Interface TR92 not up
1 15:32:50 EZB3829I Waiting for incoming packets...
1 15:36:15 EZB3829I Waiting for incoming packets
1 �20�15:36:39 EZB4009I client 9.67.116.65: 5 minute timer expired for route to 9.67.112.0
1 15:36:39 EZB4029I Tue Jun 28 15:36:39:
1 �21�15:36:39 EZB4030I DELETE destination 9.67.112.0, router 9.67.116.66, metric 16
1 flags UP|GATEWAY state SUBNET timer 300
1 15:36:39 EZB4011I client 9.67.116.65: 30 second timer expired (broadcast)
1 15:36:39 EZB3951I client 9.67.116.65: supply 9.67.116.66 -> 0 via NCSTALU1
2 15:36:39 EZB4045I RESPONSE to 9.67.116.66 -> 0:

.
4 15:36:39 EZB4049I destination 9.67.116.66 metric 1

.
4 15:36:39 EZB4049I destination 10.0.0.0 metric 1

.
1 15:36:39 EZB3951I client 9.67.116.65: supply 10.68.15.255 -> 0 via TR88
2 15:36:39 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
4 15:36:39 EZB4049I destination 9.67.116.66 metric 1

.
4 15:36:39 EZB4049I destination 10.68.0.0 metric 1...
1 �22�15:43:01 EZB3895I Transport from 9.67.116.65: 43 bytes of SNMP data
1 �23�15:43:01 EZB4182I SNMP request received from NCP client 9.67.116.65
d =============== Object data (length=13)
d 0000 2b06 0102 0104 1501
d 0008 0709 4374 4207 39f8
d 0010(16)
d =============== prefix + address (length=12)
d 0000 2b06 0104 0102 0611
d 0008 0943 7441 4207 39f8
d 0010(16)

Figure 71. NCPROUTE Trace (Part 6 of 10)

468 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

d =============== Inbound SNMP packet (post edit) (length=55)
d 0000 3035 0201 0004 0473
d 0008 6e6d 70a0 2a02 0115
d 0010 0201 0002 0100 301f
d 0018 301d 0619 2b06 0104
d 0020 0102 0611 0943 7441
d 0028 2b06 0102 0104 1501
d 0030 0709 4374 4205 0000
d 0038(56)
d =============== Sending SNMP request to agent (length=55)
d 0000 3035 0201 0004 0473
d 0008 6e6d 70a0 2a02 0115
d 0010 0201 0002 0100 301f
d 0018 301d 0619 2b06 0104
d 0020 0102 0611 0943 7441
d 0028 2b06 0102 0104 1501
d 0030 0709 4374 4205 00f3
d 0038(56)
1 15:43:01 EZB3829I Waiting for incoming packets
1 15:43:01 EZB4194I SNMP sub-agent received DPI request
d =============== Received DPI request from SNMP agent (length=69)
d 0000 0043 0201 0101 f14b
d 0008 f34b f64b f14b f44b
d 0010 f14b f24b f64b f1f7
d 0018 4bf9 4bf6 f74b f1f1
d 0020 f64b f6f5 4bf4 f34b
d 0028 f64b f14b f24b f14b
d 0030 f44b f2f1 4bf1 4bf7
d 0038 4bf9 4bf6 f74b f1f1
d 0040 f64b f6f6 0007 2b30
d 0048(72)
1 15:43:01 EZB4072I SNMP sub-agent:DPI GET request

(1.3.6.1.4.1.2.6.17.9.67.116.65.43.6.1.2.1.4.21.1.7.9.67.116.66) received
1 15:43:01 EZB4083I iproutenexthop.9.67.116.66
d =============== Sending DPI response to SNMP agent (length=77)
d 0000 004b 0201 0105 00f1
d 0008 4bf3 4bf6 4bf1 4bf4
d 0010 4bf1 4bf2 4bf6 4bf1
d 0018 f74b f94b f6f7 4bf1
d 0020 f1f6 4bf6 f54b f4f3
d 0028 4bf6 4bf1 4bf2 4bf1
d 0030 4bf4 4bf2 f14b f14b
d 0038 f74b f94b f6f7 4bf1
d 0040 f1f6 4bf6 f600 8500
d 0048 0409 4374 4149 5f3c
d 0050(80)
1 15:43:01 EZB3829I Waiting for incoming packets
1 15:43:01 EZB4068I SNMP response received from agent 9.67.116.66

Figure 71. NCPROUTE Trace (Part 7 of 10)

Chapter 26. Diagnosing NCPROUTE Problems 469

d =============== Received SNMP response from agent (length=59)
d 0000 3039 0201 0004 0473
d 0008 6e6d 70a2 2e02 0115
d 0010 0201 0002 0100 3023
d 0018 3021 0619 2b06 0104
d 0020 0102 0611 0943 7441
d 0028 2b06 0102 0104 1501
d 0030 0709 4374 4240 0409
d 0038 4374 4196 95a2 8540
d 0040(64)
d =============== Object data (length=25)
d 0000 2b06 0104 0102 0611
d 0008 0943 7441 2b06 0102
d 0010 0104 1501 0709 4374
d 0018 4240 2910 0000 0001
d 0020(32)
d =============== prefix + address (length=12)
d 0000 2b06 0104 0102 0611
d 0008 0943 7441 2b06 0102
d 0010(16)
d =============== Outbound SNMP packet (post edit) (length=47)
d 0000 302d 0201 0004 0473
d 0008 6e6d 70a2 2202 0115
d 0010 0201 0002 0100 3017
d 0018 3015 060d 2b06 0102
d 0020 0104 1501 0709 4374
d 0028 4240 0409 4374 4100
d 0030(48)
1 15:43:01 EZB4172I SNMP reply sent to NCP client 9.67.116.66
d =============== UDP data (length=47)
d 0000 302d 0201 0004 0473
d 0008 6e6d 70a2 2202 0115
d 0010 0201 0002 0100 3017
d 0018 3015 060d 2b06 0102
d 0020 0104 1501 0709 4374
d 0028 4240 0409 4374 4168
d 0030(48)
d =============== UDP header (length=8)
d 0000 00a1 040e 0037 ec9f
d 0008(8)
d =============== IP header (length=20)
d 0000 4500 004b 0034 0000
d 0008 0411 a18e 0a44 0058
d 0010 0a44 0001 8002 c12c
d 0018(24)
d =============== Transport PDU header (length=8)
d 0000 0700 0000 0a44 0058
d 0008(8)

Figure 71. NCPROUTE Trace (Part 8 of 10)

470 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

d =============== Sending Transport PDU to NCP client (length=84)
d 0000 0700 0000 0a44 0058
d 0008 4500 004b 0034 0000
d 0010 0411 a18e 0a44 0058
d 0018 0a44 0001 00a1 040e
d 0020 0037 ec9f 302d 0201
d 0028 0004 0473 6e6d 70a2
d 0030 2202 0115 0201 0002
d 0038 0100 3017 3015 060d
d 0040 2b06 0102 0104 1501
d 0048 0709 4374 4240 0409
d 0050 4374 4100 0007 3568
d 0058(88)
1 15:43:01 EZB3829I Waiting for incoming packets...
0 15:44:30 EZB3834I **
0 �24�15:44:30 EZB3890I * Recv: status from 9.67.116.65
0 15:44:30 EZB3891I * Interface: 10.68.0.88 is now inactive - TR88
0 15:44:30 EZB3834I **
3 �25�15:44:30 EZB4038I *** Packet history for interface TR88 ***
3 15:44:30 EZB4044I Output: trace:
3 15:44:30 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1

.
3 15:44:30 EZB4049I destination 9.67.112.0 metric 2
3 15:44:30 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1

.
3 15:44:30 EZB4049I destination 9.67.112.0 metric 2...
3 15:44:30 EZB4045I RESPONSE to 10.68.15.255 -> 0:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1
3 15:44:30 EZB4044I Input: trace:
3 15:44:30 EZB4045I RESPONSE from 10.68.0.88 -> 520:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1

.
3 15:44:30 EZB4049I destination 9.67.112.0 metric 2

Figure 71. NCPROUTE Trace (Part 9 of 10)

Chapter 26. Diagnosing NCPROUTE Problems 471

The following information explains the numbered items in the trace.

�1� The port number and the service name are defined as 580 and ncprout in
the hlq.ETC.SERVICES data set for this NCPROUTE server.

�2� NCPROUTE is processing the NCPROUTE.PROFILE definitions.

�3� NCPROUTE is establishing the connection with the SNMP agent defined in
NCPROUTE.PROFILE.

�4� The NCP client is starting the hand-shaking process with NCPROUTE.
NCPROUTE is establishing a session with the NCP client.

�5� NCPROUTE received a list of inactive interfaces from the NCP client.

�6� NCPROUTE is initializing its interface tables with interface information from
the NCP client.

�7� NCPROUTE is adding a route to its interface tables.

�8� NCPROUTE is processing the NCP client GATEWAYS data set. The trace
shows NCPROUTE server options and no additional gateway definitions.

�9� NCPROUTE received a transport datagram from the NCP client.

�10� The trace shows the contents of the datagram in hexadecimal followed by a
division of the datagram into its parts (transport PDU header, IP header,
UDP header, and UDP data).

�11� The trace shows that the NCP client 9.67.116.65 received the broadcasted
routing tables from adjacent router 9.67.116.66.

3 15:44:30 EZB4045I RESPONSE from 10.68.0.88 -> 520:
.

3 15:44:30 EZB4049I destination 9.67.116.66 metric 1
.

3 15:44:30 EZB4049I destination 10.68.0.0 metric 1
.

3 15:44:30 EZB4049I destination 9.67.112.0 metric 2
3 15:44:30 EZB4045I RESPONSE from 10.68.0.88 -> 520:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1

.
3 15:44:30 EZB4049I destination 9.67.112.0 metric 2...
3 15:44:30 EZB4045I RESPONSE from 10.68.0.88 -> 520:

.
3 15:44:30 EZB4049I destination 9.67.116.66 metric 1

.
3 15:44:30 EZB4049I destination 10.68.0.0 metric 1
3 15:44:30 EZB4039I *** End packet history ***

15:44:31 EZB3829I Waiting for incoming packets
.
.
.

1 15:44:41 EZB3948I Interface TR88 not up
1 15:44:41 EZB3948I Interface TR92 not up
1 15:44:41 EZB3829I Waiting for incoming packets

.

.

.

Figure 71. NCPROUTE Trace (Part 10 of 10)

472 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

�12� The UDP data in the datagram contains 2 routing table entries.

�13� NCPROUTE is adding a new route to its tables from the information
received in the transport datagram.

�14� NCPROUTE is issuing a request to the NCP client to add the route to its
tables.

�15� The NCP client 30-second timer has expired, so NCPROUTE will supply its
routing tables to other routers.

�16� NCPROUTE is responding to the request by sending its routing tables to
the requesting router for the NCP client.

�17� This line shows an inactive state for interface TR92.

�18� The NCP client 3-minute timer expired. The client was broadcast a network
unreachable route (in the range metric 16—infinite), so NCPROUTE will
update its routing tables for the NCP client.

�19� NCPROUTE is deleting the NCP client from its tables.

�20� The NCP client 5-minute timer has expired for the route to 9.67.112.0.

�21� NCPROUTE is deleting the route to 9.67.112.0 from its tables for the NCP
client.

�22� NCPR received a transport datagram from the SNMP client through NCP
client 9.67.116.65.

�23� NCPROUTE is processing the SNMP request.

�24� NCPROUTE has received a status notification from the NCP client. The
interface TR88 has become inactive.

�25� The packet history for the interface TR88 is included in the trace because
the interface has become inactive.

Chapter 26. Diagnosing NCPROUTE Problems 473

474 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 27. Diagnosing X.25 NPSI Problems

The X.25 NPSI server uses an X.25 network or point-to-point X.25 line to transfer
TCP/IP traffic. The X.25 NPSI server is a VTAM application running as a started
task. Either the NPSI Generalized Access to X.25 Transport Extension (GATE) or
Dedicated Access to X.25 Transport Extension (DATE) can be used. GATE is
recommended because it allows NPSI to handle more details of error recovery and
allows an X.25 physical link to be shared with other functions.

Details of the GATE and DATE programming interfaces are in X.25 NPSI Host
Programming, and further diagnostic information is in X.25 NPSI Diagnosis,
Customization, and Tuning. Specifications for carriage of IP traffic on X.25 networks
can be found in:

RFC 877
A Standard for the Transmission of IP Datagrams Over Public Data
Networks

X25.DOC
Old DDN X.25 specifications from BBN (available by anonymous FTP from
nic.ddn.mil in directory netinfo)

RFC 1236
IP to X.121 Address Mapping for DDN

RFC 1356
Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode

Figure 72 on page 476 shows the X.25 NPSI environment.

© Copyright IBM Corp. 1994, 2000 475

Operation
The X.25 NPSI server uses NPSI to set up X.25 virtual circuits as needed to carry
traffic to and from remote X.25 equipment. The three main functional areas shown
in Figure 72 are:
v TCP/IP interface
v NPSI interface
v IP/X.25 address mapping

IP datagrams are transferred between TCPIP and the X.25 NPSI server on an DLC
path established when a TCPIP X25NPSI device is started. The transfer protocol is
similar to that used with SNALINK, with the addition of a first-hop IP address
passed by TCPIP from the relevant GATEWAY entry. The X.25 NPSI server uses
the first hop IP address to look up an X.25 address in its destination table.

Communication with NPSI is by way of several SNA sessions. One control session
is established at initialization for each MCH LU defined in a LINK statement in the
X.25 NPSI server configuration data set. Commands to establish and terminate

TCPIP

TCPIPX25

Send queue

DLC PATH

DEST/LINK
Lookup

VC Selection Buffer
Pool

Calls
& Clears

SNA
Sessions

IP Datagrams

Calls
& Clears

MCH

Send
Queue

VC

Send
Queue

VC VC VC

Send
Queue

VTAM

NCP
MCH LU VC LU VC LU VC LU VC LU

NPSI X.25
Network

Remote
X.25 TCP/IP
Equipment

X.25 Physical Link (MCH)

Virtual
Circuits

Figure 72. X.25 NPSI Environment

476 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

X.25 virtual circuit connections pass between the X.25 NPSI server and NPSI on
the control session. Refer to X.25 NPSI Host Programming for details of the control
commands. As new virtual circuits are established, NPSI initiates new SNA sessions
with the X.25 NPSI server application by means of VTAM LOGON. IP datagrams
are then exchanged with the remote equipment over the VC session until an idle
timeout occurs or the VC is taken for another destination.

IP addresses are mapped to X.25 addresses by table lookup, or in the case of the
DDN network, by a calculation described in RFC 1236. The X.25 NPSI server
performs the lookup with the first-hop IP address on each datagram it receives from
TCPIP. The LINK and DEST entries defined in the X.25 NPSI server configuration
data set are scanned in order from top to bottom to find a DEST with a matching IP
address. Once the DEST is found, the link it applies to is selected to carry the
datagram, and the active virtual circuits on that link are scanned to find one with an
X.25 address which matches the DEST. If such a VC is found, the datagram is
queued for transmission on that VC; if none is found and there is a free VC, a new
X.25 call is initiated; if all VCs on the link are in use, the least recently used
connection is cleared, as long as it has been open for at least the minimum open
time, and a new call is initiated. If no VC matches, these conditions the datagram is
discarded.

Configuration Requirements
The next two sections describe VTAM and NPSI configuration considerations.

VTAM Considerations
v APPL definition

The X.25 NPSI server requires AUTH=(ACQ) and PARSESS=YES in the VTAM
APPL definition.

v SWNET definition for switched circuits

– The value specified for MAXDATA for the PU must be at least 10 bytes
greater than the value specified for the maximum packet size on the
BUFFERS statement in the X.25 NPSI server configuration data set.

– SSCPFM=USSNTO and DISCNT=(YES,F) are necessary.

NPSI Considerations
v BUILD definition

The value specified for X25.MAXPIU must be at least 10 bytes greater than the
value specified for the maximum packet size on the BUFFERS statement in the
X.25 NPSI server configuration data set.

v X25.MCH definition
– LOGAPPL can be coded for recovery.
– TRAN=NO is required with GATE=DEDICAT.

v X25.VC definition
– Permanent virtual circuits (PVCs) are not supported.
– Do not code LOGAPPL except with CONNECT=YES (Fast connect).
– Do not code MAXDATA except with CONNECT=YES (Fast connect).

v X25.OUFT definition

X.25 facilities specified with X25.OUFT are not used by the X.25 NPSI server.

Chapter 27. Diagnosing X.25 NPSI Problems 477

Sources of Diagnostic Information
Many problems with the X.25 NPSI server turn out to be configuration faults.
Configuration files to check are:
v DEVICE, LINK, and GATEWAY entries in PROFILE.TCPIP
v The X.25 NPSI server configuration data set
v VTAM APPL definition for the X.25 NPSI server
v NPSI definitions
v VTAM SWNET definitions for NPSI

The primary diagnostic information source is the activity log produced by the X.25
NPSI server. Messages appear in the MVS system log, and can also be captured
into a separate data set by including a SYSPRINT DD statement in the X.25 NPSI
cataloged procedure. Normal logging records virtual circuit establishment and
termination.

Additional information can be recorded about VC activity by setting the TRACE
CONTROL option in the X.25 NPSI server configuration data set. This level is
sufficient for almost all problem situations; interpretation of the data requires
knowledge of X.25 NPSI packet formats. Tracing of the contents of IP datagrams
sent to and received from NPSI is provided by the MVS CTRACE option. For
details on using the CTRACE option, see “Chapter 5. TCP/IP Services Traces and
IPCS Support” on page 47.

VTAM buffer traces and NPSI X.25 line traces can also be useful in diagnosing
difficult problem situations.

The IP packet trace facility can be used to trace the flow of IP packets. It is useful
when tracking the cause of packet loss or corruption. See “Chapter 5. TCP/IP
Services Traces and IPCS Support” on page 47, for details about how to use the IP
packet trace facility.

X.25 Trace Examples
The message severity codes (last position of the message ID) are:
I Information (including trace)
W Warning
E Recoverable error
S Recoverable error
T Irrecoverable error

The following example shows normal initialization:
EZB2111I VTAM ACB X25IPI1 opened succesfully
EZB2210I MCH XU038 packet level ready
EZB2451I IP AS path accepted for jobname TCPIPTES

Initialization has four main steps:
1. The configuration file is read and processed.
2. VTAM control blocks are initialized (EZB2111I).
3. NPSI physical links (MCHs) configured by LINK statements are initialized

(EZB2210I).
4. TCPIP establishes an IUCV path to the X.25 NPSI server (EZB2451I).

Normal Incoming Call, TRACE OFF
The following example illustrates a normal incoming call with TRACE OFF:

478 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

EZB2301I VC F001XU038 incoming call from 00000039 user data CC
EZB2325I VC F001XU038 facilities: pkt1024.
EZB2320I VC F001XU038 NPSI logon LU VL038001
EZB2330I VC F001XU038 call complete

...some time later...
EZB2350I VC F001XU038 call cleared, cause=00 diagnostic=C5
EZB2351I VC F001XU038 connection terminated for 00000039: sent 1 received
1 dropped 0
EZB2352I VC 010 closed

Points to note:

v The VC identifier F001XU038 ties together the events associated with a single
virtual circuit. Messages for one VC will usually be mingled with messages for
other VCs.

v The X.25 address originating the call (00000039) is reported in the EZB2301I
message.

v X.25 calls can optionally request facilities to be applied, such as window size,
packet size, throughput class, and reverse charging. These are reported in the
EZB2325I message.

v EZB2330I “call complete” indicates the virtual circuit is ready for transferring
TCP/IP data.

v An X.25 call can be closed by the originator, the acceptor, or the X.25 network.
The cause and diagnostic codes in the EZB2350I message indicate the reason.
In the example, cause=00 indicates the originator has closed the connection.
Lists of cause and diagnostic codes can be found in X.25 NPSI Diagnosis,
Customization, and Tuning.

v EZB2351I reports the number of IP datagrams transferred on the virtual circuit.

v After the EZB2352I “closed” message is issued, the virtual circuit is ready for
reuse by another incoming call or to originate a new call.

Normal Incoming Call, TRACE DATA
The following example illustrates a normal incoming call with TRACE DATA:
EZB2230I MCH XU038 packet received (length=17)
EZB2000I 0000 .0.h............ 0BF00188 00000038 00000039 03420A0A
EZB2000I 0010 . CC
EZB2301I VC F001XU038 incoming call from 00000039 user data CC
EZB2325I VC F001XU038 facilities: pkt1024.
EZB2302I VC F001XU038 call accept packet sent (length=6)
EZB2000I 0000 .0.... 0FF00102 0400
EZB2320I VC F001XU038 NPSI logon LU VL038001
EZB2330I VC F001XU038 call complete

EZB2332I VC F001XU038 data received (length=276)
EZB2000I 0000 E.......<.....}& 45000114 00100000 3C017F82 820FFD26
EZB2000I 0010 ..}...*k.:wxr-(. 820FFD11 0800AA6B 00BAF778 72ADA88E
EZB2000I 0020 0}.f9kq.,.PF;._n 307D0C66 B96BF118 AC085046 3B83DF6E

....data omitted for brevity...
EZB2000I 0110 =_3. BD5F339D
EZB2331I VC F001XU038 data sent (length=277)
EZB2000I 0000 .E.......<.....} 00450001 14001000 003C017F 82820FFD
EZB2000I 0010 ...}&;.2k.:wxr-(11820FFD 260000B2 6B00BAF7 7872ADA8
EZB2000I 0020 .0}.f9kq.,.PF;._ 8E307D0C 66B96BF1 18AC0850 463B83DF

....data omitted for brevity...
EZB2000I 0110 _=_3. 5FBD5F33 9D

EZB2336I VC F001XU038 inactivity timer expired
EZB2353I VC F001XU038 clear request packet sent (length=5)
EZB2000I 0000 00011300 00
EZB2365I VC F001XU038 clear sent

Chapter 27. Diagnosing X.25 NPSI Problems 479

EZB2333I VC F001XU038 packet received (length=1)
EZB2000I 0000 . 17
EZB2358I VC F001XU038 clear confirmed
EZB2351I VC F001XU038 connection terminated for 00000039: sent 1

received 1 dropped 0
EZB2352I VC 010 closed

TRACE DATA can be used to record the full contents of IP datagrams as they pass
through the X.25 NPSI server. The IP header begins at byte 45 (X'2D') within the IP
packet. A reduced trace given by TRACE CONTROL shows only the X.25 control
packets (call request, call accept, clear request, and clear confirm). Refer to X.25
NPSI Host Programming for the detailed packet formats.

Normal Outgoing Call, TRACE CONTROL
The following example illustrates a normal outgoing call with TRACE CONTROL:
EZB2310I VC F810XU038 outgoing call to 00000039
EZB2311I VC F810XU038 call request packet sent (length=20)
EZB2000I 0000h......... 0B081002 04008800 00003900 00003803
EZB2000I 0010 420A0ACC
EZB2230I MCH XU038 packet received (length=5)
EZB2000I 0000 ...0. 0F0810F0 01
EZB2314I VC 0810XU038 call accepted by user data
EZB2320I VC 0810XU038 NPSI logon LU VL038001
EZB2330I VC 0810XU038 call complete

EZB2336I VC 0810XU038 inactivity timer expired
EZB2353I VC 0810XU038 clear request packet sent (length=5)
EZB2000I 0000 00011300 00
EZB2365I VC 0810XU038 clear sent
EZB2333I VC 0810XU038 packet received (length=1)
EZB2000I 0000 . 17
EZB2358I VC 0810XU038 clear confirmed
EZB2351I VC 0810XU038 connection terminated for 00000039: sent 5

received 5 dropped 0
EZB2352I VC 010 closed

The steps involved in outgoing and incoming calls are similar. One important
difference is that the virtual circuit identifier changes when the call is accepted
(compare the EZB2311I and EZB2314I messages). This is related to the details of
the NPSI programming interface.

X.25 experts should note that some X.25 packets do not appear in the trace
because they are generated by NPSI without the direct involvement of the host
application. Clear confirm is one example. Also, the sequence of events during
closing can vary slightly in normal operation, and in some instances, benign VTAM
request failures can be reported with message EZB2411E.

Results of LIST Command
The following example illustrates the results of the LIST command:
EZB2020R MCH XU038 state 1050
EZB2021R VC 010 LU VL038001 DTE 00000039 state 4050
EZB2021R VC 00F LU DTE state 1010

...
EZB2021R VC 001 LU DTE state 1010
EZB2022R IP AS TCPIPTES state 80

The LIST command is useful to get a snapshot of virtual circuit status. This example
shows a normal status with one active VC (state 4050). VC state 1010 indicates
ready but not in use. With the NPSI fast connect feature, the normal idle state is

480 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

1050. Other intermediate states can appear while an X.25 call or clear is in
progress. The codes are listed in OS/390 IBM Communications Server: IP
Messages Volume 1 (EZA) .

The status of the IUCV path to TCPIP is shown in the last line; 80 is normal;
zero-zero (00) indicates that the TCPIP X25 NPSI device has not been started.

Termination by TCPIP STOP Device
The following examples illustrates termination using the TCPIP STOP device:
EZB2091I HALT notice accepted, type 0
EZB2250I MCH XU038 terminating
EZB2352I VC 010 closed
EZB2352I VC 00F closed

...
EZB2352I VC 001 closed
EZB2480I IP AS TCPIPTES disconnected: sent 7 received 7 dropped 0
EZB2090I Terminating
EZB2099I Ended

EZB2480I reports the number of IP datagrams transferred on the IUCV path for
TCPIP.

Logon Problems
Several steps must take place successfully to establish an X.25 virtual circuit for
TCP/IP activity:

1. An X.25 call request is received by the X.25 NPSI server from the X.25 network
(incoming call) or is sent by the X.25 NPSI server to establish a connection to a
new destination (outgoing call).

2. An X.25 call accept confirms the X.25 call request. Call accept is sent by
TCPIPX25 for an incoming call, or received from the X.25 network for an
outgoing call.

3. NPSI initiates an SNA session with the X.25 NPSI server application by means
of a VTAM LOGON.

Each of these steps is reported in the activity log, shown in the “X.25 Trace
Examples” on page 478. Problems fall into two main areas: failure of the X.25 call
itself indicated by either a refusal or an immediate clear or failure of the NPSI
LOGON. Call failures are be reported with X.25 cause and diagnostic codes.
Standardized cause codes include:

Code Meaning

00 DTE clearing. The remote system cleared the call.

01 Number busy. The called number cannot accept another call.

03 Invalid facility request. A facility requested by the caller is not subscribed or
conflicts with a subscribed option.

05 Network congestion. Congestion conditions or some other problem within
the network temporarily prevent the requested virtual circuit from being
established.

09 Out of order. The called number is out of order.

0B Access barred. The caller is not permitted to obtain a connection to the
called number.

0D Not obtainable. The called number is not assigned or is no longer assigned.

Chapter 27. Diagnosing X.25 NPSI Problems 481

11 Remote procedure error. An X.25 protocol error at the remote equipment.

13 Local procedure error. An X.25 protocol error.

Refer to X.25 NPSI Diagnosis, Customization, and Tuning for a list of diagnostic
codes. X.25 networks can also have special diagnostic codes in the range 80–FF.

VC LOGON can fail for a variety of reasons. Among the most common reasons are:

v Incorrect VTAM switched circuit definitions. IDNUM entries are error prone;
SSCPFM=USSNTO and DISCNT=(YES,F) are necessary.

v A default VTAM USS table ISTINCDT that has been modified to include text in
the message 10 entry.

v Coding LOGAPPL on the NPSI X25.VC definitions. LOGAPPL should only be
used on the X25.MCH and on the X25.VC with the Fast Connect feature.

v Insufficient number of type 1 LUs configured on the NCP LUDRPOOL statement.

A VTAM buffer trace with ID=VTAM will help diagnose the first problem. Collect the
following configuration documentation before contacting the IBM Software Support
Center. X.25 NPSI server configuration data set, VTAM APPL definition for the NPSI
X.25 server, NPSI definitions, and VTAM SWNET definitions for NPSI.

Session Hangs
In diagnosing session hang or timeout problems, remember that TCPIPX25 does
not track individual TCP sessions—it only transfers IP datagrams. One X.25 virtual
circuit can carry datagrams from several TCP sessions. A VC can also be closed
and reestablished several times during a TCP session with long periods of inactivity.
Failure of an X.25 connection is not directly reflected in TCP sessions it might be
carrying, only indirectly by TCP timeouts.

Opening a TCP session, such as a Telnet connection, can fail for reasons not
specific to X.25, for example, a TCPIP routing problem caused by an incorrect
GATEWAY definition, or an IP routing problem in the remote device. Symptoms
suggesting these problems include:

v No X.25 call is made when a TCP connection is requested.

v No traffic is received from the remote equipment, indicated by a received count
of zero in the EZB2351I connection terminated message.

An established TCP connection can hang because the X.25 network or remote
device is down. This will be indicated by a clear cause and diagnostic, as described
in “Logon Problems” on page 481.

Helpful Hints
PING fails but Telnet and FTP connect. Setting up a new X.25 connection might
take longer than the default PING timeout on a busy system. Use the PING
TIMEOUT or COUNT parameters to extend the waiting time. Using the NPSI GATE
Fast Connect feature will reduce connection setup time.

PING succeeds but Telnet or FTP data transfer times out. Full-screen Telnet and
FTP data transfers create large IP datagrams, while PING uses smaller ones. If the
small datagrams go through but large ones do not, there might be a problem with
MAXDATA on the VTAM switched circuit definitions; see “Configuration
Requirements” on page 477 for details. Attempting to pass a datagram larger than
MAXDATA on a virtual circuit will hang the VC for all subsequent traffic.

482 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

A load-dependent hang can be due to an insufficient number of virtual circuits.

The TRAFFIC command can be used to observe virtual circuit data transfer activity.

Documentation Requirements
If IBM Support Center help is needed, collect the following configuration
documentation before contacting IBM:
v X.25 NSPI server console log showing X.25 connections related to the problem
v X.25 NPSI server configuration data set
v PROFILE.TCPIP data set
v NPSI definitions
v VTAM SWNET definitions for NPSI

Chapter 27. Diagnosing X.25 NPSI Problems 483

484 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 28. Diagnosing IMS Problems

The IMS TCP/IP Services socket interface allows TCP/IP clients to access IMS
using a TCP/IP network. This access is fully described in TCP/IP for MVS: IMS
TCP/IP Application Development Guide and Reference. A sockets
program-to-program connection is established between a client (TCP/IP socket)
program and a server (IMS application) program. TCP/IP and the Listener are
agents in the connection establishment. The components of the IMS TCP/IP socket
interface system are shown in Figure 73.

The following list is a brief description of the component interaction and data flow
that occurs when a client program requests an IMS transaction.

Client
Sockets
Program

TCP/IP
for MVS

Listener
Sockets
Program

Explicit
Transaction
Server Program

Assist
Module

Implicit
Transaction
Server
Program

IMS Message Queues

IMS Transaction Manager

IMS Database Manager

Start Transaction

Database
Access

Database
Access

Start Transaction

Server
Host

Output Data

Transfer
Socket

Socket
Info

Input
Data

Socket
Info

Transfer
Socket

Input/Output Data

Client
Host

TCP/IP
Network

1

4

2

55 3

Figure 73. Components of the IMS TCP/IP Services Socket Interface System

© Copyright IBM Corp. 1994, 2000 485

�1� The client program starts and sends the transaction request message
(TRM) to the Listener port.

�2� The Listener reads the TRM and accepts the socket connection from
TCP/IP between the client program and the Listener.

�3� The Listener validates the TRM, prepares to give the socket connection to
the IMS transaction, builds the transaction initiation message (TIM)
containing the socket connection information, and sends the TIM to the IMS
transaction manager message queue. For implicit IMS transactions, the
Listener also reads the input data from the client program and sends it to
the message queue.

�4� The IMS transaction manager schedules the requested transaction.

�5� IMS Transaction. This can be one of the following:

Implicit
The IMS assist module receives the TIM on behalf of the implicit
IMS transaction and takes the socket connection from the Listener.
The input data is read and the IMS transaction performs the
required database access. The IMS assist module, on behalf of the
implicit IMS transaction, writes the output data to the client
program, through the socket connection, followed by the commit
status message (CSM). The socket connection is closed.

Explicit
The explicit IMS transaction receives the TIM and takes the socket
connection from the Listener. Input and output data is read and
written as defined by the protocol and the required database access
is performed. The explicit IMS transaction writes the CSM to the
client program and closes the socket connection.

The IMS transaction and the client program terminate.

Setting Up the IMS TCP/IP Services Socket Interface System
Completing the following steps establishes the system described in Figure 73 on
page 485. Each step should be completed in order from the first step to the last.

This list of steps can be used to diagnose problems in starting components by
identifying the prerequisites. The steps immediately preceding a step in which you
are told to start a component are required to give definitions and configuration
information that must be completed correctly before that component can be started.
The reference keys in the steps refer to the components as shown in Figure 73 on
page 485. All components except the client sockets program belong to the server
host.

1. Configure TCP/IP to reserve the Listener port number.

A TCP/IP port should be reserved for the Listener to connect to when it starts.
The following is a sample profile statement to reserve the Listener port.

PORT 4096 TCP EZAIMSLN

See TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference for details about the PORT statement.

2. Configure the TCP/IP network from the server host to the client host.

For the client program to issue IMS transaction requests across a socket
connection, there must be a TCP/IP network defined between the client and

486 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

server hosts. Any physical network supported by IBM MVS TCP/IP can be
used to establish this socket connection.

Refer to the appropriate chapters in OS/390 IBM Communications Server: IP
Configuration Reference for details about how to configure the required
network to the server host TCP/IP.

3. �2� Start the TCP/IP address space on the server host.

4. Establish and verify the network connection from the client host to the server
host.

Depending on the network connection, start or activate the required device
drivers and network nodes required to establish a TCP/IP network connection.

Use the PING command on the client host, using the server host destination IP
address or network name, to verify the TCP/IP network connection.

5. Define the Listener to the IMS transaction manager.

The IMS transaction manager must be defined to expect message queue input
from the Listener. For information about how to define the Listener to IMS,
refer to the Listener IMS definitions in TCP/IP for MVS: IMS TCP/IP Application
Development Guide and Reference.

6. �5� Write the IMS transaction that will be requested by the client program, if
not already written.

Refer to TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference for specific details about writing IMS transactions that can be
requested by a TCP/IP client program.

7. Define the IMS transaction that will be requested by the client program to the
IMS transaction manager.

The IMS transaction must be defined to IMS before the Listener can request it
to be scheduled on behalf of the client program. Refer to TCP/IP for MVS: IMS
TCP/IP Application Development Guide and Reference for the important
restrictions when defining IMS transactions.

8. �4� Start the IMS transaction manager and the IMS database manager.

9. Complete the Listener configuration data set.

The Listener configuration data set is read when the Listener is started. The
procedure used to start the Listener (usually EZAIMSLN) uses the ddname
LSTNCFG to specify the Listener configuration data set. Following is an
example statement that specifies TCPIP.LISTENER.DATA as the configuration
data set.

LSTNCFG DD DSN=TCPIP.LISTENER.DATA,DISP=SHR

This data set must contain a minimum set of required statements to specify the
environment the Listener is started in and the list of IMS transactions available
to client programs.

Refer to TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference for details about the format and contents of this data set.

10. �3� Start the Listener address space.

The Listener is started as an MVS address space as described in TCP/IP for
MVS: IMS TCP/IP Application Development Guide and Reference. The JCL
procedure required for starting the address space is also listed in TCP/IP for
MVS: IMS TCP/IP Application Development Guide and Reference.

11. Write the client program, if not already written.

Chapter 28. Diagnosing IMS Problems 487

Refer to TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference for programming details about client programs that can request IMS
transactions over a TCP/IP network.

12. �1� Start the client program.

Common Configuration Mistakes
The following is a list of common configuration mistakes:

v The IMS transaction has not been defined in the Listener configuration data set.

v The Implicit or Explicit parameter in the Listener configuration data set does not
match the protocol used by the IMS transaction.

v The program specification block (PSB) for the Listener does not include the
ALTPCB label.

v The IMS transaction invoked by the Listener does not specify the MODE=SNGL
parameter on the IMS TRANSACT macro in the IMS database manager
definition. Refer to TCP/IP for MVS: IMS TCP/IP Application Development Guide
and Reference for information about restrictions on application programs.

v The IMS transaction invoked by the Listener was not defined to the IMS
transaction manager as a multisegment transaction.

v The IMS transaction invoked by the Listener is an IMS conversational transaction
or executes in a remote multiple systems coupling (MSC) environment.

Quick Checklist for Common Problems
The following list summarizes some initial checks that can be made quickly and are
helpful in identifying the problem area.

1. Is the TCP/IP network active?

Use the PING command on the client host using the same IP address or host
name as specified in the client program to verify that the network to the server
host is active.

2. Is the Listener started and active on the server host?

Check that the Listener address space is active and running. The MVS SDSF
facility can be used to view the active address space list. Also see “Using
NETSTAT” on page 499 for details about how to determine if the Listener
TCP/IP port is active.

3. Did the Listener program list any configuration errors to the SYSPRINT data
set?

Check the JCL DD statement in the Listener start procedure to identify the
destination of the SYSPRINT output. See “Where to Find Error Message
Documentation” on page 501 to determine the reason for any errors. The
Listener address space might need to be stopped to flush any error messages
to the destination.

4. Have you completed all the required definitions. See “Setting Up the IMS
TCP/IP Services Socket Interface System” on page 486 for the list of definitions
and configurations required.

5. Is the client program connecting to the same TCP/IP port as the Listener? See
“Using NETSTAT” on page 499 for details about how to use the NETSTAT
command to identify which port the Listener is connected to and which port the
client program is establishing a socket connection on.

488 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Component Problems
These problems are related to starting or stopping one of the components in the
IMS TCP/IP Services socket interface system.

v The Listener terminates on startup.

The following is a list of possible causes and resolutions.

Cause Incorrect configuration data set.

Resolution
Check for configuration error messages written to the SYSPRINT data
set and correct the problems (if any).

Cause The prerequisites for starting the Listener have not been completed.

Resolution
Complete the required steps listed in “Setting Up the IMS TCP/IP
Services Socket Interface System” on page 486.

Cause Incorrect method of starting.

Resolution
Ensure the Listener is being started as an MVS address space as
described in TCP/IP for MVS: IMS TCP/IP Application Development
Guide and Reference. The JCL procedure required for starting the
address space is also listed in TCP/IP for MVS: IMS TCP/IP Application
Development Guide and Reference.

v The Listener will not terminate.

Cause The Listener will wait for all of the currently open socket connections to
close before it responds to the user termination request. If any of the
socket connections have hung, the Listener needs to be forcibly
terminated.

Resolution
Force the Listener to terminate using the command specified in the
section about stopping the IMS Listener in TCP/IP for MVS: IMS TCP/IP
Application Development Guide and Reference.

See “Connection Problems” on page 490 for a description of how socket
connections can hang.

v As the Listener is starting, messages are written to the system console asking if
IMS should be started.

Cause The IMS system should be started before the Listener. If the Listener is
started first, the operator is prompted to start the IMS system.

Resolution
Reply to the console messages to start IMS.

v An implicit IMS transaction written in C is experiencing unexpected problems at
startup.

Cause If IMS transaction programs written in C are not built correctly, the IMS
interface will fail on startup.

Resolution
Build the C program correctly as specified in the section about writing an
IMS TCP/IP Services server program in TCP/IP for MVS: IMS TCP/IP
Application Development Guide and Reference.

v The Listener is abending while accepting the TRM.

Cause If a user-defined security exit has been linked into the Listener, it might

Chapter 28. Diagnosing IMS Problems 489

be causing the problem. The security exit is called when validating the
TRM. If the security exit has not been written to accept the required
linkage and parameters, the Listener will abend because the exit runs in
the same address space.

Resolution
Check that the security exit has been written to accept the linkage and
parameters as specified in the section on the IMS security exit in TCP/IP
for MVS: IMS TCP/IP Application Development Guide and Reference.

Connection Problems
These problems are related to the TCP/IP socket connection. They include
problems with establishing the connection, transferring data over the connection,
and unexpected loss of the connection.

v The client program is experiencing intermittent reject connect responses from
TCP/IP.

Cause The TCP/IP sockets facility has a connection request backlog queue.
While this queue is full, further connection attempts will be rejected by
TCP/IP. Under load, this queue can temporarily fill, causing some client
program requests to be rejected.

Resolution
To reduce the frequency of this problem, increase the size of the backlog
queue. The size of the queue is a parameter in the Listener configuration
data set.

v The TCP/IP socket connection to the client program is being broken immediately
after the implicit IMS transaction is scheduled.

Cause The Listener configuration data set might incorrectly define the implicit
IMS transaction as explicit. In this case, the Listener will not pass the
input data to the IMS transaction through the message queue as
expected. The transaction will start, and upon detecting no data,
immediately close the TCP/IP socket connection and terminate.

Resolution
Verify that the TRANSACTION statements in the Listener configuration
data set specify the TYPE parameter correctly.

v Connection lockup for an implicit IMS transaction.

A connection lockup occurs when both the implicit IMS transaction and the client
program are waiting for data from the other end of the socket connection.

Cause The Listener might be waiting for the end-of-message (EOM) segment
from the client program. The client program must send a valid EOM
segment before the Listener will instruct the IMS transaction manager to
schedule the IMS transaction. If the client program does not send a
recognized EOM segment, the Listener waits indefinitely for it, while the
client program waits for a response.

Resolution
Use the IP packet trace facility to determine if the client program is
sending a valid EOM segment. See “Using IP Packet Trace” on page 498
for details about the IP packet trace facility.

Refer to the information about implicit-mode application data in TCP/IP
for MVS: IMS TCP/IP Application Development Guide and Reference for
the format of the EOM segment.

v Connection lockup for an explicit IMS transaction.

490 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

A connection lockup occurs when both the explicit IMS transaction and the client
program are waiting for data from the other end of the socket connection.

Cause Because the explicit IMS transaction protocol is user defined,
programming errors can easily lead to connection deadlocks. That is, the
server is waiting for more data while the client is waiting for a response,
and both will wait indefinitely.

Resolution
Use the IP packet trace facility to identify which part of the protocol is
failing. See “Using IP Packet Trace” on page 498 for details about the IP
packet trace facility.

Cause The Listener configuration data set might incorrectly define the explicit
IMS transaction as implicit. In this case the Listener will wait for valid
implicit data from the client program, or if valid data is received, the
explicit IMS transaction will wait for data from the client program because
the Listener has already read the data and written it to the message
queue.

Resolution
Verify that the TRANSACTION statements in the Listener configuration
data set specify the TYPE parameter correctly.

Timeouts, especially in the client program, are recommended when issuing
socket READs to avoid deadlocks and allow easy diagnosis. Refer to the
information about SELECT calls in TCP/IP for MVS: IMS TCP/IP Application
Development Guide and Reference for more information about specifying
timeouts for READs.

v Connection lockup for either an explicit or implicit IMS transaction.

A connection lockup occurs when both the IMS transaction and the client
program are waiting for data from the other end of the socket connection.

Cause If the TRM sent by the client program is incomplete, the Listener will wait
indefinitely for the rest of the message.

Resolution
Check the length and format of the TRM by using the IP packet trace
facility as described in “Using IP Packet Trace” on page 498.

Cause If the IMS transaction does not successfully issue the takesocket to gain
the connection from the Listener, the Listener will wait for this event
indefinitely. The takesocket might not be issued successfully due to one
of the following reasons:

– The IMS transaction is defined to run in a message processing region
that is not started. In this case, the IMS transaction will never be
scheduled and, therefore, never issue the takesocket.

– One of the several TCP/IP socket calls, up to and including the
takesocket, might fail and terminate the IMS transaction.

– An IMS error can stop the transaction from being successfully
scheduled, or, especially in the explicit case, can cause the IMS
transaction to terminate before the takesocket is issued.

Resolution
Check that the IMS transaction is being successfully scheduled by the
IMS transaction manager and ensure that any IMS and socket calls
issued by the IMS transaction are checked for unsuccessful return codes.

v The takesocket call issued by the IMS transaction fails.

Chapter 28. Diagnosing IMS Problems 491

Note: For implicit transactions, the IMS assist module routines issue a
takesocket for the first get unique (GU) issued by the transaction. If the
takesocket fails, the GU returns ZZ.

Cause IMS can, for recovery reasons, abend a transaction and start it again. If
the transaction is abended after it has gained the socket connection
(through a takesocket call), the TCP/IP socket connection is lost.
Although IMS restores the message queue when it restarts the
transaction, the takesocket issued by the transaction will fail as the
socket connection has already been taken from the Listener.

Resolution
Restart the client program. To reduce the frequency of this problem,
determine why IMS is restarting the IMS transaction by using the IMS
trace facility. See “IMS Traces” on page 499.

Cause An IMS transaction not defined as multisegment to the IMS transaction
manager will be scheduled as soon as the TIM is added to the message
queue. This gives the IMS transaction an opportunity to issue the
takesocket before the givesocket is issued by the Listener. The
takesocket will fail with an error return code.

Resolution
Make certain the IMS transaction is defined as multi-segment.

v The client program is always receiving reject connect responses from TCP/IP.

Cause The maximum number of active sockets might have been reached, with
all the currently active socket connections unable to complete. An
increasing number of socket connections will eventually reduce the
available socket connections to zero when the number of socket
connections equals the MaxActiveSockets configured for the Listener.
When this happens, TRMs are not processed by the Listener, and they
are left on the TCP/IP backlog queue. When the backlog queue fills,
TCP/IP will reject a client program connection attempt.

Resolution
Identify the client programs causing the problem using the NETSTAT
command as specified in “Using NETSTAT” on page 499. Then continue
diagnosis to determine why these connections are locking up.

The Listener must be restarted to clear the active socket list. Because
there are active socket connections, the Listener must be forced to
terminate using the command specified in TCP/IP for MVS: IMS TCP/IP
Application Development Guide and Reference.

v Connection lockup or loss when passing a socket connection from one explicit
IMS transaction to another.

A connection lockup is when the socket connection reaches a state where it will
never complete.

Cause To pass a socket connection from the first IMS transaction to the second,
the first IMS transaction must wait after it issues the givesocket until the
second IMS transaction issues a takesocket; otherwise, the connection
will be lost.

A connection lockup can occur when the first IMS transaction waits for
the takesocket to be issued, but both IMS transactions are defined to run
in the same message processing region. In this case, they cannot both
be scheduled to run at the same time, and the first IMS transaction will
wait indefinitely for the takesocket from the second IMS transaction,
which will never be scheduled.

492 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Resolution
When passing a socket connection between IMS transactions, make sure
the first transaction waits for the second to issue the takesocket and that
both IMS transactions can be scheduled to run at the same time.

Error Message and Return Code Problems
These problems are related to error responses.

v The client program is receiving a request status message (RSM).

Cause The Listener will send this message to the client program when it detects
an error condition.

Resolution
Use the return and reason codes from the message to look up the
explanation. See “Where to Find Return Code Documentation” on
page 500.

v The implicit IMS transaction is receiving return codes in the I/O program
communication block (PCB) that are not defined in the section on status codes in
the IMS/ESA Diagnosis Guide and Reference .

Cause The IMS assist module will perform several socket-related functions on
behalf of the implicit IMS transaction in response to IMS transaction
manager requests. When errors are detected that are not related to the
IMS transaction manager request, the IMS assist module sets special
return codes in the PCB.

Resolution
Look up the meaning of the special return codes. See “Where to Find
Return Code Documentation” on page 500 .

v The Listener error messages are written to the MVS system console instead of
the SYSPRINT data set.

Cause If the Listener experiences data set I/O errors, it will redirect the error
messages to the MVS system console.

Resolution
Check the MVS system console log for I/O errors on the data set to
identify the problem. The SYSPRINT DD statement in the JCL procedure
to start the Listener specifies the destination data set for the error
messages.

Socket Data Protocol Problems
These problems are related to data transfer over the socket connection. They
include incorrect data sent, not enough or too much data sent, and data corruption.

v The Listener is not responding to the client program.

Cause If the TRM sent by the client program is incomplete, the Listener will wait
indefinitely for the rest of the message.

Resolution
Check the length and format of the TRM by using the IP packet trace
facility as described in “Using IP Packet Trace” on page 498.

Cause If the port specified by the client program is not the port that is attached
to the Listener, and the socket connection is established, the other end of
the connection will not communicate with the client program as required.

Chapter 28. Diagnosing IMS Problems 493

Resolution
Check that the Listener is attached to the port used by the client program
to establish the socket connection. Use the command specified in “Using
NETSTAT” on page 499.

v All the input data sent from the client program is not being passed to the implicit
IMS transaction from the Listener.

Cause Any input data written after the first EOM segment will be ignored by the
Listener.

Resolution
Check for EOM segments being sent by the client program by using the
IP packet trace facility described in “Using IP Packet Trace” on page 498.

Refer to the information about the implicit-mode application data in
TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference for the format of the EOM segment.

v Explicit IMS transaction is receiving garbled data from or sending garbled data to
the client program.

Cause The data might need translation when the client program does not exist
on an EBCDIC host. For explicit data transfer, the client program or the
IMS transaction or both must provide ASCII to EBCDIC translation and
byte-order translation of fixed-point binary integers, if required. The
Listener automatically translates the TRM when creating the TIM.

Resolution
Code the client program or the IMS transaction or both to provide the
necessary translation when the client program is not on an EBCDIC host.

v Implicit IMS transaction is receiving garbled data from or sending garbled data to
the client program.

Cause The automatic data translation when the client program does not exist on
an EBCDIC host can be causing the problem. For implicit data transfer,
the Listener automatically translates input data from ASCII to EBCDIC,
based on the TRM contents. The IMS assist module also automatically
translates output data from EBCDIC to ASCII when sending to an ASCII
client program, as determined by the TRM. If the TRM sent by the client
program is not either ASCII or EBCDIC as required, then the automatic
translations fail. The client program is also responsible for any required
byte-order translation of fixed-point binary integers.

Notes:

1. If the data translated between ASCII and EBCDIC contains any
nonprintable data, such as integers, flags, or reserved fields, the data
will be corrupted. In this case, the client program must provide
EBCDIC data (including the TRM) for the IMS transaction and expect
EBCDIC data from the IMS transaction.

2. If the data is translated between ASCII and EBCDIC and contains
characters that are not common to both the ASCII and EBCDIC
tables, the nontranslatable characters will be translated to spaces.

Resolution
Code the client program to provide the necessary translation when the
client program is not on an EBCDIC host and the automatic data
translation cannot be used.

v The security exit will not validate user data from the client program.

494 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Cause The security exit might not be successfully linked into the Listener. The
exit must be compiled and assembled and then linked into the Listener
for it to be called.

Resolution
Check that the security exit has been coded and built correctly as
specified in TCP/IP for MVS: IMS TCP/IP Application Development Guide
and Reference.

v Data is corrupted after an implicit IMS transaction issues a GU.

Cause The I/O area declared might be too small. When using the IMS assist
module, the I/O area provided for the GU call must be large enough to
hold the TIM, even though the data eventually returned in the I/O area
can be smaller.

Resolution
Make certain the implicit IMS transaction has enough storage declared to
hold the TIM. The size of this message is specified in TCP/IP for MVS:
IMS TCP/IP Application Development Guide and Reference .

v The PL/I IMS transaction is receiving or sending message segments that are not
valid.

Cause The message segments might be declared incorrectly. The PL/I API
interface to the IMS transaction manager defines the message segments
with a 4-byte length field, but the length value must only include two of
those bytes plus the rest of the segment.

Resolution
Use the following rules to avoid problems:

– The IMS assist module PL/I API routines mimic the interface used by
the PL/I API routines. Code PL/I implicit transaction message
segments in exactly the same manner as for this interface.

– Code the client program in exactly the same manner as for all the
IMS transaction API interfaces. The IMS assist module routines will
automatically convert the message segments from the PL/I API to the
standard format.

– Explicit transactions don’t use the IMS assist module. The message
segment format, if required, must match on both the client program
and the IMS transaction sides. It is recommended that the standard
message segment format be used.

Refer to the information about programming considerations for the
implicit-mode server and the explicit-mode server in TCP/IP for MVS:
IMS TCP/IP Application Development Guide and Reference for more
details about the PL/I API issues.

IMS Transaction Build Problems
This problem relates to building a component in the IMS TCP/IP Services socket
interface system.

Unresolved external reference errors are causing the linker to fail when linking an
IMS transaction.

Cause The implicit IMS transaction link JCL is not including the IMS assist module
and the MVS TCP/IP Services sockets library to resolve external
references.

Chapter 28. Diagnosing IMS Problems 495

Resolution
Compare the link JCL to the sample provided in the section about JCL for
linking an implicit-mode server in TCP/IP for MVS: IMS TCP/IP Application
Development Guide and Reference.

Cause The explicit IMS transaction link JCL is not including the MVS TCP/IP
Services sockets library to resolve external references.

Resolution
Compare the link JCL to the sample provided in the section about JCL for
linking an explicit-mode server in TCP/IP for MVS: IMS TCP/IP Application
Development Guide and Reference.

IMS Database Problems
These problems relate to unexpected IMS database actions or failures. They
include changes not made or requests for changes that fail.

v The IMS transaction is terminating without performing the required function and
without issuing any error messages.

Cause The IMS transaction might not be checking for interface errors.

Resolution
It is the responsibility of the IMS transaction programmer to identify and
issue error messages if the IMS database manager, IMS transaction
manager, or TCP/IP socket interfaces fail.

v The client program is not receiving any data from the implicit IMS transaction, but
is receiving a successful CSM.

Cause The IMS transaction might be issuing an IMS database rollback (ROLB)
call. If the IMS transaction issues a ROLB call, all output accumulated by
the IMS assist module is discarded as part of the ROLB function.
Depending on how the IMS transaction is coded, it might complete
without further output (ISRT calls).

Resolution
Use caution in issuing ROLB calls in implicit IMS transactions using the
IMS assist module. Make certain you understand the details about
implicit-mode support for ROLB processing in TCP/IP for MVS: IMS
TCP/IP Application Development Guide and Reference.

v Local IMS transaction manager ISRT/GU/GN calls are failing when issued in IMS
transactions.

Cause Local calls assume a terminal has requested the IMS transaction. The
input and output of data, however, is actually sent across the socket
connection for IMS transactions started by the Listener. The following is a
list of specific causes of the problem:

– The ISRT call has no terminal associated with the IMS transaction for
the output.

– There is no data on the message queue for explicit IMS transactions
to get with the GU or GN calls.

– An implicit IMS transaction will receive an unexpected TIM in
response to a GU call.

Resolution
Do not issue local IMS transaction manager calls from transactions
started by the Listener. An implicit IMS transaction must use the IMS

496 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

assist module calls, which will access either a terminal or socket
connection, as required. An explicit IMS transaction must interface
directly to the socket connection.

v The ISRT call fails for an implicit IMS transaction, if a large amount of data is
output.

Cause The IMS assist module restricts the total output for a single IMS
transaction execution to 32KB.

Resolution
Limit the output for an implicit IMS transaction using the IMS assist
module to a total of 32KB.

v The IMS database manager commits the changes made by an IMS transaction,
but the client program receives an error.

Cause The implicit IMS transaction does not issue a second GU. The IMS
database commits the changes either when the IMS transaction ends or
when another GU is issued. For implicit IMS transactions, the IMS assist
module routines sends the output data and CSM to the client program
and closes the socket connection when the second GU is issued. If the
implicit IMS transaction does not issue another GU, the changes are
committed when the transaction ends, but the client program assumes
failure when the CSM is not received.

Resolution
Implicit IMS transactions that are started by the Listener must issue GU
calls to get the next transaction request until the GU call returns with no
requests to process.

Cause The socket connection might have been broken after the changes were
committed, but before the CSM was sent. In this case, the client program
will assume failure, but the changes have been committed.

Resolution
Where possible, the client program should be coded to automatically
restart the IMS transaction and handle the condition where the IMS
transaction is duplicated. For explicit IMS transactions, a more rigorous
protocol can be implemented.

Note: This should be considered as an uncommon case.

v The client program does not receive a valid CSM from an implicit IMS
transaction.

Cause The client program might not have completed the response protocol
correctly. The client program must read the response data until it reads
an EOM segment. The CSM immediately follows the EOM.

Resolution
Use the IP packet trace facility to determine if the IMS transaction is
sending a valid EOM segment followed by a valid CSM segment. See
“Using IP Packet Trace” on page 498 for details about the IP packet trace
facility. If the correct message segments are being sent, correct the client
program to receive the response data.

Refer to TCP/IP for MVS: IMS TCP/IP Application Development Guide
and Reference for the format of the EOM and CSM segments.

Chapter 28. Diagnosing IMS Problems 497

Documentation References for Problem Diagnosis
This section contains the information and documentation references required to
gather and decode diagnostic information about the IMS TCP/IP Services socket
interface system.

The two main tools used for problem diagnosis are the IP packet trace facility and
the NETSTAT utility. The use of these tools is explained in following sections and
example statements and commands are provided. An explanation of how to
interpret the output from each of these tools is also provided.

For TCP/IP or IMS-specific tracing, reference is made to the appropriate diagnosis
documentation.

Two cross-reference sections, which list all the types of return codes and error
messages that can be issued from the IMS TCP/IP Services socket interface
system, are provided at the end of this section. For each type of return code and
error message, a reference is made to existing documentation that provides a
complete description.

Traces
The following traces can be used to gain information about data flows and actions
of the IMS TCP/IP Services socket interface system. The IP packet trace facility is
the most helpful trace facility when writing and debugging your own client programs
and IMS transactions. The TCP/IP internal traces are mainly used to diagnose
problems with the TCP/IP network and socket-specific problems. The IMS traces
are mainly used to diagnose IMS-specific problems, such as IMS transaction
scheduling and database commit and rollback errors.

Using IP Packet Trace
Use IP packet trace to identify the flow of data between the client program and the
Listener and IMS transaction servers. TCP packets can be traced on the socket
connections established through the Listener-reserved port. If the IP address of the
client program is specified, only packets originating from or destined to the client
program are traced. Specifying this parameter is recommended to avoid tracing a
large number of unrelated TCP packets.

Note: When using X.25 devices to provide the network to the client program, the IP
packet trace facility must be activated from the individual device address
spaces. The previous example only activates tracing in the TCPIP address
space.

See Chapter 5. TCP/IP Services Traces and IPCS Support for details about how to
use the IP packet trace facility.

The packets that contain data display the data in hexadecimal digits and, in this
case, their EBCDIC characters. The numeric fields in the message segments can
be verified from the hexadecimal representation, while any alphabetic data can be
verified from the EBCDIC display.

TCP/IP Internal Traces
The TCPIP internal traces are sent to CTRACE. These traces provide information
about the internals of the TCPIP address space. This information can be used to
diagnose problems in establishing the network between the client program and the

498 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

server host or in establishing the socket connections. See Chapter 5. TCP/IP
Services Traces and IPCS Support, for details about how to use the TCPIP internal
tracing facility.

IMS Traces
The IMS traces provide information about the internals of the IMS database system.
This information can be used to diagnose IMS transaction scheduling problems,
IMS transaction manager message queue problems, and database change
problems that cause rollbacks or commit errors. For an overview of monitoring the
IMS system, refer to IMS/ESA Administration Guide: System. For details about
tracing and reading the trace reports refer to IMS/ESA Utilities Reference: System.

Using NETSTAT
This section details how to use NETSTAT to query TCP/IP port usage and the state
of socket connections. This command can be used to verify that the Listener is
active and has opened the correct port and to diagnose problems with the socket
connection between the client program and the Listener or IMS transaction.

Note: The client program must have the socket connection open for NETSTAT to
query the connection status.

The NETSTAT SOCKETS command displays which ports are open to which
address spaces and displays active socket connections and their status. Following
is sample output from this command:

Chapter 28. Diagnosing IMS Problems 499

READY
netstat sockets

MVS TCP/IP NETSTAT CS V2R10 TCPIP Name: TCPCS 12:34:56
Sockets interface status:
Type Bound to Connected to State Conn
==== ======== ============ ===== ====
Name: INETD1 Subtask: 006DB5B8
Dgram 0.0.0.0..37 *..* UDP 00000058
Dgram 0.0.0.0..13 *..* UDP 00000057
Dgram 0.0.0.0..19 *..* UDP 00000056
Dgram 0.0.0.0..9 *..* UDP 00000055
Dgram 0.0.0.0..7 *..* UDP 00000054
Stream 0.0.0.0..623 0.0.0.0..0 Listen 0000004B
Stream 0.0.0.0..514 0.0.0.0..0 Listen 0000004D
Stream 0.0.0.0..513 0.0.0.0..0 Listen 0000004C
Stream 0.0.0.0..512 0.0.0.0..0 Listen 0000004E
Stream 0.0.0.0..37 0.0.0.0..0 Listen 00000053
Stream 0.0.0.0..7 0.0.0.0..0 Listen 0000004F
Stream 0.0.0.0..13 0.0.0.0..0 Listen 00000052
Stream 0.0.0.0..19 0.0.0.0..0 Listen 00000051
Stream 0.0.0.0..9 0.0.0.0..0 Listen 00000050
Name: OSNMPD Subtask: 006DBA70
Dgram 0.0.0.0..161 *..* UDP 00000013
Stream 0.0.0.0..1027 0.0.0.0..0 Listen 00000014
Name: TCPCS Subtask: 00000000
Stream 127.0.0.1..23 127.0.0.1..1033 Estblsh 00000045
Stream 9.67.113.27..23 9.37.81.207..1096 ClosWait 00000039
Name: TCPCS Subtask: 006C57B0
Stream 0.0.0.0..23 0.0.0.0..0 Listen 00000012
Name: TCPCS Subtask: 006D56F0
Stream 127.0.0.1..1026 127.0.0.1..1025 Establsh 0000000F
Name: TCPCS Subtask: 006D5CF0
Stream 0.0.0.0..1025 0.0.0.0..0 Listen 0000000C
Stream 127.0.0.1..1025 127.0.0.1..1026 Establsh 00000010
Name: USER18 Subtask: 006A3400
Stream 127.0.0.1..1033 127.0.0.1..23 Establsh 00000044

READY

Refer to OS/390 IBM Communications Server: IP User’s Guide for more details
about the usage, parameters, and output of NETSTAT.

Where to Find Return Code Documentation
The following list refers to the appropriate return code documentation for all return
codes expected in the IMS TCP/IP Services socket interface system.

v To the client from the Listener (request status message).

Refer to the information about the request status message (RSM) segment in
TCP/IP for MVS: IMS TCP/IP Application Development Guide and Reference for
the format of the RSM and a description of the return codes.

Note: The RSM with the “IMS transaction unavailable to be started” return code,
is returned when the IMS transaction has previously abended or failed and
the IMS transaction manager has marked it as not able to be scheduled.

v To the client from an IMS transaction (CSM).

The CSM is received by the client program when the transaction is successful.
This message implies a successful return code. If this message is not received,
the client program must assume the IMS transaction has not completed
successfully.

v To the implicit IMS transaction from the IMS assist module (I/O program
communication block).

500 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Refer to the information about the I/O PCB implicit-mode server in TCP/IP for
MVS: IMS TCP/IP Application Development Guide and Reference for the format
of the I/O PCB and return code explanations.

v To an implicit/explicit IMS transaction from TCP/IP.

Refer to the information about error messages and return codes for IMS sockets
call in TCP/IP for MVS: IMS TCP/IP Application Development Guide and
Reference .

v To an implicit/explicit IMS transaction from the IMS transaction manager.

Refer to the information about DL/I status codes, return codes, and reason codes
in IMS/ESA Diagnosis Guide and Reference.

v To an implicit/explicit IMS transaction from the IMS database manager.

Refer to the information about DL/I status codes, return codes, and reason codes
in IMS/ESA Diagnosis Guide and Reference.

Where to Find Error Message Documentation
The following list refers to the appropriate error message documentation for all error
messages expected in the IMS TCP/IP Services socket interface system.

v Error messages from the Listener are written to the SYSPRINT ddname data set.
Refer to the information about the IMS Listener error messages in TCP/IP for
MVS: IMS TCP/IP Application Development Guide and Reference for descriptions
of the error messages in this data set.

v Error messages from TCP/IP are written to the SYSERROR and SYSDEBUG
data sets. Refer to OS/390 IBM Communications Server: IP Messages Volume 1
(EZA) for descriptions of the error messages in these data sets.

Chapter 28. Diagnosing IMS Problems 501

502 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 29. Diagnosing Restartable VMCF/TNF Problems

You can configure virtual machine communication facility (VMCF) and termination
notification facility (TNF) in two different ways: as restartable subsystems or as
nonrestartable subsystems. (For details on configuration, refer to the OS/390 IBM
Communications Server: IP Configuration Reference.) If you choose restartable
VMCF and TNF, you may encounter the following problems.

VMCF or TNF Fail to Initialize
If VMCF or TNF fail to initialize with an OC4 abend, there is probably an installation
problem. Check the PPT entries for errors. Some levels of MVS do not flag PPT
syntax errors properly.

Abends 0D5 and 0D6
If, after removing a user, the system crashes with abends 0D5 and 0D6, the
application is probably still running and using VMCF. Users should not be removed
from VMCF or TNF without first terminating the affected user.

No Response to Commands
If VMCF and TNF do not respond to commands, one or both of the nonrestartable
versions of VMCF or TNF are still active. To get them to respond, follow these
steps:

1. Stop all VMCF and TNF users.

2. Stop the subsystems using the commands FORCE ARM VMCF and FORCE
ARM TNF.

3. Restart using EZAZSSI.

VMCF or TNF Will Not Stop
If you are unable to stop VMCF or TNF, users probably still exist in the VMCF and
TNF lists. Use the F VMCF,DISPLAY,NAME=* and the F TNF,DISPLAY,NAME=*
commands to identify those users who are still active. Then either cancel those
users or remove them from the lists, using the F VMCF,REMOVE and the F
TNF,REMOVE commands.

© Copyright IBM Corp. 1994, 2000 503

504 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Chapter 30. Diagnosing Problems with CICS

This chapter describes how to diagnose problems with the Customer Information
Control System (CICS). CICS is an IBM licensed program that enables transactions
entered at remote terminals to be processed concurrently by user-written application
programs.

For additional information that may be helpful in solving problems with CICS, refer
to the following manuals:

v OS/390 IBM Communications Server: IP CICS Sockets Guide

v CICS/ESA 5.2 Diagnosis Reference

v CICS/ESA 5.2 Problem Determination Guide

v CICS/ESA 5.2 Messages and Codes

v CICS/ESA 5.2 Data Areas

v CICS/ESA 5.2 Supplementary Data Areas

v OS/390 MVS Diagnosis: Tools and Service Aids

v CICS/ESA 5.2 Operations Guide

Diagnostic Data
To diagnose problems with CICS, some or all of the following data may be required:

v Message logs

– System log

– Message log at the transient-data destination specified by ERRORTD

v CICS external-trace data set (auxtrace)

Note: To obtain the CICS auxtrace, set the CICS user master-trace flag, the
system master-trace flag, and the AP level 1 standard trace component.

v Component trace

– Engine

– Physical file system (PFS)

– Socket

– Transmission control protocol (TCP)

v Dumps

– CICS transaction dump, if captured.

– Supervisor Call (SVC) dump. SVC dumps are also known as console dumps
or system dumps.

Note: For hangs and loops, request an SVC dump of CICS, TCP/IP, and the
TCPIPDS1 data space.

v NETSTAT SOCKET output

v NETSTAT CONN output

Initialization Problems
This section describes some problems you may encounter when attempting to
initialize CICS.

© Copyright IBM Corp. 1994, 2000 505

CICS Sockets Interface Not Initialized
If the CICS sockets interface did not initialize, follow the steps below:

1. Issue the EZAO,START,CICS command, and then check that the interface
initializes.

a. If the interface initializes, check that EZACIC20 is in the Program Load
Table (DFHPLT).

Putting EZACIC20 into the PLT will allow the CICS Sockets Interface to
initialize on CICS address startup. Refer to the OS/390 IBM
Communications Server: IP CICS Sockets Guide for more information.

b. If EZACIC20 is defined in the DFHPLT, check the message logs for failures.

c. If there are no messages, start CICS with auxtrace active, and then request
an SVC dump of CICS.

d. Call the Support Center.

2. Verify that the socket Resource Definition Online (RDO) definitions have been
properly installed and that the correct data sets are in the STEPLIB and
DFHRPL concatenations.

CICS Listener Not Initialized
If the CICS listener did not initialize, follow the steps below:

1. Use the EZAC transaction to verify that the listener is defined in the
configuration file.

2. In the configuration-file record for that listener, verify that IMMEDIATE is set to
YES, and then verify that the correct APPLID and port number are specified.

3. Verify that the listener is properly defined in a CICS RDO group and that the
RDO group is in the proper group list.

4. Check the message logs for failures.

a. If there are no messages, start CICS with auxtrace active, and then request
an SVC dump of CICS.

b. Call the Support Center.

5. If an EZY1292I message was issued, investigate why the CICS sockets
interface did not initialize. (See “CICS Sockets Interface Not Initialized”.)

No CICS Sockets Messages Issued
If no CICS sockets messages (error or informational) were issued, verify that the
correct CICS transient-data queue is specified in the ERRORTD field in the
configuration record for the CICS region. A region is the CICS address space.

TCP/IP Clients Unable to Connect
If TCP/IP clients are unable to connect, follow these steps:

1. Verify that the listener is active by logging on to CICS, and then issue a CEMT I
TASK command. Make sure that the listener name appears in the task list.

2. Verify that the listener is listening on the correct port number by issuing a
NETSTAT CONN command, and then check that the listener has the correct
port in listen status. Verify that clients are trying to connect to this port and to
the correct IP address.

3. Check the ERRORTD log and verify that the EZY1291I message has been
issued. If it has not been issued, look for messages indicating a failure.

506 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Child Server Transactions Not Starting
Child-server transactions are transactions started by the listener. If child-server
transactions are not starting, follow these steps:

1. Issue a CEMT I TRANSACTION command to verify that the transaction is
installed. If it is not installed, a NOT FND message is displayed.

2. Issue a CEMT I PROGRAM command to verify that the child-server program is
installed.

3. If the transaction or program is not installed, define it in the proper RDO group.

4. Check the message logs for failures.

CICS Sockets Application Problems
This section describes some of the problems you may encounter with CICS sockets
applications.

Hung CICS Tasks
If CICS application tasks hang, follow these steps:

1. While a task is hung, request an SVC dump of CICS, TCP/IP, and the
TCPIPDS1 data space.

2. If the problem can be recreated, recreate with CICS auxtrace and component
trace turned on.

3. Issue a NETSTAT SOCKET command to determine if the task is waiting on a
particular socket call to be posted. If it is waiting, you can issue the NETSTAT
DROP command to terminate it.

4. If the application is hung while awaiting completion of a READ command,
consider issuing a SELECT command prior to the READ command. The
SELECT command returns either the number of sockets ready to be read or 0
(zero) if it times out.

Hung CICS Region
If a CICS sockets application program that is written in COBOL is erroneously
link-edited without the EZACICAL stub, and then calls to the socket API will not go
through the CICS sockets task related user exit (TRUE). (A stub is a fragment of
code that is link-edited with the application load module and that is called with
EZASOKET or EZACICAL calls.) When this happens, the entire CICS region may
go into a hang, waiting for the socket call to complete.

Note: While all CICS sockets programs need the EZACICAL stub, the hang can
only occur with programs written in COBOL.

An EZASOKET call should generate a static call to the EZASOKET entry point
within the EZACICAL stub. If the application is not compiled and link-edited
correctly, the EZASOKET call generates a dynamic call to program EZASOKET,
which calls the socket API directly.

Errors on Socket Calls
If you receive errors on socket calls, note the ERRNO that is received, and then
look it up in the section of the OS/390 IBM Communications Server: IP CICS
Sockets Guide that describes return codes.

Chapter 30. Diagnosing Problems with CICS 507

CICS Shutdown Hangs
If an EZY1342I message has been issued, there is a CICS task that has at least
one socket open and that is not terminating. You can fix this problem by executing
an immediate termination of the CICS sockets interface rather than a deferred
termination. To execute an immediate termination, issue an EZAO,STOP,CICS
command, and then specify YES at the IMMEDIATE prompt.

If you do not attempt to terminate the CICS sockets interface, and then add
EZACIC20 to the shutdown DFHPLT. If you do not add EZACIC20, CICS cannot
terminate because the socket subtasks are still attached to the CICS region. To
terminate CICS without EZACIC20, manually shut down the CICS sockets interface
using the EZAO transaction.

CICS Sockets Control Blocks
This section describes some problems you may encounter with the task interface
element (TIE) and global work area (GWA). For information about the layout of
GWA, TIE, and other control blocks, refer to the section in the OS/390 IBM
Communications Server: IP CICS Sockets Guide that describes external data
structures.

Task Interface Element
A TIE represents a CICS task that has issued at least one call to the CICS sockets
API. You can locate TIEs in a dump of the CICS region by issuing the IPCS VERBX
‘UEH=3’ command, and searching for EZACIC01.TIE. The EZACIC01 prefix
identifies it as a TIE for CICS sockets.

The UEH=3 output shows a CICS image of the TIE. The TCP/IP TIE is embedded
within the CICS’ image of the TIE and starts at offset +X'80'.

Note: The UEH=3 output contains TIEs for other interfaces as well.

Global Work Area
The GWA is the main anchor point for the CICS sockets interface. It contains
general status data, work areas, and pointers to other control-block chains. You can
locate the GWA in a dump of the CICS region by issuing the IPCS command
VERBX ‘UEH=3’, and searching for EZACIC01.GWA. The EZACIC01 prefix
identifies it as the GWA for CICS sockets.

CICS Trace
The CICS sockets task related user exit (TRUE), EZACIC01, issues CICS trace
entries at the following four points of execution:

v When the TRUE receives a socket call from an application

v When the TRUE is passing the socket call to the subtask

v When the TRUE receives the response from the subtask

v When the TRUE is ready to return its response to the application

The trace point ID is AP 00C7. Trace records are self-explanatory. They show the
type of call, the point of execution, the ERRNO, and the RETCODE.

Trace records can be written either to CICS internal trace table or to its
external-trace data set (auxtrace). To display the internal trace, follow these steps:

508 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

1. Request a dump of the CICS region using the RGN SDATA=(option 1,option
2...option n) parameter on a DUMP command in TSO. Examples of options are
CSA, PSA, NVC, RGN, TRT, SQA, LSQA, LPA, and so on. For a complete list
of options, refer to OS/390 MVS Diagnosis: Tools and Service Aids.

2. Display the trace using the VERBX ‘TR=2’ IPCS command.

Note: CICS trace can also be directed to the GTF trace data set.

To display the auxtrace, follow the instructions for formatting auxtrace as
documented in the CICS/ESA 5.2 Operations Guide.

Chapter 30. Diagnosing Problems with CICS 509

510 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Part 4. Appendixes

© Copyright IBM Corp. 1994, 2000 511

512 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix A. Collecting Component Trace Data

This appendix provides short descriptions of the following tracing procedures:

v “Modifying Options with the TRACE CT Command”

v “Displaying Component Trace Status” on page 515

v “Stopping a Component Trace” on page 515

v “Obtaining Component Trace Data with a Dump” on page 515

v “Obtaining Component Trace Data with an External Writer” on page 516

v “Formatting Component Traces” on page 518

Modifying Options with the TRACE CT Command
After initialization, you must use the TRACE CT command to change the
component trace options for TCP/IP stacks, OMPROUTE, and packet trace. All
options except for the size of the TCP/IP component trace buffer can be changed
using this command. Modifying options with the TRACE CT command can be done
with or without the PARMLIB member.

With PARMLIB Member
To change component trace options using a PARMLIB member, create a new
SYS1.PARMLIB member and specify the component member on the PARM=
keyword of the TRACE CT command. Use the following syntax:
TRACE CT,ON,COMP=<component_name>,SUB=(procedure_jobname)
,PARM=<parmlib_member>

Following are descriptions of the parameters:

COMP Indicates the component name:

v SYSTCPIP for TCP/IP stacks

v SYSTCPDA for packet trace and data trace

v SYSTCPRT for OMPROUTE

SUB Indicates the started procedure name for TCP/IP or the OMPROUTE
application for which the trace is run. If you use the S procname.jobname
method of starting TCP/IP or OMPROUTE, the value specified for jobname
must be the same as that for the SUB parameter. There can be as many as
eight TCP/IP sessions active in one system. Only one OMPROUTE
application can be active on each TCP/IP stack.

PARM Identifies the parmlib member containing the trace options (CTIEZBxx for
TCP/IP stacks and CTIORAxx for OMPROUTE). All options except the size
of trace buffers can be respecified. This size cannot be changed during the
execution of TCP/IP or OMPROUTE. If a different size is required, you must
stop TCP/IP or OMPROUTE, and then restart it after modifying the parmlib
member.

If the incorrect parmlib member is specified, one of the following messages may be
issued:

v An incorrect CTIEZBxx member is specified on the TRACE CT,ON command:
IEE538I CTIEZBxx MEMBER NOT FOUND IN SYS1.PARMLIB
ITT010I COMPONENT TRACE PROCESSING FAILED FOR PARMLIB MEMBER=CTIEZBxx:
PARMLIB MEMBER NOT FOUND.

© Copyright IBM Corp. 1994, 2000 513

|

v An incorrect CTIEZBxx member is specified on the CTRACE() keyword of the
EXEC statement of the TCP/IP started procedure:
IEE538I CTIEZBZZ MEMBER NOT FOUND IN SYS1.PARMLIB

v An incorrect CTIORAxx member is specified on the TRACE CT,ON command:
IEE5381 CTIORAxx MEMBER NOT FOUND in SYS1.PARMLIB
ITT01011 COMPONENT TRACE PROCESSING FAILED FOR PARMLIB MEMBER=CTIORAxx:
PARMLIB MEMBER NOT FOUND

Without PARMLIB Member
To change component trace options without using a PARMLIB member, issue the
TRACE CT command without the SUB= parameter and specify the options on the
reply. Use the following syntax:
TRACE CT,ON,COMP=<component_name>,SUB=(procedure_jobname)

After issuing the TRACE CT command, you will be prompted to specify the trace
options. Respond using the following syntax:

Note: ASID and JOBNAME are not valid for OMPROUTE.

Reply nn Specifies the identification number (in the range 0-9999) in the
prompting message. For example, if the response is
06 ITT066A SPECIFY OPERAND(S) FOR TRACE CT COMMAND

You might reply
r 06,WTR=PTTCP,END

ASID The ASID (address space identifiers) of the client whose TCP/IP
requests are to be traced.

JOBNAME The JOBNAME of the client whose TCP/IP requests are to be
traced. The jobname may be:

v The jobname associated with a client application.

v The SNA LU associated with a TELNET session.

v The FTP Userid associated with a FTP data connection.

OPTIONS Options valid for use with SYSTCPIP are listed in “Chapter 5.
TCP/IP Services Traces and IPCS Support” on page 47and options
valid for use with OMPROUTE are listed in “Chapter 25. Diagnosing
OMPROUTE Problems” on page 435.

membername The member containing the source JCL that invokes the external
writer. The membername in the WTR parameter must match the
membername in a previous TRACE CT,WTRSTART command.
(See “Obtaining Component Trace Data with an External Writer” on
page 516.)

WTR=DISCONNECT
Disconnects the component trace external writer and the trace. You
must also specify a TRACE CT,WTRSTART or TRACE
CT,WTRSTOP command to start or stop the writer.

Reply nn
[,ASID=(asid-list)]
[,JOBNAME=(jobname-list)]
[,OPTIONS=(name[name]...)]
[,WTR={membername|DISCONNECT}]
[,CONT|END]

514 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|

CONT or END CONT specifies that the reply continues on another line. Specify
END to complete the response.

Displaying Component Trace Status
To display information about the status of the component trace, issue the following
command:
DISPLAY TRACE,COMP=<component_name>,SUB=(procedure_jobname)

where component_name can be one of the following:

v SYSTCPIP for TCP/IP stacks

v SYSTCPDA for packet trace

v SYSTCPRT for OMPROUTE

This command displays information about the status of the component trace for one
procedure. To display information about the status of the component trace for all
active procedures, enter the following command:
DISPLAY TRACE,COMP=<component_name>,SUBLEVEL,N=8

Stopping a Component Trace
You can stop current tracing with the TRACE CT command:
TRACE CT,OFF,COMP=<component_name>,SUB=(procedure_jobname)

where the component name can be any of the following:

v SYSTCPIP for TCP/IP stacks

v SYSTCPDA for packet trace

v SYSTCPRT for OMPROUTE

TCP/IP always maintains exception tracing to aid in first failure data capture.

Obtaining Component Trace Data with a Dump
You can request a dump to obtain component trace data for OMPROUTE or a
TCP/IP stack.

TCP/IP Stack
If an abend occurs in the TCP/IP address space or in a user’s address space,
TCP/IP recovery dumps the home ASID, primary ASID, secondary ASID, and the
TCPIPDS1 dataspace. TCPIPDS1 is the name of the dataspace for each TCP/IP in
an MVS image. It contains the trace table or the data set (or sets) produced by the
external writer. See “Formatting Component Traces” on page 518.

To view the trace records for a problem where no abend has occurred, use the
DUMP command. The following example illustrates an DUMP command:
DUMP COMM=(your dump title here)
R n,JOBNAME=tcpipprocname,DSPNAME='tcpipprocname'.TCPIPDS1,CONT
R n,SDATA=(nuc,rgn,csa,sqa),END

To generate a meaningful dump, specify at least csa and sqa.

Display trace data using IPCS component trace formatting. For details, see
“Formatting Component Traces” on page 518.

Appendix A. Collecting Component Trace Data 515

OMPROUTE
To obtain a dump of the OMPROUTE address space (which contains the trace
table), use the DUMP command, as shown in the following example:
DUMP COMM=(enter your dump title here)
R n,JOBNAME=<omproute_procedure_jobname>,SDATA=(rgn,csa,sqa),END

View the trace data contained in the dump using IPCS component trace formatting.
For details, see “Formatting Component Traces” on page 518.

Obtaining Component Trace Data with an External Writer
To use an external writer to obtain component trace data for TCP/IP stacks, packet
trace, and OMPROUTE, follow the steps below.

1. Enter the appropriate writer procedure in SYS1.PROCLIB, as shown in the
following example. (CTTCP starts the component trace writer; use PTTCP to
start the packet trace writer.) You can have multiple procedures writing to as
many as 16 TRCOUT files either on disk or tape.
//CTTCP PROC
//* REFER: SYS1.PROCLIB(CTTCP)
//* COMPID: OPER
//* DOC: THIS PROCEDURE IS THE IPCS CTRACE1 EXTERNAL WRITER PROCEDURE.
//* USED BY TCP/IP .
//*
//IEFPROC EXEC PGM=ITTTRCWR
//TRCOUT01 DD DSNAME=MEGA.IPCS.CTRACE1,UNIT=SYSDA,
// VOL=SER=STORGE,
// SPACE=(4096,(100,10),,CONTIG),DISP=(NEW,CATLG),DSORG=PS
//

2. Start the external writer using the following command:
TRACE CT,WTRSTART=<procedure_name>

3. Do one of the following:

v To turn the trace on and connect the external writer for packet trace and
OMPROUTE, enter the following command:
TRACE CT,ON,COMP=<component_name>,SUB=(procedure_jobname)

where the component name can be SYSTCPDA (packet trace) or
SYSTCPRT (OMPROUTE).

v To turn the trace on and connect the external writer for TCP/IP stacks during
stack initialization, add the following TRACEOPTS option to the CTIEZBxx
member:
WTR(CTxxx)

where CTxxx is the procedure name of the external writer. Then restart the
TCP/IP stack if it is running.

v To turn the trace on and connect the external writer for TCP/IP stacks after
stack initialization, enter the following command:
TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcp_proc_name)

4. When the system responds, do one of the following:

v If no changes to the default options are required, enter the following
command:
r nnnn,WTR=<procedure_name>,END

where nnnn is the response number issued by the system.

516 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

v If specific options are desired, enter the following command:
r nnnn,Options=(A1,A2...An),WTR=<procedure_name>,end

where nnnn is the response number issued by the system and (A1,A2...An) is
the list of desired trace options.

5. Use the DISPLAY command to check the external writer status. Include a
sublevel if you are working with the packet trace component (SYSTCPDA):
display trace,comp=systcpda,sublevel

IEE843I 10.08.17 TRACE DISPLAY 142
SYSTEM STATUS INFORMATION

ST=(ON,0256k,00256k) AS=ON BR=OFF EX=ON MT=(ON,016K)

TRACENAME
=========
SYSTCPDA

MODE BUFFER HEAD SUBS
=====================
OFF HEAD 1

NO HEAD OPTIONS

SUBTRACE MODE BUFFER HEAD SUBS
--
TCPIP ON 0128K

ASIDS *NONE*
JOBNAMES *NONE*
OPTIONS MINIMUM
WRITER PTTCP

Note: At this point, the external writer is active for packet, data, and X.25
packet traces.

6. Turn the trace off or disconnect the external writer. The following two commands
disconnect from the external writer, while leaving the trace running internally.
TRACE CT,ON,COMP=<component_name>,SUB=(procedure_jobname)

When the system responds, enter the second command:
R nn,WTR=DISCONNECT,END

7. Stops the external writer using the following command:
TRACE CT,WTRSTOP=<procedure_name>

You can use the VARY TCPIP,,OBEYFILE command to make temporary dynamic
changes to system operation and network configuration without stopping and
restarting the TCP/IP address space. For example, if you had started the address
space TCPIPA and created a sequential dataset USER99.TCPIP.OBEYFIL1
containing packet trace statements, issue the following command:
VARY TCPIP,TCPIPA,CMD=OBEYFILE,DSN=USER99.TCPIP.OBEYFIL1

To start the external writer, reply using the following syntax:
TRACE CT,WTRSTART=PTTCP,WRAP

A message is displayed informing you that the external writer has been started.

Appendix A. Collecting Component Trace Data 517

Formatting Component Traces
You can format component trace records using IPCS panels or a combination of
IPCS panels and the CTRACE command, either from a dump or from
external-writer files. The code for the component trace record formatter can be
found in the hlq.SEZAMIG data set. This data set should be added as a
concatenation to the STEPLIB data set. For details, refer to the OS/390 MVS IPCS
Commands and the OS/390 MVS IPCS User’s Guide.

IPCS Panels
To format component traces using only IPCS panels, follow these steps:

1. Log on to TSO.

2. Access IPCS.

3. Select option 2 from the option list.

4. Select option 7 from the option list.

5. Select option 1 from the option list.

6. Select option D from the option list.

The CTRACE DISPLAY PARAMETERS screen is displayed (Figure 74):

Enter the component name in the COMPONENT field and as the value in
COMP(xx). For descriptions of options, see the following sections:

v SYSTCPIP: See “Chapter 5. TCP/IP Services Traces and IPCS Support” on
page 47.

v SYSTCPDA: See “Chapter 5. TCP/IP Services Traces and IPCS Support” on
page 47.

v SYSTCPRT: See “TCP/IP Services Component Trace for OMPROUTE” on
page 447.

CTRACE Command
To format component traces using the CTRACE command, follow these steps:

1. Log on to TSO.

ITTPC503----------CTRACE DISPLAY PARAMETERS--------------------------

System =======> (System name or blank)
Component =======> (Component name (required))
Subnames =======>

GMT/LOCAL =======> (Greenwich Mean Time or Local; GMT is default)
Start time =======> (mm/dd/yy,hh:mm:ss.dddddd)
Stop time =======>
Limit =======> Exception =======>
Report type =======> FULL (SHort, SUmmary, Full, Tally)
User exit =======> (Exit program name)
Override source =======>
Options =======>

To enter/verify required values, type any character
Entry IDS =======> Jobnames =======> ASIDs =======> OPTIONS =======> SUBS =======>

CTRACE COMP(xx) FULL

COMMAND =======>
F1=Help F2=Split F3=End F4=RETURN F5=RFIND F6=MORE F7=UP
F8=DOWN F9=Swap F10=LEFT F11=RIGHT F12=CURSOR

Figure 74. IPCS CTRACE

518 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

2. Access IPCS.

3. Select option 6 from the option list.

4. Enter a CTRACE command and options on the IPCS command line.

Tips for Using Component Trace
v Do not use the same writer to trace more than one TCP/IP stack or OMPROUTE

application. If you need to trace multiple stacks or applications, use separate
writers.

v If your external writer fills up and the wrap option is on, the writer overwrites
itself. If the nowrap option is on, the writer stops.

v Use REGION=0K on the trace writer procedure EXEC statement. This will help
ensure there is enough virutal memory for trace buffers.

v Use CONTIG on the disk space allocation of the trace data when using the
WRAP option. For example: SPACE=(1024,(4096,100),,CONTIG). This will
ensure that the space for the trace data set is available.

Appendix A. Collecting Component Trace Data 519

|
|

|
|
|

520 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix B. Search Paths

The OS/390 UNIX function _ipdspx() retrieves the TCPIP.DATA keyword
DATASETPREFIX. The function _iptcpn() retrieves the TCPIP.DATA keyword
TCPIPjobname. To locate the TCPIP.DATA configuration file with these keywords,
_ipdspx() and _iptcpn() use a search path beginning with
ENVIRONMENT VARIABLE "RESOLVER_CONFIG=dataset/file"
/etc/resolv.conf

The functions _ipdspx() and _iptcpn() stop searching at the first file they find,
regardless whether the file contains DATASETPREFIX or TCPIPjobname.

For example, consider the following scenario:

1. ENVIRONMENT VARIABLE “RESOLVER_CONFIG=dataset/file” is not set.

2. File /etc/resolv.conf exists but does not contain either a DATASETPREFIX or
TCPIPjobname keyword.

3. TCPIP.TCPIP.DATA exists and has a TCPIPjobname of TCPIPA.

If the SNMP agent is started and calls the function _iptcpn(), the function will return
a null string because the search stopped with /etc/resolv.conf.

This problem can be resolved one of the following ways:

v If running multiple stacks, specify RESOLVER_CONFIG to point to a resolver file
or data set, or

v If running only one stack, rename /etc/resolv.conf or update it with the required
information.

For more information on search paths, refer to OS/390 IBM Communications
Server: IP Configuration Reference.

© Copyright IBM Corp. 1994, 2000 521

522 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix C. First Failure Support Technology (FFST)

This appendix contains the following sections:

v FFST probe index

v FFST probe information

v FFST probe naming convention

v FFST probe descriptions

FFST Probe Index
Table 44 provides an index of FFST probes by probe name and component:

Table 44. FFST Probes

Probe Name Component Reference Probes

EZBIEDST IOCTL Enablement IOCTL Enablement Probes

EZBPADST Pascal API Pascal API Probes

EZBPFDST PFS IOCTL PFS IOCTL Probes

EZBTRDST TELNET Transform TELNET Transform Probes

EZBTTDST TELNET SRV TELNET SRV Probes

EZBCFDST Configuration Services Configuration Services Probes

EZBITDST Infrastructure Infrastructure

EZBCABND TCP/IP Base TCP/IP Base

EZBTCDST Transmission Control Protocol Transmission Control Protocol
Probes

EZBUDDST Update Datagram Protocol Layer Update Datagram Protocol
Layer Probes

EZBSKDST Streams Streams Probes

EZBRWDST Raw IP Layer Raw IP Layer Probes

EZBIPDST Internet Protocol Internet Protocol Probes

FFST Probe Information
When a TCP/IP probe is triggered, an anomaly has occurred in the network. The
process that received the condition might not complete normally. The TCP/IP
program should attempt to recover from the anomaly and will continue processing
subsequent requests. Recovery might not be possible for some system anomalies
and subsequent requests might fail, terminals might hang, and other abnormal
conditions might occur.

Dump data is collected to assist in finding the source of the problem. Contact the
appropriate IBM Support Center and supply the service representative with the
console listing that is written at the time the error and the dump data produced by
the probe.

© Copyright IBM Corp. 1994, 2000 523

FFST Probe Naming Conventions
Table 45 lists the naming conventions for FFST probes used in TCP/IP.

Table 45. FFST Naming Conventions

Characters Example Description

1, 2, 3 EZB These characters represent the product
identifier. For TCP/IP, these characters are
EZB.

4, 5 IT These characters represent the TCP/IP
component identifier, IT is the component
identifier for Infrastructure Services.

6 C For TCP/IP, this character is usually a C.

7, 8 01 These characters represent the probe
number. This number is not duplicated.

FFST Probe Descriptions
This section includes a table for each component that contains FFST probe
instructions. The components are in alphabetical order, and the probes for each
component are in alphanumeric order by probe name. Table 44 on page 523
provides an index of FFST probes in alphanumerical order by probe name. Each
table in this section shows the probe name, the module that issued it, and whether
the probe creates a full or minidump when triggered.

Table 46 lists the FFST probes for IOCTL enablement (EZBIECxx).

Table 46. IOCTL Enablement Probes

Probe Name Module Description Dump Type

EZBIEC01 EZBIEHOM Logical interface missing FULL

EZBIEC03 EZBIEPRT Add Portlist Member Failure FULL

EZBIEC04 EZBIECTL IOCTL Command is Not 99 FULL

EZBIEC05 EZBIECTL Null Queue Pointers FULL

EZBIEC06 EZBIECTL Invalid IOCTL Message FULL

EZBIEC07 EZBIEINI m_begin Interval Exceeded FULL

Table 47 lists the FFST probes for Infrastructure Services (EZBITCxx).

Table 47. Infrastructure Services Probes

Probe Name Module Description Dump Type

EZBITC01 EZBITPCI Connect entry failure FULL

EZBITC02 EZBITTUB Timer cancel for BAD TQE FULL

EZBITC05 EZBITTUB Timer cancel for BAD TQE2 FULL

EZBITC07 EZBITDUS Invalid ASCB FULL

EZBITC08 EZBITPCT Entry table destroy failure FULL

EZBITC09 EZBPTDEF Pat tree key zero FULL

EZBITC10 EZBPTDEF Pat tree key too big FULL

EZBITC11 EZBPTADD Pat tree key exists FULL

524 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

||

||||

||||

||||

||||

||||

||||

||||
|

|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 47. Infrastructure Services Probes (continued)

Probe Name Module Description Dump Type

EZBITC13 EZBITKRA Lock release error FULL

EZBITC15 EZBITKRA Lock release error - DUCB FULL

EZBITC16 EZBITKRS Suspend Lock Failure1 FULL

EZBITC17 EZBITKRS DUCB mismatch FULL

EZBITC18 EZBITKRS Lock Suspend Failure2 FULL

EZBITC19 EZBITSCS Storage size requested error FULL

EZBITC21 EZBITSMT Message triple release failure FULL

EZBITC22 EZBITPCI Create entry table failure FULL

EZBITC23 EZBITPCI TRESERVE linkage index failure FULL

Table 48 lists the FFST probes for Pascal API (EZBPACxx).

Table 48. FFST Probes for Pascal API

Probe Name Module Description Dump Type

EZBPAC01 EZBPAISL Streams operation software
failure

FULL

EZBPAC02 EZBPAISL Streams operation software
failure

FULL

EZBPAC03 EZBPAMQY Streams operation software
failure

FULL

EZBPAC04 EZBPAMQY Streams operation software
failure

FULL

EZBPAC05 EZBPAPIN Streams operation software
failure

FULL

EZBPAC06 EZBPAPIN Streams operation software
failure

FULL

EZBPAC07 EZBPAPIN Streams operation software
failure

FULL

EZBPAC08 EZBPAPIN Streams operation software
failure

FULL

EZBPAC09 EZBPARCL Streams operation software
failure

FULL

EZBPAC10 EZBPAROP Streams operation software
failure

FULL

EZBPAC11 EZBPAROP Streams operation software
failure

FULL

EZBPAC12 EZBPAROP Streams operation software
failure

FULL

EZBPAC13 EZBPAROP Streams operation software
failure

FULL

EZBPAC14 EZBPAROP Streams operation software
failure

FULL

EZBPAC15 EZBPAROP Streams operation software
failure

FULL

Appendix C. First Failure Support Technology (FFST) 525

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|

Table 48. FFST Probes for Pascal API (continued)

Probe Name Module Description Dump Type

EZBPAC16 EZBPAROP Streams operation software
failure

FULL

EZBPAC17 EZBPARRV Streams operation software
failure

FULL

EZBPAC18 EZBPARRV Streams operation software
failure

FULL

EZBPAC19 EZBPARRV Streams operation software
failure

FULL

EZBPAC20 EZBPARSN Streams operation software
failure

FULL

EZBPAC21 EZBPART2 Function code error FULL

EZBPAC22 EZBPATAB Streams operation software
failure

FULL

EZBPAC23 EZBPATAB Streams operation software
failure

FULL

EZBPAC24 EZBPATAB Streams operation software
failure

FULL

EZBPAC25 EZBPASTR Invalid type of M_ERROR FULL

EZBPAC26 EZBPASTR Storage allocation failure FULL

EZBPAC27 EZBPASTR Unsupported option FULL

EZBPAC28 EZBPASTR Unsupported option FULL

EZBPAC29 EZBPASTR Unrecognized TPI FULL

EZBPAC30 EZBPASTR Streams operation software
failure

FULL

EZBPAC31 EZBPASTR Streams operation software
failure

FULL

EZBPAC32 EZBPASTR Storage allocation failure FULL

EZBPAC33 EZBPASTR Streams operation software
failure

FULL

EZBPAC34 EZBPASTR Streams operation software
failure

FULL

EZBPAC35 EZBPASTR Streams operation software
failure

FULL

EZBPAC36 EZBPASTR Streams operation software
failure

FULL

EZBPAC37 EZBPASTR Streams operation software
failure

FULL

EZBPAC38 EZBPASTR Streams operation software
failure

FULL

EZBPAC39 EZBPASTR Streams operation software
failure

FULL

EZBPAC40 EZBPASTR Streams operation software
failure

FULL

EZBPAC41 EZBPASTR Streams operation software
failure

FULL

526 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 48. FFST Probes for Pascal API (continued)

Probe Name Module Description Dump Type

EZBPAC42 EZBPASTR Streams operation software
failure

FULL

EZBPAC43 EZBPASTR Storage allocation failure FULL

EZBPAC44 EZBPASTR Storage allocation failure FULL

EZBPAC45 EZBPASTR Storage allocation failure FULL

EZBPAC46 EZBPAUCL Streams operation software
failure

FULL

EZBPAC47 EZBPAUNR Streams operation software
failure

FULL

EZBPAC48 EZBPAUNR Streams operation software
failure

FULL

EZBPAC49 EZBPAUNR Streams operation software
failure

FULL

EZBPAC50 EZBPAURV Streams operation software
failure

FULL

EZBPAC51 EZBPAURV Streams operation software
failure

FULL

EZBPAC52 EZBPAURV Streams operation software
failure

FULL

EZBPAC53 EZBPATOP Streams operation software
failure

FULL

EZBPAC54 EZBPATOP Streams operation software
failure

FULL

EZBPAC55 EZBPATOP Streams operation software
failure

FULL

EZBPAC56 EZBPATOP Streams operation software
failure

FULL

EZBPAC57 EZBPATOP Streams operation software
failure

FULL

EZBPAC58 EZBPATOP Streams operation software
failure

FULL

EZBPAC59 EZBPATOP Streams operation software
failure

FULL

EZBPAC60 EZBPAUOP Streams operation software
failure

FULL

EZBPAC61 EZBPAUOP Streams operation software
failure

FULL

EZBPAC62 EZBPAUOP Streams operation software
failure

FULL

EZBPAC63 EZBPAUOP Streams operation software
failure

FULL

EZBPAC64 EZBPAUOP Streams operation software
failure

FULL

EZBPAC65 EZBPAUOP Streams operation software
failure

FULL

EZBPAC66 EZBPAUOP TPI protocol error FULL

Appendix C. First Failure Support Technology (FFST) 527

Table 48. FFST Probes for Pascal API (continued)

Probe Name Module Description Dump Type

EZBPAC67 EZBPATFR Streams operation software
failure

FULL

EZBPAC68 EZBPATFR Streams operation software
failure

FULL

EZBPAC69 EZBPATOA Streams operation software
failure

FULL

EZBPAC70 EZBPATOA Streams operation software
failure

FULL

EZBPAC71 EZBPATOA Streams operation software
failure

FULL

EZBPAC72 EZBPATOA Streams operation software
failure

FULL

EZBPAC73 EZBPATSN Streams operation software
failure

FULL

EZBPAC74 EZBPATST Streams Operation Software
Error

FULL

EZBPAC75 EZBPATTN Streams operation software
failure

FULL

EZBPAC76 EZBPATTN Streams operation software
failure

FULL

EZBPAC77 EZBPATTN Streams operation software
failure

FULL

EZBPAC78 EZBPAUSN Streams operation software
failure

FULL

EZBPAC79 EZBPAUST Streams operation software
failure

FULL

EZBPAC80 EZBPAUST Streams operation software
failure

FULL

EZBPAC81 EZBPATCL Streams operation software
failure

FULL

EZBPAC82 EZBPATCL Allocate storage failure FULL

EZBPAC83 EZBPATCL Streams operation software
failure

FULL

EZBPAC84 EZBPATCL Allocate storage failure FULL

EZBPAC85 EZBPATON Streams Software Operation
Error

FULL

EZBPAC86 EZBPATON Streams operation software
failure

FULL

EZBPAC87 EZBPATON Streams operation software
failure

FULL

EZBPAC88 EZBPATON Streams operation software
failure

FULL

EZBPAC89 EZBPATON Streams operation software
failure

FULL

EZBPAC90 EZBPATON Streams operation software
failure

FULL

528 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|||
|
|

|||
|
|

Table 48. FFST Probes for Pascal API (continued)

Probe Name Module Description Dump Type

EZBPAC91 EZBPATON Streams operation software
failure

FULL

EZBPAC92 EZBPATON Streams operation software
failure

FULL

EZBPAC93 EZBPATON Streams operation software
failure

FULL

EZBPAC94 EZBPATON Streams operation software
failure

FULL

EZBPAC95 EZBPATON TPI protocol error FULL

EZBPAC96 EZBPATON Streams operation software
failure

FULL

EZBPAC97 EZBPATON Streams operation software
failure

FULL

EZBPAC98 EZBPATON TPI protocol error FULL

EZBPAC99 EZBPATON Streams operation software
failure

FULL

EZBPAC0A EZBPATON Streams operation software
failure

FULL

EZBPAC0B EZBPATON TPI protocol error FULL

EZBPAC0C EZBPATON Streams operation software
failure

FULL

EZBPAC0D EZBPATON Streams operation software
failure

FULL

EZBPAC0E EZBPATON TPI protocol error FULL

EZBPACA0 EZBPATOP Streams operation software
failure

FULL

EZBPACA1 EZBPATOP Streams operation software
failure

FULL

EZBPACA2 EZBPATOP Streams operation software
failure

FULL

EZBPACB0 EZBPASTR Storage allocate failure FULL

Table 49 lists the FFST probes for PFS IOCTL (EZBPFCxx).

Table 49. PFS IOCTL Probes

Probe Name Module Description Dump Type

EZBPFC01 EZBPFIOC SIOCSETTKN
mismatch

FULL

EZBPFC02 EZBPFIOC SIOCSETTKN
mismatch

FULL

Appendix C. First Failure Support Technology (FFST) 529

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

Table 50 lists the FFST probes for Telnet Transform (EZBTRCxx).

Table 50. Telnet Transform Probes

Probe Name Module Description Dump Type

EZBTRC01 EZBTRCLT Unexpected transform
request

FULL

EZBTRC03 EZBTRGTI Terminal ID mismatch FULL

EZBTRC04 EZBTRMST Unexpected transform
WorkQ request

FULL

EZBTRC05 EZBTRRTI Negative transform terminal
value

FULL

Table 51 lists the FFST probes for Telnet SRV (EZBTTCxx).

Table 51. FFST Probes for Telnet SRV

Probe Name Module Description Dump Type

EZBTTC01 EZBTTCLS Unlocatable server/vector
table

FULL

EZBTTC02 EZBTTCLS CVB lock failure FULL

EZBTTC03 EZBTTTLT Invalid TCVB token range FULL

EZBTTC04 EZBTTTLT Invalid TST entry FULL

EZBTTC05 EZBTTTLT Telnet token segment table
not found

FULL

Table 52 lists FFST probes for Configuration Services (EZBCFCxx).

Table 52. Configuration Services Probes

Probe Name Module Description Dump Type

EZBCFC01 EZACFFST Unknown configuration error FULL

EZBCFC02 EZACFTEL Bad protocol Type 1 FULL

EZBCFC03 EZACFFST Configuration bad
parameters error

FULL

EZBCFC04 EZACFTEL Socket closed FULL

EZBCFC05 EZACFTEL Bad protocol Type 2 FULL

EZBCFC06 EZACFTEL Bad protocol Type 3 FULL

Table 53 lists the FFST probe for TCP/IP Base (EZBABCxx).

Table 53. TCP/IP Base Probes

Probe Name Module Description Dump Type

EZBABC01 EZBCABND A C abend recovery failed FULL

Table 54 on page 531 lists the FFST probes for Transmission Control Protocol
(EZBTCCxx).

530 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 54. Transmission Control Protocol Probes

Probe Name Module Description Dump Type

EZBTCC01 EZBTCSTR Name on Open Does Not
Match

FULL

EZBTCC02 EZBTCSTR Could not allocate the SID FULL

EZBTCC03 EZBTCSTR Cannot Repeat Named Open FULL

EZBTCC04 EZBTCSTR Hashtable Insert Failure FULL

EZBTCC05 EZBTCWRT Not the Controlling Stream FULL

EZBTCC06 EZBTCWRT Not the Controlling Stream FULL

EZBTCC07 EZBTCWRT Not the Controlling Stream FULL

Table 55 lists the FFST probes for Update Datagram Protocol Layer (EZBUDCxx).

Table 55. Update Datagram Protocol Layer Probes

Probe Name Module Description Dump Type

EZBUDC01 EZBUDEXC DMUX Machine Index Failure FULL

EZBUDC02 EZBUDEXC DMUX Machine Index Failure FULL

EZBUDC03 EZBUDEXC SNMP Machine Index Failure FULL

EZBUDC04 EZBUDSTR Name on Open Does Not
Match

FULL

EZBUDC05 EZBUDSTR Allocate the MUCB SID
failure

FULL

EZBUDC06 EZBUDSTR Stack is Already Active FULL

EZBUDC07 EZBUDSTR Unlock for Machine Index
Failure

FULL

EZBUDC08 EZBUDSTR Unlock for Machine Index
Failure

FULL

EZBUDC09 EZBUDSTR Unlock for Machine Index
Failure

FULL

EZBUDC10 EZBUDWRT Unknown Primitive Error Exit FULL

EZBUDC11 EZBUDWRT Unknown Primitive Error Exit FULL

EZBUDC12 EZBUDWRE Matching Prefix Error FULL

EZBUDC13 EZBUDWRE Matching Prefix Error FULL

Table 56 lists the FFST probes for Streams (EZBSKCxx).

Table 56. Streams Probes

Probe Name Module Description Dump Type

EZBSKC01 EZBSKVRB Streams Are Not Functioning
(TSDX_Streams_vcastint)

FULL

EZBSKC02 EZBSKVRB Unsupported Message Type FULL

Appendix C. First Failure Support Technology (FFST) 531

||||

||||

||||

||||

||||

|||
|
|

||||

|

||

||||

|||
|
|

||||
|

Table 57 lists the FFST probes for Raw IP Layer (EZBRWCxx).

Table 57. Raw IP Layer Probes

Probe Name Module Description Dump Type

EZBRWC01 EZBRWWRI WILD TPI Primitive to RAW FULL

EZBRWC02 EZBRWWRI Invalid Messages FULL

EZBRWC03 EZBRWSTR Name on Open Does Not
Match

FULL

EZBRWCO4 EZBRWSTR Could Not Allocate the
MRCB SID

FULL

EZBRWCO5 EZBRWSTR Stack is Already Active FULL

Table 58 lists the FFST probes for Internet Protocol (EZBIPCxx).

Table 58. FFST Probes for Internet Protocol

Probe Name Module Description Dump Type

EZBIPC01 EZBIPSTR Not a Clone Open FULL

Table 59 lists the FFST probes for the Cross-System Coupling Facility (XCF)
(EZBXFCxx).

Table 59. XCF Probes

Probe Name Module Description Dump Type

EZBXFC01 EZBXFINI Join Failed FULL

EZBXFC02 EZBXFINI Second Query Failed FULL

EZBXFC03 EZBXFINI First Query Failed FULL

EZBXFC04 EZBXFMSI MsgI Failed FULL

EZBXFC05 EZBXFMSO MsgO Failed FULL

532 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|

|
|

Appendix D. Overview of Internetworking

Networking with TCP/IP connects different networks so that they form one logical
interconnected network. This large overall network is called an internetwork, or
more commonly, an intranet or internet. Each network uses its own physical layer,
and the different networks are connected to each other by means of machines that
are called gateways.

Gateways transfer IP datagrams between networks. This function is called routing;
therefore, the internet gateways are often called routers. Within this appendix, the
terms router and gateway are synonymous; both refer to a machine that transfers
IP datagrams between different networks.

Note: If IP datagrams are not passed properly over a bridge, none of the higher
TCP/IP protocols or applications will work correctly. For a discussion of
bridges, refer to TCP/IP Tutorial and Technical Overview.

Linking networks in this way takes place at the network level of the International
Organization for Standardization (ISO). It is possible to link networks at a lower
level layer using bridges. Bridges link networks at the ISO data link layer. Bridges
pass packets or frames between different physical networks regardless of the
protocols contained within them. An example of a bridge is the IBM 8209, which can
interconnect an Ethernet network and a token-ring network.

Note: A bridge does not connect TCP/IP networks together. It connects physical
networks together that will still form the same TCP/IP network. (A bridge
does not do IP routing.)

Figure 75 on page 534 depicts a router and a bridge. The router connects Network
1 to Network 2 to form an intranet.

© Copyright IBM Corp. 1994, 2000 533

Maximum Transmission Unit (MTU)
Different physical networks have different maximum frame sizes. Within the different
frames, there is a maximum size for the data field. This value is called the
maximum transmission unit (MTU), or maximum packet size in TCP/IP terms.

Figure 76 on page 535 shows the relationship between MTU and frame size.

Network 1

Router

Bridge

Token Ring

Ethernet

Bridge

Token Ring Token Ring

Network 2

Internet A

Figure 75. Routers and Bridges within an Internet

534 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

If an IP datagram is to be sent out onto the network and the size of the datagram is
bigger than the MTU, IP will fragment the datagram into multiple fragments, so that
it will fit within the data fields of the frames. If the MTU is larger than the network
can support, then the data is lost.

The value of MTU is especially important when bridging is used because of the
different network limits. RFC 791 —Internet Protocols states that all IP hosts must
be prepared to accept datagrams of up to 576 bytes. For this reason, use an MTU
of 576 bytes if bridging (or routing) problems are suspected.

Note: MTU is equivalent to the MAX_PACKET_SIZE value on the GATEWAY
statement, or the MTU value specified on BSDROUTINGPARMS when
TRUE.

Fiber Distributed Data Interface (FDDI)
The FDDI specifications define a family of standards for 100 Mbps fiber optic LANs
that provide the physical layers and media access control sublayer of the data link
layer as defined by the ISO/OSI Model.

IP-FDDI defines the encapsulating of IP datagrams and ARP requests and replies in
FDDI frames.

All frames are transmitted in standard IEEE 802.2 LLC Type 1 Unnumbered
Information format, with the DSAP and SSAP fields of the 802.2 header set to the
assigned global SAP value for SNAP (decimal 170). The 24-bit Organization Code
in the SNAP header is set to zero, and the remaining 16 bits are the EtherType
from Assigned Numbers:

v 2048 for IP

v 2054 for ARP

Typically, the MTU is set to 4352.

Media Access Control Header Data

Maximum Frame Size

DataLogical Link Control Header

Media Access Control Sublayer

Logical Link
Control Sublayer

Data Link

Network Protocol

IPICMP

RARP

ARP

Figure 76. Relationship of MTU to Frame Size

Appendix D. Overview of Internetworking 535

Mapping of 32-bit Internet addresses to 48-bit FDDI addresses is done by the ARP
dynamic discovery procedure. The broadcast Internet addresses (whose <host
address> is set to all ones) are mapped to the broadcast FDDI addresses (all
ones).

IP datagrams are transmitted as a series of 8-bit bytes using the usual TCP/IP
transmission order called “big-endian” or “network byte order.”

For more information on FDDI architecture, please refer to LAN Concepts and
Products.

Token-Ring IEEE 802.5
When a token-ring frame passes through a bridge, the bridge adds information to
the routing information field (RIF) of the frame (assuming that the bridge supports
source route bridging). The RIF contains information concerning the route taken by
the frame and, more importantly, the maximum amount of data that the frame can
contain within its data field. This is called the maximum information field (I-field).
The value specified for the maximum I-field is sometimes referred to as the largest
frame size, but this means the largest frame size, excluding headers. See Figure 77
for details on the relationship of the I-field to the header fields.

Note: It is important to be aware that the IBM implementation limits the number of
bridges through which a frame can be passed to seven. An attempt to pass
a frame through an eighth bridge will fail.

The maximum I-field is always decreased by a bridge when it cannot handle the
value specified. So, for a given path through a number of token-ring bridges, the
maximum I-field is the largest value that all of the bridges will support. This value is
specified in the Routing Control (RC) field within the RIF as shown in Figure 77.

The size of the MTU is the maximum amount of data that is allowed within a frame.
The token-ring architecture specifies the maximum value of the I-field in the data
frame, which corresponds to the maximum size of the L-PDU. The maximum I-field
is determined by the bit configuration in the RC field, and is present in all routed
frames.

Table 60 on page 537 shows the relationship between the RC field and the
maximum I-field values.

SD AC FC DA SA RI L-PDU FCS ED FS Data Frame

Routing
Control

DSAP SSAP CONT P_id Type Data

1 1 1 6 6 4 1 1 byte

2 2 bytes

Segment
Number . . .

I-Field

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 77. Format of an IEEE 802.5 Token-Ring Frame

536 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Table 60. Relationship between RC Field and Maximum I-Field Value

Routing Control Field Maximum I-Field in Bytes

x000 xxxx xxxx xxxx 516

x001 xxxx xxxx xxxx 1500

x010 xxxx xxxx xxxx 2052

x011 xxxx xxxx xxxx 4472

x100 xxxx xxxx xxxx 8144

x101 xxxx xxxx xxxx 11407

x110 xxxx xxxx xxxx 17800

In Figure 77 on page 536 we can see that, within the L-PDU, the Logical Link
Control (LLC) header uses eight bytes. Thus the MTU value is eight bytes less than
the maximum I-field. Note that the L-PDU contains a SNAP header, as described in
“Subnetwork Access Protocol (SNAP)” on page 538. Follow this example to
calculate the MTU for a token-ring. The token-ring bridges always adjust the value
of the maximum I-field to that of the smallest one in the path. Ensure that the MTU
value is less than the value specified by the bridge.

Typically, within a 4-Mbps token-ring network, the value of maximum I-field will be
2052 bytes, and so the MTU would be set to 2044 bytes (2052 minus 8 bytes for
the LLC header).

IEEE 802.3
The frame used in IEEE 802.3 Ethernet networks is shown in Figure 78.

The maximum size of the L-PDU for a 10Mbps network is 1500 bytes. Because 8
bytes are used within the L-PDU for the LLC header, this means that the maximum
size of the data field is 1492 bytes. Therefore, the MTU for IEEE 802.3 networks
should be set to 1492 bytes.

Ethernet — DIX V2
The frame used in DIX Ethernet networks is shown in Figure 79 on page 538.

Pre SD DA SA LEN L-PDU PAD FCS Data Frame

DSAP SSAP CONT P_id Type Data

7 1 6 6 2 4

Logical Link Control
Protocol Data Unit

(L-PDU)
1 1 1 3 2 n

Figure 78. Format of an IEEE 802.3 Frame

Appendix D. Overview of Internetworking 537

There is no LLC data in an Ethernet V2 frame. The maximum size for the frame is
1526 bytes. This means that the data field can be 1500 bytes maximum. The MTU
for Ethernet V2 can be set to 1500 bytes.

It is possible to bridge Ethernet V2 frames to either IEEE 802.3 or IEEE 802.5
networks; a LLC header is added or removed from the frame, as required, as part
of the conversion when bridging.

Subnetwork Access Protocol (SNAP)
The TCP/IP software provides protocol support down to the ISO network layer.
Following this layer is the data link layer, which can be separated into two
sublayers. These are the Logical Link Control (LLC) and the Media Access Control
(MAC) layers.

The IEEE 802.2 standard defines the LLC sublayer, and the MAC sublayer is
defined in IEEE 802.3, IEEE 802.4, and IEEE 802.5.

The format of an IEEE 802.2 LLC header with the SNAP header is shown in
Figure 80.

The values of the fields in the LLC header when a SNAP header is used are
specified in RFC 1042 - Standard for Transmission of IP Datagrams over IEEE 802
Networks The values specified are:

Field Value

DSAP X'AA'

SSAP X'AA'

CONT X'03' Specifies unnumbered information (UI)

P_id X'00 00 00'

Type

X'08 00' — IP
X'08 06' — ARP
X'08 35' — RARP

Pre SD DA SA Type Data FCS Data Frame

8 6 6 6 2 n 4

Figure 79. Format of an Ethernet V2 Frame

DSAP SSAP CONT P_id Type Data

SNAP Header

1 1 1 3 2

LLC with SNAP Header

Figure 80. SNAP Header

538 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

IP Routing
IP routing is based on routing tables held within a router or internet host. These
tables can either be static or dynamic. Typically, static routes are predefined within
a configuration file, and dynamic routes are “learned” from the network, using a
routing protocol.

Internet Addressing
A link on a host on an intranet is identified by its IP address. Internet Protocol (IP) is
the protocol that is used to deliver datagrams between such hosts. It is assumed
the reader is familiar with the TCP/IP protocols. Details of some of the protocols can
be found in the TCP/IP Tutorial and Technical Overview. Specific information
relating to the Internet Protocol can be found in RFC 791.

An IP address is a 32-bit address that is usually represented in dotted decimal
notation, with a decimal value representing each of the four octets (bytes) that
make up the address. For example:

00001001010000110110000100000010 32-bit address
00001001 01000011 01100001 00000010 4 octets

9 67 97 2 dotted decimal notation (9.67.97.2)

The IP address consists of a network address and a host address. Within the
Internet, the network addresses are assigned by a central authority, the Network
Information Center (NIC). The portion of the IP address that is used for each of
these addresses is determined by the class of address. There are three commonly
used classes of IP address (see Figure 81).

The class of the address is determined by the first octet of the IP address.
Figure 82 on page 540 shows how the class of address is determined. The figure
also shows Class D addresses. Class D addresses represent multicast groups, not
network IP addresses. Multicast group addresses consist of the high-order, four bits
of 1110 and the remaining 28 bits, which form a multicast group ID.

32-bit IP Address
Class A:

Class B:

Class C:

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
Host

Host

Host

Net
Net

Net

Figure 81. Classes of IP Addresses

Appendix D. Overview of Internetworking 539

As shown in Figure 82, the value of the bits in the first octet determine the class of
address, and the class of address determines the range of values for the network
and host segment of the IP address. For example, the IP address 9.67.97.2 would
be a class A address, since the first two bits in the first octet contain B'00'. The
network part of the IP address is “9” and the host part of the IP address is
“67.97.2”.

Refer to RFC 1166 — Internet Numbers for more information about IP addresses.
Refer to RFC 1060 — Assigned Numbers for more information about reserved
network and host IP addresses, such as a network broadcast address.

Figure 83 on page 541 shows a simple network with a bridge and a router.

32-bit address xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Class A 0xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 00000000
max 01111111
range 1 - 126 (decimal notation; 0 and 127 are reserved)

Class B 10xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 10000000
max 10111111
range 128 - 191 (decimal notation)

Class C 110xxxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 11000000
max 11011111
range 192 - 223 (decimal notation)

Class D 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx
min 11100000
max 11101111
range 224-239 (decimal notation)

Figure 82. Determining the Class of an IP Address

540 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Machine D is acting as an IP router and will transfer IP datagrams between the
class C, 192.9.200, network and the class A, 9.67.32 network. It is important to note
that for Machine B to communicate with Machine C using TCP/IP, both Machine D
and the bridge have to be correctly configured and working.

TCP/IP uses the HOME statements, defined in the data set hlq.PROFILE.TCPIP, to
assign home addresses and associated link names. HOME statements can be
updated using the VARY TCPIP command. Refer to OS/390 IBM Communications
Server: IP Configuration Reference for more information about both the HOME
statements and the VARY TCPIP command.

Direct Routing
Direct routing can take place when two hosts are directly connected to the same
physical network. This can be a bridged token-ring network, a bridged Ethernet, or
a bridged token-ring network and Ethernet. The distinction between direct routing
and indirect routing is that with direct routing an IP datagram can be delivered to
the remote host without subsequent interpretation of the IP address, by an
intermediate host or router.

192.9.200.1

192.9.200.2

9.67.32.1

Bridge

Ethernet

Machine A

TCP/IP

Machine D

TCP/IP

LAN
Segment 001

9.67.32.2

192.9.200.3

Machine B

TCP/IP

Machine C

TCP/IP

LAN
Segment 002

Figure 83. Routing and Bridging

Appendix D. Overview of Internetworking 541

In Figure 83 on page 541, a datagram traveling from Machine A to Machine B would
be using direct routing, although it would be traveling through a bridge.

Indirect Routing
Indirect routing takes place when the destination is not on a directly attached IP
network, forcing the sender to forward the datagram to a router for delivery.

In Figure 83 on page 541, a datagram from Machine A being delivered to Machine
C would be using indirect routing, with Machine D acting as the router (or gateway).

Simplified IP Datagram Routing Algorithm
To route an IP datagram on the network, the algorithm shown in Figure 84 is used.

Using this general routing algorithm, it is very easy to determine where an IP
datagram will be routed. Following is a simple example based on the configuration
shown in Figure 83 on page 541.
Machine A IP Address = 192.9.200.1

Routing Table

Destination Gateway

192.9.200.1 192.9.200.1 (Machine A's network interface)

9.0.0.0 192.9.200.2 (Route to the 9.n.n.n address is
via Machine D, 192.9.200.2)

Machine A sends a datagram to host 192.9.200.3 (Machine B), using the direct
route, 192.9.200.1 (its own network interface). Machine A sends a datagram to host
9.67.32.2 (Machine C), using the indirect route, 192.9.200.2 (Machine D), and
Machine D then forwards the datagram to Machine C.

Yes

No

Does
destination IP

network address
equal one of

my IP network
addresses?

Send IP datagram to
gateway corresponding
to the destination IP address.

Send IP datagram
on local network.

Figure 84. General IP Routing Algorithm

542 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Subnetting
A variation of the network and host segments of an IP address, known as
subnetting, can be used to physically and logically design a network. For example,
an organization can have a single internet network address (NETID) that is known
to users outside the organization, yet configure its internal network into different
departmental subnets. Subnetwork addresses enhance local routing capabilities,
while reducing the number of network addresses required.

To illustrate this, let us consider a simple example. Assume that we have an
assigned class C network address of 192.9.200 for our site. This would mean that
we could have host addresses from 192.9.200.1 to 192.9.200.254. If we did not use
subnetting, then we could only implement a single IP network with 254 hosts. To
split our site into two logical subnetworks, we could implement the network scheme
shown in Figure 85:

OS/390 TCP/IP uses a slightly different scheme for the subnet mask when defining
the GATEWAY statements in the hlq.PROFILE.TCPIP data set and for displaying
the subnet mask within a onetstat -g command. The subnet mask is applied only to
the host segment of the IP address, and onetstat displays the subnet mask for only
the host segment of the IP address. The subnet mask in the preceding chart as
defined for OS/390 TCP/IP would be:

0 0 0 192 0.0.0.192
00000000 00000000 00000000 11000000

Although OS/390 TCP/IP defines the subnet mask differently, the application of the
subnet mask and subnet value to the IP address is consistent with RFC-architected
routing algorithms. A subnet mask of 255 is used for the remainder of this section of
the chapter, to retain symmetry with other routing documents that use 255 as the
subnet value for the network segment of an IP address.

Without Subnetting:
Network Host Address
Address Range

192 9 200 host
11000000 00001001 11001000 xxxxxxxx 192.9.200 1 - 254

With Subnetting:
Subnet Host Address Subnet
Address Range Value

192 9 200 64 host
11000000 00001001 11001000 01xxxxxx 192.9.200.64 65 - 126 01

Subnet Host Address Subnet
Address Range Value

192 9 200 128 host
11000000 00001001 11001000 10xxxxxx 192.9.200.128 129 - 190 10

The subnet mask would be

255 255 255 192
11111111 11111111 11111111 11000000

Figure 85. Subnetting Scheme

Appendix D. Overview of Internetworking 543

Because subnets B'00' and B'11' are both reserved, only two subnets are available.
All 0s and all 1s have a special significance in internet addressing and should be
used with care. Also notice that the total number of host addresses that we can use
is reduced for the same reason. For instance, we cannot have a host address of 16
because this would mean that the subnet/host segment of the address would be
B'0001000', which with the subnet mask we are using, would mean a subnet value
of B'00', which is reserved.

The same is true for the host segment of the fourth octet. A fourth octet value of
B'01111111' is reserved because, although the subnet of B'01' is valid, the host
value of B'1' is reserved.

The network segment of the subnet mask is always assumed to be one, so each
octet has a decimal value of 255. For example, with a class B address, the first two
octets are assumed to be 255.255.

Simplified IP Datagram Routing Algorithm with Subnets
When subnetting is used, the algorithm to find a route for an IP datagram is similar
to the one for general routing, with the exception that the addresses being
compared are the result of a logical AND of the subnet mask and the IP address.

For example:
IP address: 9.67.32.18 00001001 01000011 00100000 00010010

<AND>
Subnet Mask: 255.255.255.240 11111111 11111111 11111111 11110000

Result of
Logical AND: 9.67.32.16 00001001 01000011 00100000 00010000

The subnet address is 9.67.32.16, and it is this value that is used to determine the
route used.

Figure 86 shows the routing algorithm used with subnets.

Figure 87 on page 545 shows how a subnet route is resolved.

Yes

No

Does
destination IP

address ANDed with
my subnet mask equal

any of my IP addresses
ANDed with their my

subnet mask?

Send IP datagram to
gateway corresponding
to the destination IP
address ANDed with my
subnet mask.

Send IP datagram
on local network.

Figure 86. Routing Algorithm with Subnets

544 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Static Routing
Static routing, as the name implies, is defined within the local host, and must be
manually changed as the network changes. Typically, a configuration file will contain
the definitions for directly-attached networks, routes for specific hosts, and a
possible default route that directs packets to a destination for networks that are not
previously defined.

Static routes can be defined using either the OS/390 TCP/IP GATEWAY or
BEGINROUTES statements to configure the internal routing tables; these
statements are defined in the hlq.PROFILE.TCPIP data set. The internal routing
tables for OS/390 TCP/IP can be modified by either: 1) changing the GATEWAY or
BEGINROUTES statements and recycling the TCP/IP address space or 2) using the
VARY TCPIP command. Refer to the OS/390 IBM Communications Server: IP
Configuration Reference for details about defining the GATEWAY or
BEGINROUTES statements and using the VARY command.

Note: When the GATEWAY or BEGINROUTES statements are updated using
VARY TCPIP, all previously-defined routes are discarded and replaced by the
new GATEWAY or BEGINROUTES definitions.

Dynamic Routing
Dynamic routing is the opposite of static routing. A TCP/IP protocol is used to
dynamically update the internal routing tables when changes to the network occur.
One routing protocol is the Routing Information Protocol (RIP). It is implemented by
both the OROUTED and OMPROUTE routing applications. A newer protocol is
open shortest path first (OSPF). It is implemented by OMPROUTE only. For more
details about OMPROUTE, see “Chapter 25. Diagnosing OMPROUTE Problems” on
page 435. For more details about OROUTED, see “Chapter 24. Diagnosing

Datagram sent to gateway 9.67.32.18

IP datagram with
Destination IP address = 9.67.32.34

arrives at Machine A (9.67.32.17)

Machine A’s Routing Table

Destination

9.67.32.16 9.67.32.17 255.255.255.240
9.67.32.32 9.67.32.18 255.255.255.240

Gateway Subnet mask

00001001 01000011 00100000 00100010
9 67 32 34

11111111 11111111 11111111 11110000
255 255 255 240

00001001 01000011 00100000 00100000
9 67 32 32

<AND>

Figure 87. Example of Resolving a Subnet Route

Appendix D. Overview of Internetworking 545

|
|

OROUTED Problems” on page 417. For configuration information about both
applications, refer to the OS/390 IBM Communications Server: IP Configuration
Reference.

546 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix E. How to Read a Syntax Diagram

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and Punctuation
The following symbols are used in syntax diagrams:

;; Marks the beginning of the command syntax.

; Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command syntax.

;< Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Parameters
The following types of parameters are used in syntax diagrams.
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase letters and can be entered in uppercase or lowercase. For example, a
command name is a keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax Examples
In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

SS USER user_id
password

ST

Longer than one line: If a diagram is longer than one line, the first line ends with a
single arrowhead and the second line begins with a single arrowhead.

SS First Line OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 OPERAND6 S

© Copyright IBM Corp. 1994, 2000 547

S Second Line ST

Required operands: Required operands and values appear on the main path line.

SS REQUIRED_OPERAND ST

You must code required operands and values.

Choose one required item from a stack: If there is more than one mutually
exclusive required operand or value to choose from, they are stacked vertically in
alphanumeric order.

SS REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

ST

Optional values: Optional operands and values appear below the main path line.

SS
OPERAND

ST

You can choose not to code optional operands and values.

Choose one optional operand from a stack: If there is more than one mutually
exclusive optional operand or value to choose from, they are stacked vertically in
alphanumeric order below the main path line.

SS
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2

ST

Repeating an operand: An arrow returning to the left above an operand or value
on the main path line means that the operand or value can be repeated. The
command means that each operand or value must be separated from the next by a
comma.

SS W

,

REPEATABLE_OPERAND ST

Selecting more than one operand: An arrow returning to the left above a group of
operands or values means more than one can be selected, or a single one can be
repeated.

548 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

SS

W

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

ST

If an operand or value can be abbreviated, the abbreviation is described in the text
associated with the syntax diagram.

Case Sensitivity: TCP/IP commands are not case sensitive. You can code them in
uppercase or lowercase.

Nonalphanumeric characters: If a diagram shows a character that is not
alphanumeric (such as parentheses, periods, commas, and equal signs), you must
code the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

SS OPERAND=(001,0.001) ST

Blank spaces in syntax diagrams: If a diagram shows a blank space, you must
code the blank space as part of the syntax. In this example, you must code
OPERAND=(001 FIXED).

SS OPERAND=(001 FIXED) ST

Default operands: Default operands and values appear above the main path line.
TCP/IP uses the default if you omit the operand entirely.

SS
DEFAULT

OPERAND
ST

Variables: A word in all lowercase italics is a variable. Where you see a variable in
the syntax, you must replace it with one of its allowable names or values, as
defined in the text.

SS variable ST

Syntax fragments: Some diagrams contain syntax fragments, which serve to break
up diagrams that are too long, too complex, or too repetitious. Syntax fragment
names are in mixed case and are shown in the diagram and in the heading of the
fragment. The fragment is placed below the main diagram.

Appendix E. How to Read a Syntax Diagram 549

SS Reference to Syntax Fragment ST

Syntax Fragment:

1ST_OPERAND,2ND_OPERAND,3RD_OPERAND

References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

SS
(1)

OPERAND ST

Notes:

1 An example of a syntax note.

550 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix F. Information Apars

This appendix lists information apars for IP-related books.

Notes:

1. Information apars contain updates to previous editions of the manuals listed
below. Books updated for V2R10 contain all the updates except those contained
in the information apars that may be issued after V2R10 books went to press.

2. Information apars are predefined for CS for OS/390 V2R10 and may not contain
updates.

IP Information Apars
Table 61 lists information apars for IP-related books.

Table 61. IP Information Apars

Title CS for
OS/390 2.10

CS for
OS/390 2.8

CS for
OS/390 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

TCP/IP 3.3

High Speed Access
Service User’s Guide

(GC31-8676)

ii11629 ii11566 ii11412 ii11181

IP API Guide

(SC31-8516)

II12371 ii11635 ii11558 ii11405 ii11144

IP CICS Sockets Guide

(SC31-8518)

ii11626 ii11559 ii11406 ii11145

IP Configuration

(SC31-8513)

ii11620
ii12068

ii11555
ii11637
ii11995

ii11402
ii11619
ii12066

ii11159
ii11979

ii10633

IP Configuration Guide

(SC31-8725)

II12362

IP Configuration
Reference

(SC31-8726)

II12363

IP Diagnosis

(SC31-8521)

II12366 ii11628 ii11565 ii11411 ii11160
ii11414

ii10637

IP Messages Volume 1

(SC31-8517)

II12367 ii11630 ii11562 ii11408 Messages
and Codes

ii10635

IP Messages Volume 2

(SC31-8570)

II12368 ii11631 ii11563 ii11409

IP Messages Volume 3

(SC31-8674)

II12369 ii11632 ii11564 ii11410 ii11158

IP Migration

(SC31-8512)

II12361 ii11618 ii11554 ii11401

© Copyright IBM Corp. 1994, 2000 551

|

|

|

|

|
|

|

Table 61. IP Information Apars (continued)

Title CS for
OS/390 2.10

CS for
OS/390 2.8

CS for
OS/390 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

TCP/IP 3.3

IP Network Print
Facility

(SC31-8522)

ii11627 ii11561 ii11407 ii11150

IP Programmer’s
Reference

(SC31-8515)

ii11634 ii11557 ii11404 ii10636

IP and SNA Codes

(SC31-8571)

II12370 ii11917 Added
TCP/IP codes
to VTAM
codes V2R6
ii11611

ii11361 ii11146
ii11097

IP User’s Guide

(GC31-8514)

II12365 ii11625 ii11556 ii11403 ii11143 ii10634

552 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Appendix G. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2000 553

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs

554 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

Some updates of this book, such as an update between OS/390 releases, might be
available only in softcopy. You can obtain softcopy from the OS/390 Online Library
Collection (SK2T-6700), the OS/390 PDF Library Collection (SK2T-6718), or the
OS/390 Internet Library (http://www.ibm.com/s390/os390/). To order the latest
hardcopy edition that is available, you might need to order a lower suffix (dash)
level.

Appendix G. Notices 555

http://www.ibm.com/s390/os390/

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

556 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/tradmarx.htm.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix G. Notices 557

|

http://www.intel.com/tradmarx.htm

558 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Bibliography

IBM Communications Server for
OS/390 Publications
This bibliography contains descriptions of the
books in the IBM Communications Server for
OS/390 library.

Updates to books are available on RETAIN. See
“Appendix F. Information Apars” on page 551 for a
list of the books and the INFOAPARS associated
with them.

These books are available online. Go to
http://www.ibm.com/s390/os390/bkserv/ to access
the OS/390 Internet Library web page.

Some books are available in both hard- and
soft-copy, or soft-copy only. The following
abbreviations follow each order number:
HC/SC Both hard- and soft-copy are

available
SC Only soft-copy is available

Related Publications
For information about OS/390 products, refer to
OS/390 Information Roadmap (GC28-1727-07
[HC/SC]). The Roadmap describes what level of
documents are supplied with each release of CS
for OS/390, as well as describing each OS/390
publication.

Firewall
OS/390 SecureWay Security Server Firewall
Technologies Guide and Reference (SC24-5835
[HC/SC])

OSA-Express
OSA-Express Customer’s Guide and Reference
(SA22-7403 [HC/SC])

Softcopy Information
v OS/390 Online Library Collection (SK2T-6700).

This collection contains softcopy unlicensed
books for OS/390, Parallel Sysplex products,
and S/390 application programs that run on
OS/390. This collection is updated quarterly
with any new or updated books that are
available for the product libraries included in it.

v OS/390 PDF Library Collection (SK2T-6718).

This collection contains the unlicensed books
for OS/390 Version 2 Release 6 in Portable
Document Format (PDF).

v OS/390 Licensed Product Library (LK2T-2499).

This library contains unencrypted softcopy
licensed books for OS/390 Version 2. If any of
the books in this library are changed, it is
updated quarterly. The OS/390 Licensed
Product Library for Version 1 (LK2T-6702) is still
available, but is no longer updated.

v System Center Publication IBM S/390
Redbooks Collection (SK2T-2177).

This collection contains over 300 ITSO
redbooks that apply to the S/390 platform and
to host networking arranged into subject
bookshelves.

Planning
OS/390 IBM Communications Server: SNA
Migration (SC31-8622 [HC/SC]). This book is
intended to help you plan for SNA, whether you
are migrating from a previous version or installing
SNA for the first time. This book also identifies the
optional and required modifications needed to
enable you to use the enhanced functions
provided with SNA.

OS/390 IBM Communications Server: IP Migration
(SC31-8512 [HC/SC]). This book is intended to
help you plan for IP, whether you are migrating
from a previous version or installing IP for the first
time. This book also identifies the optional and
required modifications needed to enable you to
use the enhanced functions provided with IP.

Resource Definition,
Configuration, and Tuning
OS/390 IBM Communications Server: IP
Configuration Guide (SC31-7134 [HC/SC]). This
book describes the major concepts involved in
understanding and configuring an IP network.
Familiarity with MVS operating, IP protocols,
OS/390 UNIX System Services, and IBM Time
Sharing Option (TSO) is recommended. Use this
book in conjunction with the OS/390 IBM
Communications Server: IP Configuration
Reference.

OS/390 IBM Communications Server: IP
Configuration Reference (SC31-8725 [HC/SC]).
This book presents information for people who

© Copyright IBM Corp. 1994, 2000 559

|

|

|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
||
|
||

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

http://www.ibm.com/s390/os390/bkserv/

want to administer and maintain IP. Use this book
in conjunction with the OS/390 IBM
Communications Server: IP Configuration Guide.
The information in this book includes:

v TCP/IP configuration data sets

v Configuration statements

v Operator commands

v Translation tables

v SMF records

v Protocol number and port assignments

OS/390 IBM Communications Server: SNA
Network Implementation Guide (SC31-8563
[HC/SC]). This book presents the major concepts
involved in implementing a SNA network. Use this
book in conjunction with the OS/390 IBM
Communications Server: SNA Resource Definition
Reference.

OS/390 IBM Communications Server: SNA
Resource Definition Reference (SC31-8565
[HC/SC]). This book describes each SNA definition
statement, start option, and macroinstruction for
user tables. It also describes NCP definition
statements that affect SNA.Use this book in
conjunction with the OS/390 IBM Communications
Server: SNA Network Implementation Guide.

OS/390 IBM Communications Server: SNA
Resource Definition Reference (SC31-8566
[HC/SC]). This book contains sample definitions to
help you implement SNA functions in your
networks, and includes sample major node
definitions.

OS/390 eNetwork Communications Server:
AnyNet SNA over TCP/IP (SC31-8578 [SC]). This
guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

OS/390 eNetwork Communications Server:
AnyNet Sockets over SNA (SC31-8577 [SC]). This
guide provides information to help you install,
configure, use, and diagnose Sockets over SNA. It
also provides information to help you prepare
application programs to use sockets over SNA.

Operation
OS/390 IBM Communications Server: IP User’s
Guide (SC31-7136 [HC/SC]). This book is for
people who want to use TCP/IP for data
communication activities such as FTP and Telnet.
Familiarity with MVS operating system and IBM
Time Sharing Option (TSO) is recommended.

OS/390 IBM Communications Server: SNA
Operation (SC31-8567 [HC/SC]). This book serves
as a reference for programmers and operators
requiring detailed information about specific
operator commands.

OS/390 IBM Communications Server: Quick
Reference (SX75-0121 [HC/SC]). This book
contains essential information about SNA and IP
commands.

OS/390 eNetwork Communications Server: High
Speed Access Services Users Guide (GC31-8676
[SC]). This book is for end users and system
administrators who want to use applications using
a High Speed Access Services connection
available in CS for OS/390.

Customization
OS/390 IBM Communications Server: SNA
Customization (LY43-0110 [SC]). This book
enables you to customize SNA, and includes:

v Communication network management (CNM)
routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for
the CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

OS/390 eNetwork Communications Server: IP
Network Print Facility (SC31-8074 [SC]). This
book is for system programmers and network
administrators who need to prepare their network
to route SNA, JES2, or JES3 printer output to
remote printers using TCP/IP.

Writing Application Programs
OS/390 IBM Communications Server: IP
Application Programming Interface Guide
(SC31-7187 [SC]). This book describes the syntax
and semantics of program source code necessary
to write your own application programming
interface (API) into TCP/IP. You can use this
interface as the communication base for writing
your own client or server application. You can also
use this book to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

OS/390 IBM Communications Server: IP CICS
Sockets Guide (SC31-8518 [SC]). This book is for
people who want to set up, write application

Bibliography

560 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

programs for, and diagnose problems with the
socket interface for CICS using TCP/IP for MVS.

OS/390 eNetwork Communications Server: IP IMS
Sockets Guide (SC31-8519 [SC]). This book is for
programmers who want application programs that
use the IMS TCP/IP application development
services provided by IBM TCP/IP for MVS.

OS/390 IBM Communications Server: IP
Programmer’s Reference (SC31-8515 [SC]). This
book describes the syntax and semantics of a set
of high-level application functions that you can use
to program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,
distributed databases, distributed processing,
network management, and device sharing.
Familiarity with the MVS operating system, TCP/IP
protocols, and IBM Time Sharing Option (TSO) is
recommended.

OS/390 IBM Communications Server: SNA
Programming (SC31-8573 [SC]). This book
describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal
in either the same or a different domain, or (2)
another application program in either the same or
a different domain.

OS/390 eNetwork Communications Server: SNA
Programmers LU 6.2 Guide (SC31-8581 [SC]).
This book describes how to use the SNA LU 6.2
application programming interface for host
application programs. This book applies to
programs that use only LU 6.2 sessions or that
use LU 6.2 sessions along with other session
types. (Only LU 6.2 sessions are covered in this
book.)

OS/390 eNetwork Communications Server: SNA
Programmers LU 6.2 Reference (SC31-8568
[SC]). This book provides reference material for
the SNA LU 6.2 programming interface for host
application programs.

OS/390 eNetwork Communications Server: CSM
Guide (SC31-8575 [SC]). This book describes how
applications use the communications storage
manager.

OS/390 IBM Communications Server: CMIP
Services and Topology Agent Guide (SC31-8576
[SC]). This book describes the Common
Management Information Protocol (CMIP)
programming interface for application

programmers to use in coding CMIP application
programs. The book provides guide and reference
information about CMIP services and the SNA
topology agent.

Diagnosis
OS/390 IBM Communications Server: IP Diagnosis
(LY43-0105 [HC/SC]). This book explains how to
diagnose TCP/IP problems and how to determine
whether a specific problem is in the TCP/IP
product code. It explains how to gather information
for and describe problems to the IBM Software
Support Center.

OS/390 IBM Communications Server: SNA
Diagnosis V1 Techniques and
Procedures(LY43-0079 [HC/SC]) and OS/390 IBM
Communications Server: SNA Diagnosis V2 FFST
Dumps and the VIT (LY43-0080 [HC/SC]). These
books help you identify a SNA problem, classify it,
and collect information about it before you call the
IBM Support Center. The information collected
includes traces, dumps, and other problem
documentation.

OS/390 IBM Communications Server: SNA Data
Areas Volume 1 (LY43-0111 [SC]) and OS/390
IBM Communications Server: SNA Data Areas
Volume 2 (LY43-0112 [SC]). These books describe
SNA data areas and can be used to read a SNA
dump. They are intended for IBM programming
service representatives and customer personnel
who are diagnosing problems with SNA.

Messages and Codes
OS/390 IBM Communications Server: SNA
Messages (SC31-8569 [HC/SC]). This book
describes the ELM, IKT, IST, ISU, IVT, IUT, and
USS messages. Other information in this book
includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

OS/390 IBM Communications Server: IP
Messages Volume 1 (EZA) (SC31-8517 [HC/SC]).
This volume contains TCP/IP messages beginning
with EZA.

OS/390 IBM Communications Server: IP
Messages Volume 2 (EZB) (SC31-8570 [HC/SC]).
This volume contains TCP/IP messages beginning
with EZB.

Bibliography

Bibliography 561

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|

|
|
|
|

|
|
|
|

OS/390 IBM Communications Server: IP
Messages Volume 3 (EZY-EZZ-SNM) (SC31-8674
[HC/SC]). This volume contains TCP/IP messages
beginning with EZY, EZZ, and SNM.

OS/390 IBM Communications Server: IP and SNA
Codes (SC31-8571 [HC/SC]). This book describes
codes and other information that display in CS for
OS/390 messages.

APPC Application Suite
OS/390 eNetwork Communications Server: APPC
Application Suite User’s Guide (GC31-8619 [SC]).
This book documents the end-user interface
(concepts, commands, and messages) for the
AFTP, ANAME, and APING facilities of the APPC
application suite. Although its primary audience is
the end user, administrators and application
programmers may also find it useful.

OS/390 eNetwork Communications Server: APPC
Application Suite Administration (SC31-8620 [SC]).
This book contains the information that
administrators need to configure the APPC
application suite and to manage the APING,
ANAME, AFTP, and A3270 servers.

OS/390 eNetwork Communications Server: APPC
Application Suite Programming (SC31-8621 [SC]).
This book provides the information application
programmers need to add the functions of the
AFTP and ANAME APIs to their application
programs.

Multiprotocol Transport
Networking (MPTN) Architecture
Publications
Following are selected publications for MPTN:

Networking Blueprint Executive Overview
(GC31-7057)

Multiprotocol Transport Networking: Technical
Overview (GC31-7073)

Multiprotocol Transport Networking: Formats
(GC31-7074)

Redbooks
The following Redbooks may help you as you
implement CS for OS/390.

v OS/390 eNetwork Communication Server V2R7
TCP/IP Implementation Guide Volume 1:
Configuration and Routing (SG24–5227–01).

This book provides examples of how to
configure the base TCP/IP stack, routing
daemons and the TELNET server. This book
also provides information about national
language support (NLS), routing, OSPF,
network interfaces, diagnosis, multicasting,
OS/390 UNIX System Services and security in
an OS/390 UNIX System Services environment.

v OS/390 eNetwork Communication Server V2R7
TCP/IP Implementation Guide Volume 2: UNIX
Applications (SG24–5228–01).

This book provides information about
implementing applications that run in the
OS/390 UNIX environment, such as FTP,
SNMP, BIND-based name server, DHCP, and
SENDMAIL. This book also provides
configuration samples and describes the
implementation process.

v OS/390 eNetwork Communication Server V2R7
TCP/IP Implementation Guide Volume 3: MVS
Applications (SG24–5229–01).

This book provides information about TCP/IP
applications that run in a legacy MVS
environment, including CICS/IMS Sockets, and
printing (NPF, LPR, and LPD.)

v OS/390 Secureway Communication Server
V2R8 TCP/IP Guide to Enhancements
(SG24-5631-00).

This redbook provides information to facilitate
the configuration and use of the new
technologies and functions supported in
SecureWay Communications Server for OS/390
V2R8. Special areas of interest in this book are
security and Quality of Services.

v TCP/IP in a Sysplex (SG24–5235–01).

The main goals of a Parallel Sysplex are high
availability and high performance. This book
demonstrates how these goals can be achieved
in the particular environment of SecureWay
Communications Server for OS/390 and its
TCP/IP applications. This book describes the
WLM/DNS functions, the Network Dispatcher
and the Dynamic VIPA.

v SNA and TCP/IP Integration (SG24–5291–00).

This book provides information about integrating
current SNA network with future TCP/IP and
Web-based communication requirements. This
book concentrates on routing techniques.

v SNA in a Parallel Sysplex Environment
(SG24–2113–01).

Bibliography

562 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

This book provides information about
implementing a VTAM-based network on a
Parallel Sysplex.

v Subarea to APPN Migration : VTAM and APPN
Implementation (SG24–4656–01).

This book is the first of two volumes. This book
provides information about the migration of a
subarea network to an APPN network. Some
knowledge of SNA subarea networks and
familiarity with the functions, terms and data
flows of APPN networks is assumed.

v Subarea to APPN Migration : HPR and DLUR
Implementation (SG24–5204–00).

This book is the second of two volumes. This
book provides information about the coverage
of a network using HPR, DLUR and APPN/HPR
routers. Some knowledge of SNA subarea
networks and familiarity with the functions,
terms and data flows of APPN networks is
assumed.

Bibliography

Bibliography 563

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

Bibliography

564 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Index

A
ABEND dumps 12
abends

CEEDUMP 21
dumps of ASIDs 515
FTP client 214
FTP server 195
LPD (line printer daemon) 167
NCPROUTE 454
OMPROUTE 437
OROUTED 419
platform 21
SMTP (simple mail transfer protocol) 244
SNALINK LU0 261
SNALINK LU6.2 293
SNMP (simple network management protocol) 338
system 21
tn3270 Telnet client 232
tn3270 Telnet server 226
user 21

active routes versus static routes 417, 539
ADDRBLOK data set 247
ADDRESS value, verifying 31
addressing on the Internet 539
allocation tables, DU 99
AMBLIST 16
APAR (authorized program analysis report) 5
API, TCPIPCS subcommand 91
ARP cache, querying 36
authorized program analysis report (APAR) 5
autolog, FTP server problems with 194

B
bridge 533, 535, 540

C
C_INET PFS

OMPROUTE behavior in 437
OROUTED 419

CEEDUMP
description 21
for SNMP abends 338

CICS
location of trace output 10

CICS (customer information control system) 505
Class D group addresses 539
common INET

OMPROUTE behavior in 437
OROUTED 419

common storage tracking 16
component ID, TCP/IP 18, 19
component trace

displaying status 515
dumping data 515
general description 13
managed data set 8

component trace (continued)
OMPROUTE 435
stopping 515
tn3270 Telnet 232
use with DDNS (dynamic domain name server) 298
use with OMPROUTE, see also OMPROUTE

application trace 447
viewing data without an abend 515

component trace, changing options
with PARMLIB member 513
without PARMLIB member 514

CONFIG, TCPIPCS subcommand 93
configuration values, displaying device 31
CONNECTION, TCPIPCS subcommand 95
connection optimization

addresses not returned 299
connection problems 300

console messages, DDNS name server 295
control block addresses, displaying TCP/IP 128
control blocks, CICS sockets 508
control blocks, displaying

MTCB (master TCP control block) 133
MUCB (master UDP control block) 146
socket 126
stream 131
TCBs (TCP control blocks) 133
Telnet 135
timer 137
UCBs (UDP control blocks) 146

customer information control system (CICS) 505
customer number 18

D
data block, displaying 157
data buffers, displaying 157
data link control (DLC) 278
data traces

displaying 66
general description 13
starting 66

date and time formating 159
DATTRACE command 64
DB2

interaction with NDB 313
query support for FTP client 216
query support for FTP server 202

DBCS (double-byte character set)
FTP client support for 215
FTP server problems with 202

DDNS
location of trace output 9

DDNS (dynamic domain name server) 295
DDNS problems

connection optimization 299
console messages 295
debug option 296
name server signals 297

© Copyright IBM Corp. 1994, 2000 565

|

DDNS problems (continued)
nsupdate 298
onslookup and nslookup 296
resolver directive 297
return codes 298
syslog messages 295

debug traces
for OS/390 UNIX applications 14
for SNALINK LU0 270

debugging switches, OS/390 UNIX sendmail 253
device interface, connecting 95
device interface, displaying 93
dispatchable unit control block (DUCB), displaying 96
dispatchable units, displaying TCP/IP 128
DISPLAY command, use with LUs 286
display commands 16
DISPLAY TCPIP,,STOR 16
DISPLAY TRACE command 515
distributed protocol interface (DPI) 333, 452
DLC (data link control) 278
domain name server, dynamic (DDNS) 295
double byte character set (DBCS)

FTP server problems with 202
double-byte character set (DBCS)

FTP client support for 215
DPI (distributed protocol interface) 333, 452
DU allocation tables, displaying 99
DUAF, TCPIPCS subcommand 96
DUCB, displaying 96
DUCB, TCPIPCS subcommand 99
DUMP command 515, 516
dumps

ABEND 7
definition 7, 21
FFST 12, 14, 15
stand-alone 12
SVC 7, 12
SYSABEND 12
SYSMDUMP 12
SYSUDUMP 12
to obtain component trace data 515

E
ERRNO, IPCS subcommand 152
errno reason code, displaying 152
errnojr reason code, displaying 152
error exit codes, FTP server 192
Ethernet

defining for NCPROUTE 453
DIX V2 537

EZAFTPAP start procedure 191

F
FDDI (fiber distributed data interface) 535
FFST (first failure support technology)

dump 12, 14
general description 14
minidump 15
probes 523, 524

fiber distributed data interface (FDDI) 535

field maintenance ID 19
file transfer protocol (FTP), see also FTP 191
FIREWALL, TCPIPCS subcommand 101
first failure support technology (FFST) 14
first failure support technology (FFST), see also

FFST 523
FRCA, TCPIPCS subcommand 104
FTP client

customizing configuration parameters 214
DB2 216
naming HFS files 193
naming MVS data sets 192
overview 214
using FTP.DATA 214
using TCPIP.DATA 214
using traces 218

FTP client problems
“Unknown Host” message 215
abends 214
data transfer 215
documentation for IBM Support Center 218
double-byte character set (DBCS) 215

FTP.DATA, TRACE statement in 206
FTP.DATA data set

definition 192
specifying working directory 197

FTP server
customizing server parameters 192
customizing the start procedure 191
DB2 query support 202
error exit codes 192
LOADLIB directory information 201
location of trace output 8
naming HFS files 193
naming MVS data sets 192
overview 191
role of TCPIP.DATA 192
traces 205

FTP server problems
abends 195
autolog 194
checkpoint markers 201
client abends during RETR 201
command failure 200
configuration values 194
connection 195, 197
data set allocation 198, 199
data set disposition 201
DBCS translate table 202
documentation for IBM Support Center 213
incomplete initialization 193
job entry subsystem (JES) 204
logon failure 196
lost messages and traces 205
MVS data set 200
password validation fails 196
port specification 194
SQL 202
terminated data transfer 200
user exit routine 205
working directory 197

566 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

G
gateway (router)

broadcasting routing tables 417
definition 533
identifying configured gateways 420
indirect routing 542
internet addressing 540
LPR and LPD problems 168
using PING/oping to check connectivity 28, 30

gateway IP address 124
GATEWAY statement

configuring routing tables 545
NCPROUTE GATEWAYS data set 461
problems uncovered by NETSTAT/onetstat 35
problems with X.25 476, 478, 482
subnet masks 543
use with NCPROUTE 455, 456
use with OMPROUTE 436

global work area (GWA) 508
GWA (global work area) 508

H
hangs, collecting documentation 23
hardware problem 11
HASH, TCPIPCS subcommand 106
hash tables, displaying 106
header, displaying UDP 160
header, system dump 108
HEADER, TCPIPCS subcommand 108
header fields, displaying ICMPP 154
header fields, displaying IP 154
header fields, displaying TCP 158
HELP, TCPIPCS subcommand 109
HFS (hierarchical file system)

file names 25
file naming conventions for FTP 193
required for OMPROUTE 435

I
IBM Software Support Center, documentation for

FTP client problems 218
FTP server problems 213
LPD (line printer daemon) problems 168
SNMP problems 338, 344
X.25 NPSI 483

IBM Software Support Center, when to call 5
IBM Support Center, documentation for

general information 18
server connection problems 43

ICMPP header fields, displaying 154
ICMPPHDR, IPCS subcommand 154
IEEE 802.3 537
IEEE 802.5, relationship between RC and I fields 536
IMS

location of trace output 10
IMS socket interface

configuration 486
NETSTAT command with 499
overview 485

IMS socket interface problems
bad connections 490
building a component 495
configuration mistakes 488
data transfer 493
error messages and return codes 493, 501
starting and stopping components 489
unexpected database actions 496

IMS socket interface traces 498, 499
inetd.conf file 309
interactive problem control system, see also IPCS 16
interface, connecting 95
interface, displaying 93
Internet

addressing 539
protocol (IP) 539

IP header fields, displaying 154
IPCS (interactive problem control system)

definition 16
sending print output 156

IPHDR, IPCS subcommand 154

J
JES (job entry subsystem), output not found 204
job entry subsystem (JES), output not found 204

L
LE runtime library 18
line printer daemon, see also LPD 167
line printer requester, see also LPR 167
LINK value, verifying 31
LIST MODIFY command 285
load modules 11, 16
LOCK, TCPIPCS subcommand 110
locks, displaying 110
LOCKSUM option 110
logon problems, tn3270 Telnet server 226
LOGREC data set 16
loops

collecting documentation 22
definition 22
SMTP 246

LPD (line printer daemon)
abends 167
activating server traces 176
DEBUG option 177, 184
overview 167
timeouts, hangs, waits 168
unsupported filter 182

LPD server
location of trace output 8

LPR (line printer requester)
activating client traces 170
creating client traces 170
FILTER X option 173
garbled data 169
identifying a port 174
missing data 169
nonworking options 170
overview 167

Index 567

LPR (line printer requester) (continued)
timeouts, hangs, waits 168
XLATE option 175

LPR client
location of trace output 8

M
management information base (MIB) 333, 453
MAP, TCPIPCS subcommand 112
master TCB control block, displaying 133
master trace 13
master UDP control block (MUCB), displaying 146
maximum transmission unit (MTU) 534
message block, displaying the stream 157
messages, OROUTED 418
MIB (management information base) 333, 453
MODIFY command

with NCPROUTE 461
with OROUTED 423, 424, 425, 426

module ID, displaying 152
module tables, displaying 113
motif 329
MTABLE, TCPIPCS subcommand 113
MTU (maximum transmission unit) 534
MUCB (master UDP control block), displaying 146
multicast, Class D addresses 539
multiple stacks 25, 340, 419, 437, 519
MVS data set

FTP naming conventions 192
FTP server unable to find 200

MVS system console log for REXECD 305

N
name server, diagnosing problems with 295
name server signals 297
named command 296
NCPROUTE

abends 454
activating global traces 461
activating selective traces 461
bad connections 454
communication with SNMP 452, 453
defining 453
incorrect output 458
overview 451
PING failure 457
RIP (routing information protocol) commands 452
session outages 460
trace example 462

NCROUTE
location of trace output 10

NDB
location of trace output 9

NDB (network database)
definitions required 314
documentation required for problems 314, 315
obtaining DB2 data 315
overview 313
port manager trace 316, 318

NDBC control block 315

netdata, OS/390 UNIX Telnet 220
NETSTAT command

diagnosing a timeout 30
displaying data trace 66
verifying SNALINK LU6.2 285
with IMS socket interface 498, 499
with SNALINK LU0 263

NetView 15, 334, 335, 338, 459
network, problems with SNA 280, 281
network database, see also NDB 313
network IP addresses 539
NSLOOKUP command 296
NSUPDATE command 298

O
OMPROUTE

abends 437
client cannot reach destination 437
component trace support for 447
connection problems 437
overview 435

OMPROUTE subagent
start options 336
statements 336

OMROUTE
location of trace output 10

onetstat command
diagnosing a timeout 30
displaying device configuration values 31
displaying routing information 28, 35, 36
OMPROUTE problem diagnosis 437
port determination 28
querying ARP cache 36
use with data trace 66
verifying ADDRESS and LINK values 31
verifying device status 29
viewing host addresses 25

onetstat/netstat command
interaction with OROUTED 420

onslookup command 296
open shortest path first (OSPF) 435
open software foundation (OSF) 329
operating system identification 18
oping command

checking connectivity 28
compared to TSO PING command 29
return codes 31
timeout 30
using 29
verifying device connection 30
verifying network definition 30
verifying onetstat -h 30
verifying packets sent and received 30
verifying route back to local host 30
verifying route definition 30
verifying router can forward 30
verifying TCP/IP 29

oping/ping command
interaction with OROUTED 420

options debug directive 297
OROUTED

location of trace output 10

568 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

OROUTED (continued)
overview 417
starting traces 423, 424
stopping 425
trace output 425

OROUTED problems
abends 419
connection 419
incorrect output 421
oping/ping failures 420
session outages 421
trace example 426

OSF (open software foundation) 329
OSF/Motif

location of trace output 9
osnmp command 334, 335, 353
OSPF (open shortest path first) 435
otracert command 37

P
packet trace

general description 13, 59
modifying with VARY command 60
starting 63
with IMS socket interface 498
with SNALINK LU0 264
with SNALINK LU6.2 284, 291

parameters, TCPIP general configuration statements
ABBREV, PKTTRACE 62, 65
DESTPORT, PKTTRACE 62
IP, PKTTRACE 62
LINKNAME, PKTTRACE 62
PROT, PKTTRACE 63
SRCPORT, PKTTRACE 63
SUBNET, PKTTRACE 63, 66

patricia trees, displaying 140
PDUs (protocol data units)

NCPROUTE 452
SNMP (simple network management protocol) 333

PFS (physical file structure) 64
physical file structure (PFS) 64
PING command

compared to OS/390 UNIX oping command 29
NCPROUTE client problems 457
return codes 31
SNMP (simple network management protocol) 38
using 29
verifying device connection 30
verifying network definition 30
verifying onetstat -h 30
verifying packets sent and received 30
verifying route back to local host 30
verifying route definition 30
verifying router can forward 30
verifying TCP/IP 29
with IMS socket interface 488
X.25 NPSI 482

PING timeout 30
PKTTRACE statement 59
platform abends 21
POLICY, TCPIPCS subcommand 115

Policy Agent
location of trace output 9

policy agent problems
gathering diagnostic information 378
initialization problems 379
LDAP problems 382
log file example 383
overview 377
policy definition problems 380
service policy scopes 377

policy agent terms
differentiated services 377
integrated services 377
quality of service (QoS) 377
resource reservation protocol (RSVP) 377
service differentiation 377
service level agreement (SLA) 377
service policy 377

Popper
location of trace output 8

popper, diagnostic aids for OS/390 UNIX 259
print output, sending IPCS 156
problem number 18
PROFILE, TCPIPCS subcommand 116
program objects 16
PROTOCOL, TCPIPCS subcommand 119
protocol data units (PDUs)

NCPROUTE 452
SNMP (simple network management protocol) 333

ptydata, OS/390 UNIX Telnet 220

R
RACF (resource access control facility), VARY

command and 66
RAW, TCPIPCS subcommand 122
reason codes, displaying 152
register save area (RSA) 96
release number, TCP/IP 18
remote execution protocol, see also REXEC 301, 309
remote execution protocol daemon, see also

REXECD 301, 309
remote shell client, see also RSH 301
remote shell daemon, see also RSH 309
resolver, debug 297
RESOLVER trace 28, 250
resource access control facility (RACF), VARY

command and 66
resource measurement facility 16
RETAIN database 5
return codes, DDNS name server 298
return codes, PING command 31
REXEC (remote execution protocol), non-OS/390 UNIX

activating debug trace 302
overview 301
problem documentation 301
trace example 302

REXEC (remote execution protocol), OS/390 UNIX
debug trace 310
trace example 310

REXECD (remote execution protocol daemon),
non-OS/390 UNIX

command options for tracing 305

Index 569

REXECD (remote execution protocol daemon),
non-OS/390 UNIX (continued)

overview 305
problem documentation 305
trace example 305

REXECD (remote execution protocol daemon), OS/390
UNIX

activating debug trace 311
trace example 311

REXX executables for TCPIPCS 89
RIP (routing information protocol)

NCPROUTE implementation 451, 458
OMPROUTE implementation 435
OROUTED implementation 417, 545

ROUTE, TCPIPCS subcommand 124
router (gateway)

broadcasting routing tables 417
definition 533
identifying configured gateways 420
indirect routing 542
internet addressing 540
LPR and LPD problems 168
using PING/oping to check connectivity 28, 30

routing
datagram algorithm 542
datagram algorithm with subnets 544
direct 541
dynamic 545
indirect 542
static 545

routing control blocks, displaying 124
routing information, displaying 36
routing information protocol (RIP)

NCPROUTE implementation 451, 458
OMPROUTE implementation 435
OROUTED implementation 417

routing table entry, displaying 124
routing tables, displaying 35
RSA (register save area) 96
RSH (remote shell client), non-OS/390 UNIX

client trace using SEND command 306
overview 301
trace example 304

RSHD (remote shell daemon), OS/390 UNIX
activating debug trace 311
random errors 312
trace example 311

RSVP Agent
location of trace output 10

RSVP agent problems
application problems 399
gathering diagnostic information 398
initialization problems 398
log file example 399
overview 395
reservation objects 396
reservation styles 396
reservation types 395
sevice policy problems 399

RSVP processing 397

S
SDUMP for FFST 14
search paths 521
secure sockets layer (SSL) encryption 231
sendmail, diagnostic aids for OS/390 UNIX 253, 258
server data block, displaying the TSDB 142
server data extension, displaying the TSDX 143
service level indication processing (SLIP) 11, 17
service policies 397
service policy scopes

datatraffic 377
RSVP 377

session problems
FTP 195
SNALINK LU0 hangs 262
SNALINK LU0 outages 263
tn3270 Telnet client hangs 233
tn3270 Telnet server hangs 227
tn3270 Telnet server outages 230
X.25 NPSI hangs 482

SETPRINT, IPCS subcommand 156
signals, name server 297
simple mail transfer protocol, see also SMTP 243
simple network management protocol, see also

SNMP 333
SKMSG, IPCS subcommand 157
SLA subagent

start options 336
statements 336

SLIP (service level indication processing) 11, 17
SMTP

location of trace output 8
SMTP (simple mail transfer protocol)

abends 244
ADDRBLOK data set 247
defining 243
delivery problems 244
environment 243
incorrect output 246
looping problems 246
re-resolution of queued mail 247
receiver overview 243
RESOLVER trace 250
sender overview 243
spooling problems 244

SNALINK LU0
abends 261
location of trace output 8
session hangs 262
session outages 263

SNALINK LU6.2
address space problems 276, 285
configuration mistakes 275
data corruption problems 284
data loss problems 282
DLC connection problems 278
location of trace output 9
network components 273
network problems 280, 281
traces 288, 292
using NETSTAT 285

570 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

SNAP (subnetwork access protocol) 538
SNMP

location of trace output 9
SNMP (simple network management protocol)

abends 338
agent 340
agent does not respond 349
client overview 334
communication with NCPROUTE 452
connection problems 341
I/O error using PING 351
incorrect output 344
interaction with NCPROUTE 451
MIB 333
multiple stack problems 340
NetView 334
osnmp command 334, 335, 353
osnmpd command 334
query engine 338, 339, 371
socket calls 337
starting with osnmp 353
subagent 336
traces 353, 354
unknown variable in output 344
variable format incorrect 347
variable value incorrect 348

SNMP agent
configuration data sets 335
security methods 335

SNMP problems
related to NCPROUTE 454
SNMPIUCV subtask 338

SNMP traces
agent trace example 356
query engine IUCV trace example 371
query engine trace example 358
subagent trace example 358

SNMPIUCV subtask 338
SOCKET, TCPIPCS subcommand 126
socket calls, SNMP (simple network management

protocol) 337
socket control block, displaying 126
socket data, tracing 64
SPUFI 315
SQL

problems with FTP 202, 216
problems with NDB 313

SSA REXX/370 runtime libraries 89
SSL (secure sockets layer) encryption 231
stand-alone dumps 12
state, displaying TCP/IP 128
STATE, TCPIPCS subcommand 128
static routes compared to active routes 417, 539
status, displaying device 31
STDOUT, use by OMPROUTE 435
storage, displaying TCP/IP 128, 130
STORAGE, TCPIPCS subcommand 130
storage map, displaying 112
STREAM, TCPIPCS subcommand 131
stream control blocks, displaying 131
stream message block, displaying 157

subagent, OMPROUTE 336
subagent, SLA 336
subagent, SNMP (simple network management

protocol) 336
subagent programs, user-written for SNMP (simple

network management protocol) 333
subnetting 543
subnetwork access protocol (SNAP) 538
subtasks, displaying TCP/IP 128
SVC dumps 12
syntax diagram, reading 547
SYSABEND dump 12
SYSERROR data set 4
syslogd

for diagnosing DNS problems 295
SNMP (simple network management protocol) agent

traces 340
traces for FTP server 206
traces for OMPROUTE 435
traces for OROUTED 422
traces for REXECD 311
traces for RSHD 311
using with OS/390 UNIX Telnet 219

SYSMDUMP 12
sysplex

addresses not returned 299
connection problems 300

Sysplex Distributor 39
SYSPRINT data set 4
system abends 21
system dump header, displaying 108
system trace 13
SYSUDUMP 12

T
task interface element (TIE) 508
task related user exit (TRUE), CICS sockets 508
TBEs (trace buffer entries), displaying 138
TCA (trace control area), displaying 138
TCB, TCPIPCS subcommand 133
TCB control blocks, displaying 133
TCBSUM, subcommand for TCIPICS 133
TCP header fields, displaying 158
TCP/IP socket

location of trace output 8
TCP/IP subagent

statements 336
TCPHDR, IPCS subcommand 158
TCPIP.DATA data set 192
TCPIP state, displaying summary 128
TCPIP storage, displaying summary 130
TCPIPCS subcommand

API 91
CONFIG 93
CONNECTION 95
DUAF 96
DUCB 99
FIREWALL 101
FRCA 104
HASH 106
HEADER 108

Index 571

TCPIPCS subcommand (continued)
HELP 109
LOCK 110
MAP 112
MTABLE 113
POLICY 115
PROFILE 116
PROTOCOL 119
RAW 122
REXX executables for 89
ROUTE 124
SOCKET 126
STATE 128
STORAGE 130
STREAM 131
symbols 91
syntax 89
TCB 133
TELNET 135
TIMER 137
TRACE 138
TREE 140
TSDB 142
TSDX 143
UDP 146
VMCF 148
XCF 150

Telnet, displaying control blocks 135
Telnet, OS/390 UNIX

-t -D all example 220
arrow keys do not respond 219
debug trace options 219
diagnostic messages sent to wrong file 219
improper authority error 219
locked keyboard 219
netdata and ptydata 220
utmp entries 224

TELNET, TCPIPCS subcommand 135
Telnet, tn3270

associating CTrace entry with client 232
client abends 232
client definitions 232
client overview 232
client session hangs 233
client trace example 236
commands and options 240
defining server 225
incorrect output from client 234
incorrect output from server 229
server abends 226
server logon problems 226
server overview 225
server session hangs 227
session outages 230
SSL encryption 231
starting client traces 235

Telnet control blocks, displaying 135
termination notification facility (TNF) 503
TIE (task interface element) 508
time and date formatting 159

timeout
oping 30
PING 30

TIMER, TCPIPCS subcommand 137
timer control blocks, displaying 137
TNF (termination notification facility) 503
TOD, IPCS subcommand 159
token ring

defining for NCPROUTE 453
token-ring

IEEE 802.5 536
TRACE, TCPIPCS subcommand 138
trace buffer entries (TBEs), displaying 138
trace control area (TCA), displaying 138
TRACE CT command 55, 450, 514
traceroute function 37
TRACERTE command 37
traces

component trace 13
data trace 66
data traces 13
for FTP client problems 218
for FTP server problems 205
for SNALINK LU6.2 networks 288
master trace 13
OROUTED 423, 424, 425
OS/390 UNIX application debug traces 14
packet trace 13, 264, 284, 291
SNALINK LU0 debug 270
system trace 13
TCP/IP internal 292
tn3270 Telnet client 235
tn3270 Telnet server 232
VTAM buffer 292
VTAM trace 13

TRAPFWD traces
TRAPFWD trace example 376

traps 11
TREE, TCPIPCS subcommand 140
TRMD

location of trace output 10
TRMD problems

gathering diagnostic information 409
log file example 410

TRUE (task related user exist), CICS sockets 508
TSDB, TCPIPCS subcommand 142
TSDX, TCPIPCS subcommand 143
TSO console log from REXEC 301

U
UCBs (UDP control blocks), displaying 146
UDP, TCPIPCS subcommand 146
UDP control blocks (UCBs), displaying 146
UDP header, displaying 160
UDPHDR, IPCS subcommand 160
user abends 21
utmpx file 224

V
VARY TCPIP command 29, 35, 60
VERBEXIT 16

572 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

VIPA (virtual IP address) 420, 436

virtual IP address (VIPA) 420, 436

virtual machine communication facility (VMCF) 503

VMCF, TCPIPCS subcommand 148

VMCF (virtual machine communication facility) 503

VTAM buffer trace

for tn3270 Telnet client session hangs 233
for tn3270 Telnet server session hangs 228

VTAM trace 13

W
WLM (workload manager) 299, 300

workload manager (WLM) 299, 300

X
X.25 NPSI

configuring for NPSI 477
configuring for VTAM 477
location of trace output 10
logon problems 481
overview 475
session hangs 482

X Window System

trace when XWTRACE=2 329
trace when XWTRACELC=2 330

XCF, TCPIPCS subcommand 150

Xwin

location of trace output 9

Index 573

574 OS/390 V2R10.0 IBM CS IP Diagnosis Guide

Readers’ Comments — We’d Like to Hear from You

OS/390 IBM Communications Server
IP Diagnosis Guide
Version 2 Release 10

Publication No. SC31-8521-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8521-04

SC31-8521-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5647–A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8521-04

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
O

S/
39

0
IB

M
Co

m
m

un
ic

at
io

ns
Se

rv
er

O
S/

39
0

V
2R

10
.0

IB
M

C
S

IP
D

ia
gn

os
is

G
ui

de
Ve

rs
io

n
2

R
el

ea
se

10

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	How This Book Is Organized
	What Is Not in This Book

	Where to Find More Information
	Where to Find Related Information on the Internet
	How to Contact IBM Service

	Summary of Changes
	Part 1. General Diagnosis Information
	Chapter 1. Overview of the Diagnosis Procedure
	Chapter 2. Selecting Tools and Service Aids
	How Do I Know Which Tool or Service Aid to Select?
	What Tools and Service Aids Are Available?
	Dumps
	Traces
	First Failure Support Technology (FFST)
	FFST Dumps
	SDUMP
	Formatting an SDUMP
	FFST Minidump
	Formatting an FFST Minidump
	Generic Alert
	The Symptom String
	FFST Console

	Display Commands
	DISPLAY TCPIP,,STOR

	System Service Aids

	Guidelines for Machine-Readable Documentation
	Submitting Documentation Electronically
	Necessary Documentation

	Chapter 3. Diagnosing Abends, Loops, and Hangs
	Analyzing Abends
	Analyzing Loops
	Analyzing Hangs

	Chapter 4. Diagnosing Network Connectivity Problems
	Communicating through the Correct Stack
	Problems Connecting to the Server
	Using PING and oping
	Correcting Timeout Problems
	PING and oping Command Return Codes

	Using NETSTAT and onetstat
	onetstat -h
	onetstat -d
	onetstat -g
	onetstat -r
	onetstat -R

	Using TSO TRACERTE and otracert
	Using SNMP Remote PING
	Diagnosing Sysplex Distributor Problems

	Documentation for the IBM Support Center

	Part 2. Traces and Control Blocks
	Chapter 5. TCP/IP Services Traces and IPCS Support
	Component Trace
	Component Trace for TCP/IP Stacks
	Specifying Trace Options

	Filter TCPIP CTRACE by IP Address
	Formatting Trace Records for TCP/IP Stacks
	Additional Fields in CTRACE Output

	Component Trace for OMPROUTE

	Packet Trace
	The Trace Process
	Supported Devices
	Packet Trace Format
	Starting Packet Trace
	Modifying Options with Vary
	Socket Data Trace
	Starting Data Trace
	Displaying Data Traces

	Formatting Packet Traces Using IPCS
	Configuration Profile Trace

	Socket API Traces
	Recommended Options for the Application Trace
	How to Collect the SOCKAPI Trace Option
	CTRACE PARMLIB Member CTIEZBxx
	TCP/IP Start Procedure
	TRACE Command
	External Writer
	Filtering Options When Recording the Trace
	Monitoring the Trace
	Capturing the Trace

	How to Format the SOCKAPI Trace Option
	How to Read and Interpret the SOCKAPI Trace Option
	A SOCKAPI Trace Record
	Examples of SOCKAPI Trace Records

	How to Correlate the Data Trace and Packet Trace with the SOCKAPITrace

	Chapter 6. IPCS Subcommands for TCP/IP
	TCPIPCS
	Command Syntax
	Parameters
	Symbols Defined

	TCPIPCS Subcommands
	TCPIPCS API
	Syntax
	Parameters
	Sample Output

	TCPIPCS CONFIG
	Syntax
	Parameters
	Sample Output

	TCPIPCS CONNECTION
	Syntax
	Parameters
	Sample Output

	TCPIPCS DUAF
	Syntax
	Parameters
	Sample Output

	TCPIPCS DUCB
	Syntax
	Parameters
	Sample Output

	TCPIPCS FIREWALL
	Syntax
	Parameters
	Sample Output

	TCPIPCS FRCA
	Syntax
	Parameters
	Sample Output

	TCPIPCS HASH
	Syntax
	Parameters
	Sample Output

	TCPIPCS HEADER
	Syntax
	Parameters
	Sample Output

	TCPIPCS HELP
	Syntax
	Parameters
	Sample Output

	TCPIPCS LOCK
	Syntax
	Parameters
	Sample Output

	TCPIPCS MAP
	Syntax
	Parameters
	Sample Output

	TCPIPCS MTABLE
	Syntax
	Parameters
	Sample Output

	TCPIPCS POLICY
	Syntax
	Parameters
	Sample Output

	TCPIPCS PROFILE
	Syntax
	Parameters
	Sample Output

	TCPIPCS PROTOCOL
	Syntax
	Parameters
	Sample Output

	TCPIPCS RAW
	Syntax
	Parameters
	Sample Output

	TCPIPCS ROUTE
	Syntax
	Parameters
	Sample Output

	TCPIPCS SOCKET
	Syntax
	Parameters
	Sample Output

	TCPIPCS STATE
	Syntax
	Parameters
	Sample Output

	TCPIPCS STORAGE
	Syntax
	Parameters
	Sample Output

	TCPIPCS STREAM
	Syntax
	Parameters
	Sample Output

	TCPIPCS TCB
	Syntax
	Parameters
	Sample Output

	TCPIPCS TELNET
	Syntax
	Parameters
	Sample Output

	TCPIPCS TIMER
	Syntax
	Parameters
	Sample Output

	TCPIPCS TRACE
	Syntax
	Parameters
	Sample Output

	TCPIPCS TREE
	Syntax
	Parameters
	Sample Output

	TCPIPCS TSDB
	Syntax
	Parameters
	Sample Output

	TCPIPCS TSDX
	Syntax
	Parameters
	Sample Output

	TCPIPCS TSEB
	Syntax
	Parameters
	Sample Output

	TCPIPCS UDP
	Syntax
	Parameters
	Sample Output

	TCPIPCS VMCF
	Syntax
	Parameters
	Sample Output

	TCPIPCS XCF
	Syntax
	Parameters
	Sample Output

	ERRNO
	Syntax
	Parameters
	Sample Output

	ICMPHDR
	Syntax
	Parameters
	Sample Output

	IPHDR
	Syntax
	Parameters
	Sample Output

	SETPRINT
	Syntax
	Parameters
	Sample Output

	SKMSG
	Syntax
	Parameters
	Sample Output

	TCPHDR
	Syntax
	Parameters
	Sample Output

	TOD
	Syntax
	Parameters
	Sample Output

	UDPHDR
	Syntax
	Parameters
	Sample Output

	Installing TCP/IP IPCS Subcommands
	Entering TCP/IP IPCS Subcommands

	Part 3. Diagnosing CS for OS/390 Components
	Chapter 7. Diagnosing Line Print Requester and Daemon (LPRand LPD) Problems
	Diagnosing LPR Client and LPD Server Problems
	Abends
	Timeouts, Hangs, and Waits
	Incorrect Output
	Garbled Data
	Truncated Or Missing Print Data
	LPR Works with Some Options Only

	LPR Client Traces
	Activating LPR Client Traces
	Client Trace Output

	LPD Server Traces
	Activating Server Traces
	Server Trace Output

	Chapter 8. Diagnosing File Transfer Protocol (FTP) Problems
	FTP Server
	Structural Overview
	Definitions and Setup
	Start Procedure
	FTP.DATA Data Set
	TCPIP.DATA Data Set

	Error Exit Codes
	Name Considerations for OS/390 UNIX FTP
	MVS Naming Conventions
	HFS Naming Conventions

	Common OS/390 UNIX FTP Problems
	FTP Daemon Initialization Problems
	FTP Server Abends
	FTP Session Problems
	Data Transfer Problems
	Double-Byte Character Set (DBCS) Support
	DB2 Query Support
	JES Support
	User Exit Routine Is Not Invoked
	Messages and Trace Entries

	Diagnosing FTP Server Problems with Traces
	Where to Find Traces
	Start Tracing
	Stop Tracing
	Tracing Activity for All Clients
	Tracing Activity for One User ID
	Controlling the FTP Server Traces with MODIFY
	Trace Examples and Explanations

	Documenting Server Problems

	FTP Client
	Execution Environments
	Setup
	Naming Considerations
	Common Problems
	Abends
	Unknown Host Error Message
	Incorrect Configuration Values
	Data Transfer Problems
	Double-Byte Character Set (DBCS) Support

	DB2 Query Support
	How to use FTP Client SQL Support
	Symptoms of SQL Problems

	Diagnosing FTP Client Problems with Tracing
	Documenting FTP Client Problems

	Chapter 9. Diagnosing OS/390 UNIX Telnet Problems
	Common Problems
	Debug Traces
	Debug Trace Flows (netdata and ptydata)
	Debug Trace Examples (-t -D all)
	Cleaning Up the utmp Entries Left from Dead Processes

	Chapter 10. Diagnosing Telnet Problems
	General Telnet Server Information
	Telnet Server Definitions
	Diagnosing Telnet Server Problems
	Abends (Server)
	Documentation
	Analysis

	Logon Problems (Server)
	Documentation
	Analysis

	Session Hangs (Server)
	Documentation
	Analysis

	Incorrect Output (Server)
	Documentation
	Analysis

	Session Outages (Server)
	Documentation
	Analysis

	Special Considerations When Using SSL Encryption Support
	Telnet Component Trace Data

	General Telnet Client Information
	Telnet Client Definitions
	Diagnosing Telnet Client Problems
	Abends (Client)
	Documentation
	Analysis

	Session Hangs (Client)
	Documentation
	Analysis

	Incorrect Output (Client)
	Documentation
	Analysis

	Telnet Client Traces
	Starting Telnet Client Traces
	Trace Example (Client)

	Telnet Commands and Options

	Chapter 11. Diagnosing Simple Mail Transfer Protocol (SMTP)Problems
	Sender SMTP
	Receiver SMTP
	SMTP Environment
	SMTP Definitions
	Diagnosing SMTP Problems
	Abends
	Documentation
	Analysis

	Spooling Problems
	SMTP Does Not Deliver Mail
	Documentation
	Analysis

	SMTP Loop
	Documentation

	Mail Item Has Incorrect Output
	Documentation
	Analysis

	Forcing Re-Resolution of Queued Mail

	ADDRBLOK Data Set
	RESOLVER Trace

	Chapter 12. Diagnosing OS/390 UNIX sendmail and PopperProblems
	Diagnostic Aids for sendmail
	Debugging Switches
	Additional Diagnostic Aids
	Diagnostic Aids for Popper

	Chapter 13. Diagnosing SNALINK LU0 Problems
	Definitions
	Problem Diagnosis
	Abends
	Documentation
	Analysis

	Session Hangs
	Documentation
	Analysis

	Session Outages
	Documentation
	Analysis

	Traces
	Using IP Packet Trace
	Formatting a Trace Report Using the TRCFMT Utility

	SNALINK LU0 DEBUG Trace
	Starting SNALINK LU0 DEBUG Trace
	DEBUG Trace Example

	Chapter 14. Diagnosing SNALINK LU6.2 Problems
	Setting Up a SNALINK LU6.2 Network
	Common Configuration Mistakes
	Diagnosing Problems
	Quick Checklist for Common Problems
	Problems Starting the SNALINK LU6.2 Address Space
	Documentation
	Analysis

	DLC Connection Problems
	Documentation
	Analysis

	Network Connection Establishment Problems
	Documentation
	Analysis

	Network Connection Loss Problems
	Documentation
	Analysis

	Data Loss Problems
	Documentation
	Analysis

	Data Corruption Problems
	Documentation
	Analysis

	Documentation References for Problem Diagnosis
	Using NETSTAT
	Using the SNALINK LU6.2 Subcommand
	Useful VTAM Operations
	Activating an LU
	Changing an LU Definition
	Displaying the Status of an LU

	Traces
	Using SNALINK LU6.2 Internal Traces
	Using IP Packet Trace
	TCP/IP Internal Traces
	VTAM Buffer Traces

	Finding Abend and Sense Code Documentation
	Finding Error Message Documentation

	Chapter 15. Diagnosing Dynamic Domain Name Server(DDNS) Problems
	Diagnosing Name Server Problems
	Checking Messages Sent to the Operators Console
	Checking the Syslog Messages
	Using the onslookup and NSLOOKUP Commands
	Using the Debug Option with the Name Server
	Debugging with a Resolver Directive
	Using Name Server Signals
	Using the NSUPDATE Command
	Using Component Trace
	Return Codes

	Diagnosing Problems with Connection Optimization
	Addresses Not Being Returned
	Connection Problems

	Chapter 16. Diagnosing REXEC, REXECD, and RSH Problems
	General Information about REXEC and RSH
	Documentation for REXEC Problem Diagnosis
	TSO Console Log
	Activating the REXEC Debug Trace
	REXEC Trace Example and Explanation
	RSH Trace Example and Explanation

	General Information about REXECD
	Documentation for REXECD Problem Diagnosis
	MVS System Console Log
	Starting REXECD Server Traces
	Example of an REXECD Trace of a Client Using the SEND Command
	Example Trace of an RSH Client Using the SEND Command

	Chapter 17. Diagnosing OS/390 UNIX REXEC, REXECD, andRSHD Problems
	Setting Up the inetd Configuration File
	Diagnosing OS/390 UNIX REXEC
	Activating the OS/390 UNIX REXEC Debug Trace
	OS/390 UNIX REXEC Trace Example and Explanation

	Diagnosing OS/390 UNIX REXECD
	Activating the OS/390 UNIX REXECD Debug Trace
	OS/390 UNIX REXECD Trace Example and Explanation

	Diagnosing OS/390 UNIX RSHD
	Activating the OS/390 UNIX RSHD Debug Trace
	OS/390 UNIX RSHD Trace Example and Explanation
	Resolving Garbage Errors

	Chapter 18. Diagnosing Network Database System (NDB)Problems
	Documentation for NDB Problem Diagnosis
	Definitions
	Diagnosing NDB Problems
	NDB Trace Examples and Explanations

	Chapter 19. Diagnosing X Window System and OSF/MotifProblems
	Trace Output When XWTRACE=2
	Trace Output When XWTRACELC=2

	Chapter 20. Diagnosing Simple Network Management Protocol(SNMP) Problems
	Overview
	Management Information Base (MIB)
	PDUs
	Functional Components
	Managers
	Agents
	Subagents
	Trap Forwarder Daemon

	Definitions
	osnmp
	SNMP Agent
	TCP/IP Subagent
	OMPROUTE Subagent
	SLA Subagent
	SNMP Socket Call Settings
	Trap Forwarder Daemon

	Diagnosing SNMP Problems
	Abends
	Documentation
	Analysis

	SNMP Connection Problems
	Problems Connecting to the SNMPIUCV Subtask
	Problems Connecting the SNMP Query Engine to the TCP/IPAddress Space
	Problems Connecting the SNMP Agent to the TCP/IP AddressSpace
	Problems Connecting SNMP Agents to Multiple TCP/IP Stacks
	Problems Connecting Subagents to the SNMP Agent

	Incorrect Output
	Unknown Variable
	Variable Format Incorrect
	Variable Value Incorrect

	No Response from the SNMP Agent
	Documentation
	Analysis

	Report Received from SNMP Agent
	I/O Error for SNMP PING
	Documentation
	Analysis

	Traps Not Forwarded by Trap Forwarder Daemon
	Documentation
	Analysis

	Incorrect Address in Forwarded Trap
	Documentation
	Analysis

	SNMP Traces
	Starting Manager Traces
	Starting SNMP Agent Traces
	If Agent Is Not Running
	If Agent Is Already Running

	Starting TCP/IP Subagent Traces
	Starting OMPROUTE Subagent Traces
	Starting SLA Subagent Traces
	Starting TRAPFWD Traces
	If TRAPFWD is Not Running
	If TRAPFWD is Already Running

	Trace Examples and Explanations
	SNMP Agent Traces
	Subagent Trace
	SNMP Query Engine Trace
	SNMP Query Engine IUCV Communication Trace
	TRAPFWD Trace

	Chapter 21. Diagnosing Policy Agent Problems
	Overview
	Service Policy Scopes
	Gathering Diagnostic Information
	Diagnosing Policy Agent Problems
	Initialization Problems
	Policy Definition Problems
	LDAP Problems
	Example Log File

	Chapter 22. Diagnosing RSVP Agent Problems
	Overview
	Reservation Types, Styles and Objects
	Service Policies and RSVP Processing
	Gathering Diagnostic Information
	Diagnosing RSVP Agent Problems
	Initialization Problems
	Application Problems
	Service Policy Problems
	Example Log File

	Chapter 23. Diagnosing Traffic Regulator ManagementDaemon (TRMD) Problems
	Gathering Diagnostic Information
	Diagnosing TRMD Problems
	Documentation for the IBM Software Support Center
	Example Log File

	Chapter 24. Diagnosing OROUTED Problems
	Definitions
	Diagnosing OROUTED Problems
	Abends
	OROUTED Connection Problems
	Documentation
	Analysis

	OS/390 UNIX oping Failures
	Documentation
	Analysis

	Incorrect Output
	Documentation
	Analysis

	Session Outages
	Documentation
	Analysis

	OROUTED Traces and Debug Information
	Starting OROUTED Traces from the OS/390 UNIX Shell
	Starting OROUTED Traces from an MVS Catalogued Procedure
	Where to Send OROUTED Trace Output
	Stopping OROUTED
	Changing Trace and Debug Levels with MODIFY
	OROUTED Trace Example and Explanation
	Documentation for the IBM Software Support Center

	Chapter 25. Diagnosing OMPROUTE Problems
	Diagnosing OMPROUTE Problems
	Abends
	OMPROUTE Connection Problems
	Routing Failures
	Documenting Routing Failures
	Analyzing Routing Failures

	OMPROUTE Traces and Debug Information
	Starting OMPROUTE Tracing and Debugging from the OS/390 Shell
	Starting OMPROUTE Tracing and Debugging from an MVS CatalogedProcedure or AUTOLOG
	Starting OMPROUTE Tracing and Debugging Using the MODIFYCommand
	Destination of OMPROUTE Trace and Debug Output

	Sample OMPROUTE Trace Output
	TCP/IP Services Component Trace for OMPROUTE
	Specifying Trace Options
	Specifying Options at Initialization
	Specifying Options After Initialization

	Formatting OMPROUTE Trace Records

	Chapter 26. Diagnosing NCPROUTE Problems
	Definitions
	Diagnosing NCPROUTE Problems
	Abends
	Documentation
	Analysis

	Connection Problems
	Documentation
	Analysis

	PING Failures
	Documentation
	Analysis

	Incorrect Output
	Documentation
	Analysis

	Session Outages
	Documentation
	Analysis

	NCPROUTE Traces
	Activating NCPROUTE Global Traces
	Activating NCPROUTE Selective Traces
	NCPROUTE Trace Example and Explanation

	Chapter 27. Diagnosing X.25 NPSI Problems
	Operation
	Configuration Requirements
	VTAM Considerations
	NPSI Considerations

	Sources of Diagnostic Information
	X.25 Trace Examples
	Normal Incoming Call, TRACE OFF
	Normal Incoming Call, TRACE DATA
	Normal Outgoing Call, TRACE CONTROL
	Results of LIST Command
	Termination by TCPIP STOP Device

	Logon Problems
	Session Hangs
	Helpful Hints
	Documentation Requirements

	Chapter 28. Diagnosing IMS Problems
	Setting Up the IMS TCP/IP Services Socket Interface System
	Common Configuration Mistakes
	Quick Checklist for Common Problems
	Component Problems
	Connection Problems
	Error Message and Return Code Problems
	Socket Data Protocol Problems
	IMS Transaction Build Problems
	IMS Database Problems

	Documentation References for Problem Diagnosis
	Traces
	Using IP Packet Trace
	TCP/IP Internal Traces
	IMS Traces

	Using NETSTAT
	Where to Find Return Code Documentation
	Where to Find Error Message Documentation

	Chapter 29. Diagnosing Restartable VMCF/TNF Problems
	VMCF or TNF Fail to Initialize
	Abends 0D5 and 0D6
	No Response to Commands
	VMCF or TNF Will Not Stop

	Chapter 30. Diagnosing Problems with CICS
	Diagnostic Data
	Initialization Problems
	CICS Sockets Interface Not Initialized
	CICS Listener Not Initialized
	No CICS Sockets Messages Issued
	TCP/IP Clients Unable to Connect
	Child Server Transactions Not Starting

	CICS Sockets Application Problems
	Hung CICS Tasks
	Hung CICS Region
	Errors on Socket Calls
	CICS Shutdown Hangs

	CICS Sockets Control Blocks
	Task Interface Element
	Global Work Area

	CICS Trace

	Part 4. Appendixes
	Appendix A. Collecting Component Trace Data
	Modifying Options with the TRACE CT Command
	With PARMLIB Member
	Without PARMLIB Member

	Displaying Component Trace Status
	Stopping a Component Trace
	Obtaining Component Trace Data with a Dump
	TCP/IP Stack
	OMPROUTE

	Obtaining Component Trace Data with an External Writer
	Formatting Component Traces
	IPCS Panels
	CTRACE Command

	Tips for Using Component Trace

	Appendix B. Search Paths
	Appendix C. First Failure Support Technology (FFST)
	FFST Probe Index
	FFST Probe Information
	FFST Probe Naming Conventions
	FFST Probe Descriptions

	Appendix D. Overview of Internetworking
	Maximum Transmission Unit (MTU)
	Fiber Distributed Data Interface (FDDI)
	Token-Ring IEEE 802.5
	IEEE 802.3
	Ethernet — DIX V2
	Subnetwork Access Protocol (SNAP)
	IP Routing
	Internet Addressing
	Direct Routing
	Indirect Routing
	Simplified IP Datagram Routing Algorithm
	Subnetting
	Simplified IP Datagram Routing Algorithm with Subnets
	Static Routing
	Dynamic Routing

	Appendix E. How to Read a Syntax Diagram
	Symbols and Punctuation
	Parameters
	Syntax Examples

	Appendix F. Information Apars
	IP Information Apars

	Appendix G. Notices
	Trademarks

	Bibliography
	IBM Communications Server forOS/390 Publications
	Related Publications
	Firewall
	OSA-Express

	Softcopy Information
	Planning
	Resource Definition,Configuration, and Tuning
	Operation
	Customization
	Writing Application Programs
	Diagnosis
	Messages and Codes
	APPC Application Suite

	Multiprotocol TransportNetworking (MPTN) ArchitecturePublications
	Redbooks

	Index
	Readers’ Comments — We'd Like to Hear from You

